УДК 532.529+517.958:536.2+517.958:539.219.3+517.958:532.546

ЗАВИСЯЩЕЕ ОТ ВРЕМЕНИ МАГНИТОГИДРОДИНАМИЧЕСКОЕ ТЕЧЕНИЕ НАНОЖИДКОСТЕЙ НА ОСНОВЕ ВОДЫ И ЧАСТИЦ СиО, Al₂O₃ И TiO₂ ВДОЛЬ ВЕРТИКАЛЬНОЙ ПРОНИЦАЕМОЙ РАСТЯГИВАЮЩЕЙСЯ ПОВЕРХНОСТИ

© 2021 г. Sharad Sinha¹, А. Н. Филиппов^{2, *}

¹Department of Mathematics, University of Rajasthan, Jaipur-302004, India ²Кафедра высшей математики, Губкинский университет, Ленинский проспект, 65, корп. 1, Москва, 119991 Россия *e-mail: filippov.a@gubkin.ru Поступила в редакцию 03.03.2021 г. После доработки 15.03.2021 г. Принята к публикации 17.03.2021 г.

Исследовано зависящее от времени магнитогидродинамическое течение вязких несжимаемых наножидкостей на основе воды и частиц CuO, Al_2O_3 и TiO_2 вдоль вертикальной проницаемой (за счет пористости) растягивающейся поверхности в присутствии внешнего магнитного поля, теплового излучения и вязкой диссипации. Математическая постановка задачи представляет собой сильно нелинейные связанные дифференциальные уравнения в частных производных. Для получения решения эти уравнения сначала преобразуются в обыкновенные дифференциальные уравнения с помощью подходящего преобразования Ли, а затем находится численное решение полученной системы уравнений. Численные результаты сопоставляются с результатами предыдущих исследований других авторов. Сравнительное исследование влияния различных параметров, таких как число Льюиса, отношение концентрационной и термической плавучестей, объемная доля твердой фазы в наножидкости, число Ричардсона, параметр излучения, параметр нестационарности, параметр проницаемости и других, на скорость, температуру и концентрацию наножидкостей проиллюстрировано с помощью графиков. Найдены и обсуждены коэффициенты поверхностного трения, числа Нуссельта и Шервуда на поверхности, а их численные значения представлены в виде таблиц.

DOI: 10.31857/S0023291221040121

1. ВВЕДЕНИЕ

Суспензия наноразмерных частиц металлов, оксидов, углеродных нанотрубок или карбидов в некоторой базовой жидкости, такой как этиленгликоль, масло или вода, называется наножидкостью. Наножидкости обладают свойством усиливать процесс теплопередачи, который имеет множество применений в машиностроении и промышленных технологиях. Идея повышения теплопроводности жидкостей путем диспергирования в них твердых наноразмерных частиц была впервые предложена в работе Чоя и др. [1]. Позже в работе [2] был проведен подробный теоретический анализ инерции, броуновской диффузии, диффузиофореза, термофореза и эффекта Магнуса для наножидкостей. Исследование естественной конвекции наножидкостей было продолжено в работах [3] и [4] для случаев горизонтальных концентрических колец и неглубокой полости

соответственно. Авторы объяснили влияние числа Рэлея в сочетании с теплопроводностью и объемной долей твердой фазы в наножидкости на характеристики теплопередачи. Впоследствии Хамад [5] учел влияние внешнего магнитного поля на течение и теплопередачу при естественной конвекции наножидкостей, а затем в работе [6] был исследован эффект нестационарности в случае смешанной конвекции. Термофорез и броуновское движение играют важную роль в изучении течения и температуры наножидкостей. Влияние этих явлений, связанных с выделением тепла, на течение наножидкости вблизи растягивающегося листа обсуждалось также в работе [7]. Позже многие авторы [8–10] расширили исследование течения наножидкостей, включив в него эффект излучения. В работе [11] был рассмотрен плоский канал с одной пористой стенкой и проанализировано магнитогидродинамическое (МГД)

течение наножидкости в нем. Решение было получено методом Галеркина, после чего авторы [11] пришли к выводу, что использование наножидкости на основе наночастии мели и этиленгликоля дает максимальную скорость среди всех рассмотренных наножидкостей для различных моделей теплопроводности и динамической вязкости. После этого авторы [12] расширили свое исследование [10], рассмотрев течение с точкой торможения жилкости в пористой среде над растягивающимся/сжимающимся листом. В работе [13] было проведено сравнительное изучение зависящего от времени течения различных наножидкостей вдоль вертикальной проницаемой растягивающейся поверхности. Авторы с помощью численного счета показали, что среди всех рассмотренных наножидкостей поверхностное трение было максимальным для наножидкости CuO-вода и минимальным для наножидкости Al₂O₃-вода. Гадам и Моради [14] модифицировали упомянутую работу [12], учтя эффекты смешанной конвекции. Позже Хан и Азам [15] использовали наножидкость Карро и объяснили зависящий от времени механизм тепломассопереноса в потоке с помощью модели Буонджорно [2]. В дополнение к этому авторы работы [16] сделали попытку объяснить явление конвективного охлаждения наножидкостями на основе воды и частиц Al₂O₃, TiO₂ и CuO. Недавно в статье [17] были применены дробные производные Капуто и Капуто-Фабрицио для анализа химической реакции и ньютоновских эффектов нагрева в МГД-потоке наножидкости. В нашей предыдущей работе [18] было исследовано влияние источника/поглотителя тепла на смешанное конвективное МГД-течение с точкой торможения вдоль вертикального растягивающегося листа.

Целью данной работы является анализ зависящего от времени МГД-течения наножидкостей CuO, Al_2O_3 , TiO₂—вода по проницаемой вертикально растягивающейся поверхности с учетом процессов тепло- и массообмена. При сравнительном изучении этих наножидкостей кроме растяжения поверхности учитывается влияние вязкой диссипации, излучения, смешанной конвекции и других явлений.

2. МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ

Рассмотрим нестационарное двумерное смешанно-конвективное ламинарное МГД-течение вязкой несжимаемой наножидкости вдоль растягивающейся поверхности. Предполагается, что поверхность проницаема вследствие ее пористо-

КОЛЛОИДНЫЙ ЖУРНАЛ том 83 № 4 2021

сти. Поверхность берется вдоль оси x, ось y нормальна к ней, а внешнее зависящее от времени магнитное поле напряженности B прикладывается в направлении оси y. Компоненты скорости в направлениях x и y равны u и v соответственно. Потоки жидкости, тепла и массы считаются установившимися в течение времени t < 0. С использованием приведенных выше предположений уравнения неразрывности, импульса, энергии и конвективной диффузии задаются следующим образом (см. [7, 9, 15]):

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \tag{1}$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \frac{\mu_{\rm nf}}{\rho_{\rm nf}} \frac{\partial^2 u}{\partial y^2} + g \frac{(\rho \beta_t)_{\rm nf}}{\rho_{\rm nf}} (T - T_{\infty}) + g \frac{(\rho \beta_c)_{\rm nf}}{\rho_{\rm nf}} (C - C_{\infty}) - \frac{\sigma}{\rho_{\rm nf}} B^2 u - \frac{\mu_{\rm nf}}{\rho_{\rm nf}} \frac{u}{K_{\rm p}},$$
(2)

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{\kappa_{\rm nf}}{(\rho C_{\rm p})_{\rm nf}} \frac{\partial^2 T}{\partial y^2} + \frac{\mu_{\rm nf}}{(\rho C_{\rm p})_{\rm nf}} \left(\frac{\partial u}{\partial y}\right)^2 - \frac{1}{(\rho C_{\rm p})_{\rm nf}} \frac{\partial q_r}{\partial y} + \frac{\sigma B^2 u^2}{(\rho C_{\rm p})_{\rm nf}} + \tau \left(D_{\rm B} \frac{\partial C}{\partial y} \frac{\partial T}{\partial y} + \frac{D_{\rm T}}{T_{\infty}} \left(\frac{\partial T}{\partial y}\right)^2\right),$$
(3)

$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = D_{\rm B} \frac{\partial^2 C}{\partial y^2} + \frac{D_{\rm T}}{T_{\infty}} \frac{\partial^2 T}{\partial y^2}, \qquad (4)$$

где (β_t)_{nf} и (β_c)_{nf} являются коэффициентами теплового и концентрационного расширения соответственно, μ_{nf} и ρ_{nf} – вязкость и плотность наножидкости, K_p – проницаемость пористой среды, $B = B_0/\sqrt{1-ct}$ – внешнее магнитное поле, g – ускорение свободного падения, σ – электропроводность, κ_{nf} – эффективная теплопроводность, (ρC_p)_{nf} – теплоемкость, T и C – температура и концентрация наножидкости соответственно, D_B и D_T – броуновский и термодиффузионный коэффициенты, $\tau = (\rho C_p)_s/(\rho C_p)_f$ – отношение эффективной теплоемкости материала наночастиц к эффективной теплоемкости жидкой среды, T_{∞} и C_{∞} представляют температуру и концентрацию наножидкости вдали от проницаемой поверхности соответственно.

Параметры наножидкости задаются следующими формулами (см. [19]):

$$\mu_{nf} = \frac{\mu_{f}}{(1-\zeta)^{2.5}}, \quad (\rho\beta)_{nf} = (1-\zeta)(\rho\beta)_{f} + \zeta(\rho\beta)_{s}, \quad \rho_{nf} = (1-\zeta)\rho_{f} + \zeta\rho_{s} \\ (\rho C_{p})_{nf} = (1-\zeta)(\rho C_{p})_{f} + \zeta(\rho C_{p})_{s}, \quad \frac{\kappa_{nf}}{\kappa_{f}} = \frac{(\kappa_{s} + 2\kappa_{f}) - 2\zeta(\kappa_{f} - \kappa_{s})}{(\kappa_{s} + 2\kappa_{f}) + \zeta(\kappa_{f} - \kappa_{s})}$$
(5)

где объемная доля твердой фазы в наножидкости обозначена как ζ , и для обычных ньютоновских жидкостей ее значение лежит в диапазоне от 0 до 0.2. Характеристики жидкой и твердой фаз обозначаются нижними индексами "f" и "s" соответственно. В табл. 1 приведены теплофизические свойства наножидкостей (см. [3, 4, 6]). В настоящем исследовании аппроксимация для к_{nf} ограничена сферическими наночастицами.

Граничные условия для физической задачи имеют вид (см. [6, 13]):

где $u = U_w(x,t)$ есть скорость растяжения поверхности а $v_w(t)$ – скорость массопереноса (фильтрации) через растягивающуюся поверхность, $C_w(x,t)$ и $T_w(x,t)$ – поверхностные концентрация и температура соответственно. Здесь *а* и *с* – положительные константы, имеющие размерность обратного времени и 1 - ct > 0. Постоянные *b* и *d* имеют размерности температура/длина и концентрация/длина соответственно.

В диффузионном приближении Росселанда излучательный тепловой поток задается формулой $q_r = -\frac{4}{3} \frac{\sigma_s}{k^*} \frac{\partial T^4}{\partial y}$, где k^* и σ_s являются средним коэффициентом поглощения Росселанда и постоянной Стефана–Больцмана соответственно. Здесь градиент температуры в потоке считается достаточно малым, так что T^4 выражается как линейная функция T, т.е. $T^4 \cong 4T_{\infty}^3T - 3T_{\infty}^4$. Следова-

тельно, градиент излучательного теплового потока становится равным $\frac{\partial q_r}{\partial y} = -\frac{16\sigma_s T_{\infty}^3}{3k^*} \frac{\partial^2 T}{\partial y^2}$. Поэтому уравнение энергии (3) сводится к следующему:

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{\kappa_{\rm nf}}{(\rho C_{\rm p})_{\rm nf}} \frac{\partial^2 T}{\partial y^2} + \frac{\mu_{\rm nf}}{(\rho C_{\rm p})_{\rm nf}} \left(\frac{\partial u}{\partial y}\right)^2 + \frac{1}{(\rho C_{\rm p})_{\rm nf}} \frac{16\sigma_{\rm s} T_{\rm s}^3}{3k^*} \frac{\partial^2 T}{\partial y^2} + \frac{\sigma B^2 u^2}{(\rho C_{\rm p})_{\rm nf}} + \tau \left(D_{\rm B} \frac{\partial C}{\partial y} \frac{\partial T}{\partial y} + \frac{D_{\rm T}}{T_{\rm s}} \left(\frac{\partial T}{\partial y}\right)^2\right).$$
(7)

3. МЕТОД РЕШЕНИЯ И ЕГО ВАЛИДАЦИЯ

Чтобы получить решение уравнений (1), (2), (4) и (7) с граничными условиями (6), будем использовать следующее преобразование Ли (см. [6, 13]):

$$\eta = \left(\frac{a}{\upsilon_{f}(1-ct)}\right)^{1/2} y, \quad \psi = \left(\frac{\upsilon_{f}a}{1-ct}\right)^{1/2} xf(\eta), \quad \theta(\eta) = \frac{T-T_{\infty}}{T_{w}-T_{\infty}}, \quad \phi(\eta) = \frac{C-C_{\infty}}{C_{w}-C_{\infty}},$$

$$u = \frac{\partial\psi}{\partial y}, \quad v = -\frac{\partial\psi}{\partial x}, \quad M = \frac{\sigma B_{0}^{2}}{\rho_{f}a}, \quad K = \frac{K_{p}a}{\upsilon_{f}(1-ct)}, \quad \Pr = \frac{\upsilon_{f}}{\kappa_{f}/(\rho C_{p})_{f}}, \quad R = \frac{16}{3} \frac{\sigma_{s} T_{\infty}^{3}}{k^{*} \kappa_{nf}},$$

$$\text{Ri} = g(\beta_{t})_{f} \frac{b}{a^{2}}, \quad \text{Ec} = \frac{a^{2}x}{b(C_{p})_{f}}, \quad N_{b} = \frac{\tau D_{B}(C_{w}-C_{\infty})}{\upsilon_{f}}, \quad N_{t} = \frac{\tau D_{t}(T_{w}-T_{\infty})}{T_{\infty}\upsilon_{f}}, \quad A = c/a,$$

$$\text{Le} = \frac{\alpha}{D_{B}} = \frac{\kappa_{nf}}{(\rho C_{p})_{nf} D_{B}}, \quad \xi = \left(1-\zeta + \zeta \frac{(\rho\beta_{c})_{s}}{(\rho\beta_{c})_{f}}\right)\beta_{c}d / \left(1-\zeta + \zeta \frac{(\rho\beta_{t})_{s}}{(\rho\beta_{t})_{f}}\right)\beta_{t}b$$

$$\tag{8}$$

Параметр	Вода	CuO	Al ₂ O ₃	TiO ₂
С _р , Дж/(кг К)	4179	531.8	765	686.2
ρ, кг/м ³	997.1	6320	3970	4250
к, Вт/(мК)	0.613	76.5	40	8.9538
$\beta \times 10^{-5}, \mathrm{K}^{-1}$	21	1.8	0.85	0.9

Таблица 1. Теплофизические свойства базовой жидкости и различных наночастиц

При этом уравнение неразрывности автоматически удовлетворяется, а уравнения импульса, энергии и конвективной диффузии приобретают следующий вид:

$$\frac{1}{(1-\zeta)^{2.5}}f'''(\eta) - \left(1-\zeta+\zeta\frac{\rho_s}{\rho_f}\right) \times \\ \times \left(\left(f'(\eta)\right)^2 - f(\eta)f''(\eta) + A\left(f'(\eta)+\frac{\eta}{2}f''(\eta)\right)\right) - \\ - Mf'(\eta) + \left(1-\zeta+\zeta\frac{(\rho\beta_t)_s}{(\rho\beta_t)_f}\right) \operatorname{Ri}\left(\theta(\eta)+\xi\phi(\eta)\right) - \\ - \frac{1}{(1-\zeta)^{2.5}}\frac{f'(\eta)}{K} = 0,$$
(9)

$$\frac{1}{\Pr} \left(\frac{\kappa_{nf}}{\kappa_{f}} + R \right) \theta''(\eta) + \frac{1}{(1-\zeta)^{2.5}} \operatorname{Ec} \left(f''(\eta) \right)^{2} + \\ + M \operatorname{Ec} \left(f'(\eta) \right)^{2} + \left(1 - \zeta + \zeta \frac{(\rho C_{p})_{s}}{(\rho C_{p})_{f}} \right) \times \\ \times \left(\begin{array}{c} N_{b} \theta'(\eta) \phi'(\eta) + N_{t} \left(\theta'(\eta) \right)^{2} + \\ + f(\eta) \theta'(\eta) - f'(\eta) \theta(\eta) - \\ - A \left(2\theta(\eta) + \frac{\eta}{2} \theta'(\eta) \right) \end{array} \right) = 0, \\ \phi''(\eta) + \operatorname{PrLe} \left(\frac{\kappa_{f}}{\kappa_{nf}} \right) \left(1 - \zeta + \zeta \frac{(\rho C_{p})_{s}}{(\rho C_{p})_{f}} \right) \times \\ \times \left(\begin{array}{c} \left(f(\eta) \phi'(\eta) - f'(\eta) \phi(\eta) \right) - \\ - \frac{A}{2} (\eta \phi'(\eta) + 4\phi(\eta)) \end{array} \right) + \frac{N_{t}}{N_{b}} \theta''(\eta) = 0, \end{array} \right)$$
(11)

где производные по η обозначены штрихами, Pr – число Прандтля, R – параметр излучения, A – параметр нестационарности, K – параметр проницаемости, M – магнитный параметр, Ri – число Ричардсона (см. [10]), Ес – число Эккерта, Le – число Льюиса, N_t – термофоретический параметр, N_b – параметр броуновского движения, ξ – отношение концентрационной и термической плавучестей, υ_f – кинематическая вязкость. Для уточнения физической значимости числа Льюиса можно воспользоваться ссылками [7, 9, 15].

Соответствующие граничные условия сводятся к виду

$$f'(0) = 1, \quad f(0) = f_{w} = -\frac{V_{0}}{\sqrt{v_{f}a}}, \quad \theta(0) = 1, \quad \phi(0) = 1$$

$$f'(\infty) = 0, \quad \theta(\infty) = 0, \quad \phi(\infty) = 0$$
(12)

где $f_{\rm w}$ — безразмерный параметр, характеризующий скорость фильтрации.

Локальный поверхностный коэффициент трения, числа Нуссельта и Шервуда даются выражениями

$$C_{\rm f} = \frac{2\tau_{\rm w}}{\rho_{\rm f} U_{\rm w}^2} = \frac{2}{(1-\zeta)^{2.5}} \operatorname{Re}_{\rm x}^{-1/2} f''(0),$$

$$\operatorname{Nu}_{\rm x} = \frac{q_{\rm w} x}{\kappa_{\rm f} (T_{\rm w} - T_{\infty})} = -\frac{\kappa_{\rm nf}}{\kappa_{\rm f}} (1+R) \operatorname{Re}_{\rm x}^{1/2} \theta'(0),$$

$$\operatorname{Sh}_{\rm x} = \frac{q_{\rm m} x}{D_{\rm B} (C_{\rm w} - C_{\infty})} = -\operatorname{Re}_{\rm x}^{1/2} \phi'(0)$$
(13)

где напряжение сдвига на стенке τ_w , тепловой поток q_w и поток массы q_m равны соответственно

КОЛЛОИДНЫЙ ЖУРНАЛ том 83 № 4 2021

$$\begin{aligned} \tau_{\rm w} &= \mu_{\rm nf} \left. \frac{\partial u}{\partial y} \right|_{y=0}, \quad q_{\rm w} = -\left(\kappa_{\rm nf} + \frac{16\sigma_{\rm s}T_{\infty}^3}{3k^*} \right) \frac{\partial T}{\partial y} \right|_{y=0}, \\ q_{\rm m} &= -D_{\rm B} \left. \frac{\partial C}{\partial y} \right|_{y=0} \end{aligned}$$

а $\operatorname{Re}_{x}\left(=\frac{U_{w}x}{v_{f}}\right)$ представляет собой локальное чис-

ло Рейнольдса.

Уравнения (9)–(11) являются сильно нелинейными связанными дифференциальными уравнениями с граничными условиями (12). Для численного решения этих уравнений используется метод Рунге–Кутты четвертого порядка в сочета-

SHARAD SINHA, ФИЛИППОВ

-		-	-			0 i 5	
Α	Ri	Pr Ishak et al. [21]		Madhy [6]	Grubka and Bobba [20]	Freidoonimehr et al. [13]	Данная работа
0.0	0.0	1.0	1.0000	1.0000	1.0000	1.00000	1.00000
		3.0	1.9237	1.9237	1.9237	1.92368	1.92369
	2.0	1.0	1.1423	1.1423		1.14234	1.14233
	3.0		1.1853	1.1853		1.18529	1.18529
1.0	0.0		1.6820	1.6820		1.68199	1.68199
	1.0		1.7039	1.7039		1.70391	1.70391

Таблица 2. Сравнение численных значений $-\theta'(0)$ для различных значений параметра нестационарности, чисел Ричардсона и Прандтля при Ес = Le = $M = R = \xi = f_w = 0, K \ge 100, N_b = N_t \ll 0.001$ и $\zeta = 0.0$

нии с методом стрельбы. Для этого дифференциальные уравнения более высокого порядка с помощью метода декомпозиции сводятся к системе дифференциальных уравнений первого порядка:

$$\begin{aligned} f_{1}^{'} &= f_{2}, \\ f_{2}^{'} &= f_{3}, \\ f_{3}^{'} &= \frac{1}{X_{1}} \Big(X_{2} \Big(f_{2}^{2} - f_{1}f_{3} + A \Big(f_{2} + \frac{\eta}{2}f_{3} \Big) \Big) + Mf_{2} - X_{3} \operatorname{Ri} \big(f_{4} + \xi f_{6} \big) + \frac{X_{1}}{K} f_{2} \Big), \\ f_{4}^{'} &= f_{5}, \\ f_{5}^{'} &= \frac{-\operatorname{Pr}}{(X_{5} + R)} \Big(X_{1} \operatorname{Ec} f_{3}^{2} + \operatorname{MEc} f_{2}^{2} + X_{6} \Big(N_{b}f_{5}f_{7} + N_{t}f_{5}^{2} + f_{1}f_{5} - f_{2}f_{4} \Big) - A \Big(2f_{4} + \frac{\eta}{2}f_{5} \Big) \Big), \\ f_{6}^{'} &= f_{7}, \\ f_{7}^{'} &= -\operatorname{PrLe} \frac{X_{6}}{X_{5}} \Big(f_{1}f_{7} - f_{2}f_{6} - \frac{A}{2} \big(\eta f_{7} + 4f_{6} \big) \Big) - \frac{N_{t}}{N_{b}} f_{5}^{'} \end{aligned}$$

$$(14)$$

При этом соответствующие граничные условия приобретают вид

где

$$X_{1} = \frac{1}{\left(1-\zeta\right)^{2.5}}, \quad X_{2} = \left(1-\zeta+\zeta\frac{\rho_{s}}{\rho_{f}}\right),$$
$$X_{3} = \left(1-\zeta+\zeta\frac{\left(\rho\beta_{t}\right)_{s}}{\left(\rho\beta_{t}\right)_{f}}\right), \quad X_{4} = \left(1-\zeta+\zeta\frac{\left(\rho\beta_{c}\right)_{s}}{\left(\rho\beta_{c}\right)_{f}}\right),$$
$$X_{5} = \frac{\kappa_{nf}}{\kappa_{f}}, \quad X_{6} = \left(1-\zeta+\zeta\frac{\left(\rho C_{p}\right)_{s}}{\left(\rho C_{p}\right)_{f}}\right).$$

Для решения этих уравнений требуются значения $f_1, f_2, f_3, f_4, f_5, f_6$ и f_7 при $\eta = 0$. Так как в рассматриваемой задаче f_3, f_5 и f_7 не известны при $\eta = 0$, то, согласно методу стрельбы, первоначальные приближения для f_3, f_5 и f_7 принимаются равными s_1, s_2 и s_3 соответственно. Пошаговое интегрирование осуществляется с помощью программного обеспечения МАТLAB. Для валидации вычислительного метода локальные значения числа Нуссельта для наножидкостей (при значении – $\theta'(0)$ для чистой воды) сравнивались с данными Грубки и Боббы [20], Исхака и др. [21], Мадхи [6] и Фрейдонимехра и др. [13]. Из табл. 2 следует, что полученные нами результаты находятся в хорошем согласии с ранее опубликованными данными.

4. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В этом разделе поведение скорости, температуры и концентрации наножидкостей на пористой растягивающейся поверхности в зависимости от различных физических параметров представлено на рис. 1–23. Полученные численно значения коэффициента поверхностного трения, числа Нуссельта и числа Шервуда для исследованных наножидкостей в зависимости от выбранных параметров представлены в табл. 3–5.

На рис. 1, 2 и 3 показано влияние параметра нестационарности на скорость, температуру и концентрацию наножидкости. Увеличение параметра нестационарности уменьшает скорость растяжения поверхности, что приводит к паде-

Рис. 1. Зависимости скорости от η для различных значений *А*.

Рис. 3. Зависимости концентрации от η для различных значений *А*.

нию скорости жидкости, температуры и концентрации. Эти эффекты вызывают уменьшение коэффициента поверхностного трения и увеличение чисел Нуссельта и Шервуда.

Рисунки 4 и 5 показывают, что скорость и температура наножидкости повышаются из-за тепла, генерируемого вязкой диссипацией. Рост числа Эккерта увеличивает скорость переноса энергии в наножидкость, что и приводит к росту ее скорости и температуры. Как следствие, растет коэффициент поверхностного трения, в то время как число Нуссельта уменьшается.

Повышение параметра проницаемости увеличивает скорость жидкости, поскольку имеет место обратное влияние этого параметра на темпе-

КОЛЛОИДНЫЙ ЖУРНАЛ том 83 № 4 2021

Рис. 2. Зависимости температуры от η для различных значений *А*.

Рис. 4. Зависимости скорости от η для различных значений Ес.

ратуру и концентрацию, как это видно на рис. 6, 7 и 8. Физическая причина, стоящая за этим явлением, заключается в том, что увеличение параметра проницаемости соответствует увеличению пористости, что приводит к возрастанию потока жидкости, в результате скорость увеличивается, а температура и концентрация наножидкости уменьшаются. Увеличение скорости вызывает большее поверхностное трение, уменьшение температуры и концентрации наножидкости, повышает разность температур и концентраций вблизи поверхности и ядре потока, поэтому скорость тепломассопереноса на поверхности увеличивается. Это приводит к увеличению коэффициента

Рис. 5. Зависимости температуры от η для различных значений Ес.

Рис. 7. Зависимости температуры от η для различных значений *К*.

поверхностного трения, числа Нуссельта и числа Шервуда.

На рис. 9 и 10 показано, что увеличение числа Прандтля приводит к падению скорости и температуры жидкости, за счет чего уменьшается поверхностное трение, а число Нуссельта увеличивается, что согласуется с данными, приведенными в табл. 3 и 4 (см. ниже). При увеличении числа Прандтля проводимость жидкости падает, а вязкость увеличивается. Это приводит к падению скорости и температуры жидкости вблизи фильтрующей поверхности. Благодаря снижению скорости поверхностное трение уменьшается, а вследствие роста перепада температуры увеличивается число Нуссельта.

Рис. 6. Зависимости скорости от η для различных значений *К*.

Рис. 8. Зависимости концентрации от η для различных значений *К*.

Рисунки 11, 12 и 13 показывают, что большее число Ричардсона приводит к большей скорости наножидкости и понижает ее температуру и концентрацию вблизи поверхности. Это происходит потому, что с увеличением числа Ричардсона уменьшается вязкость. В результате увеличивается скорость жидкости и из-за меньшего сопротивления потоку температура и концентрация снижаются. Увеличивающаяся скорость вызывает большее поверхностное трение, а рост разности температур и концентраций приводит к увеличению числа Нуссельта и числа Шервуда.

Увеличение числа Льюиса вызывает повышение температуры наножидкости и снижает ее концентрацию, что видно на рис. 14 и 15. Больше-

Рис. 9. Зависимости скорости от η для различных значений Pr.

Рис. 11. Зависимости скорости от η для различных значений Ri.

му числу Льюиса соответствуют меньший коэффициент броуновской диффузии и больший коэффициент термодиффузии, что и приводит к указанным эффектам. Разница температур уменьшается из-за повышения температуры вблизи поверхности, и из-за этого уменьшается число Нуссельта. В то же время бо́льшая разность концентраций оказывает обратное влияние на число Шервуда — оно возрастает.

Из рис. 16 и 17 следует, что скорость и температура жидкости возрастают при увеличении параметра излучения, что соответствует большему количеству излучаемого тепла, потребляемого водной фазой наножидкости на нагреваемой поверхности. В результате увеличиваются скорость и температура текущей жидкости, что приводит к

КОЛЛОИДНЫЙ ЖУРНАЛ том 83 № 4 2021

Рис. 10. Зависимости температуры от η для различных значений Pr.

Рис. 12. Зависимости температуры от η для различных значений Ri.

увеличению коэффициента поверхностного трения и соответственно уменьшению числа Нуссельта.

На рис. 18, 19 и 20 показано, что скорость жидкости увеличивается, а ее температура и концентрация вблизи поверхности уменьшаются с ростом отношения концентрационной и термической плавучестей. Эти эффекты дают более высокие значения коэффициента поверхностного трения, чисел Нуссельта и Шервуда.

На рис. 21, 22 и 23 показано, что при увеличении объемной доли твердой фазы в наножидкости вблизи фильтрующей поверхности температура и концентрация повышаются, а скорость уменьшается в случае наножидкости CuO—вода и увеличивается для наножидкостей Al₂O₃—вода и

Рис. 13. Зависимости концентрации от η для различных значений Ri.

Рис. 15. Зависимости концентрации от η для различных значений Le.

TiO₂—вода. За счет увеличения объемной доли твердой фазы число Нуссельта уменьшается, а число Шервуда увеличивается. С физической точки зрения это объясняется тем, что теплопроводность наножидкости возрастает.

Таблица 1 показывает, что наночастицы Al_2O_3 имеет минимальную плотность, а CuO — максимальную. Вследствие этого различия в плотности наночастиц, как следует из приведенных выше рисунков, скорость максимальна для наножидкости Al_2O_3 —вода и минимальна для наножидкости CuO—вода. Аналогично, CuO и TiO₂ имеют максимальную и минимальную теплопроводность соответственно. Поэтому температура наножид-

Рис. 14. Зависимости температуры от η для различных значений Le.

Рис. 16. Зависимости скорости от η для различных значений *R*.

кости CuO-вода максимальна, а наножидкости TiO₂-вода – минимальна, как это видно на рис. 22.

Согласно данным табл. 3, коэффициент поверхностного трения f''(0) растет за счет увеличения параметра проницаемости, параметра излучения, числа Ричардсона, отношения концентрационной и термической плавучестей и числа Эккерта и уменьшается с увеличением числа Льюиса, числа Прандтля и параметра нестационарности. Также следует отметить, что выбор наночастиц Al_2O_3 приводит к максимальному значению коэффициента поверхностного трения, в то время как выбор наночастиц СиО дает минимальное его значение. Это объясняется тем, что, как отмечалось выше, СиО и Al_2O_3 имеют соот-

Рис. 17. Зависимости температуры от η для различных значений *R*.

Рис. 19. Зависимости температуры от η для различных значений ξ.

ветственно максимальное и минимальное значение плотности среди рассматриваемых типов наночастиц.

Из табл. 4 следует, что из-за увеличения параметра нестационарности, параметра проницаемости, числа Прандтля, числа Ричардсона и отношения концентрационной и термической плавучестей число Нуссельта $-\theta'(0)$ увеличивается, в то время как оно уменьшается с увеличением числа Эккерта, параметра излучения, объемной доли твердой фазы в наножидкости и числа Льюиса. Также видно, что число Нуссельта является максимальным для наножидкости TiO₂—вода и минимальным для наножидкости CuO–вода. Это

КОЛЛОИДНЫЙ ЖУРНАЛ том 83 № 4 2021

Рис. 18. Зависимости скорости от η для различных значений ξ.

Рис. 20. Зависимости концентрации от η для различных значений ξ.

происходит потому, что TiO_2 имеет наименьшую теплопроводность, а CuO — наибольшую из всех рассмотренных нами веществ.

Таблица 5 показывает, что увеличение параметра нестационарности, параметра проницаемости, параметра излучения, числа Ричардсона, отношения концентрационной и термической плавучестей, числа Эккерта или числа Льюиса приводит к увеличению числа Шервуда – ф'(0).

5. ЗАКЛЮЧЕНИЕ

Проведено сравнительное исследование нестационарного магнитогидродинамического те-

Рис. 21. Зависимости скорости от η для различных значений ζ .

чения наножидкостей на водной основе, содержащих частицы CuO, Al_2O_3 или TiO₂, около проницаемой вертикально растягивающейся поверхности. Исследовано влияние различных физических параметров на скорость наножидкости, температуру, концентрацию, коэффициент поверхностного трения, число Нуссельта и число Шервуда. На основании полученных результатов можно сделать следующие основные выводы, перечисленные ниже.

Наножидкость CuO-вода имеет минимальные скорость и локальный коэффициент поверхностного трения, в то время как наножидкость Al₂O₃-вода имеет максимальные значения этих параметров.

 Скорость жидкости и локальный коэффициент поверхностного трения могут быть умень-

Рис. 22. Зависимости температуры от η для различных значений ζ.

шены путем увеличения числа Льюиса, числа Прандтля или параметра нестационарности.

 Скорость теплопередачи может быть увеличена за счет использования наножидкости TiO₂-вода вместо наножидкостей CuO-вода или Al₂O₃-вода.

 Температура жидкости может быть понижена путем увеличения числа Ричардсона и параметра проницаемости или отношения концентрационной и термической плавучестей.

 Число Шервуда является максимальным для наножидкости Al₂O₃—вода и минимальным для наножидкости CuO—вода.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

Рис. 23. Зависимости концентрации от η для различных значений ζ.

ζ	A	K	Pr	R	Ri	τ,	Ec	Le	<i>f</i> "(0)			
									CuO	Al ₂ O ₃	TiO ₂	
0.01	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	-0.9267	-0.9123	-0.9152	
0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	-1.0136	-0.9496	-0.9626	
0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	-1.0136	-0.9496	-0.9626	
0.05	1.0	100	6.5	0.1	2.0	0.5	0.01	0.4	-1.2100	-1.1362	-1.1500	
0.05	0.5	10	6.5	0.1	2.0	0.5	0.01	0.4	-1.0473	-0.9844	-0.9972	
0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	-1.0136	-0.9496	-0.9626	
0.05	0.5	100	4.0	0.1	2.0	0.5	0.01	0.4	-0.8768	-0.8139	-0.8274	
0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	-1.0136	-0.9496	-0.9626	
0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	-1.0136	-0.9496	-0.9626	
0.05	0.5	100	6.5	1.0	2.0	0.5	0.01	0.4	-0.9477	-0.8839	-0.8964	
0.05	0.5	100	6.5	0.1	0.5	0.5	0.01	0.4	-1.4776	-1.4069	-1.4169	
0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	-1.0136	-0.9496	-0.9626	
0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	-1.0136	-0.9496	-0.9626	
0.05	0.5	100	6.5	0.1	2.0	1.0	0.01	0.4	-0.6949	-0.6347	-0.6497	
0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	-1.0136	-0.9496	-0.9626	
0.05	0.5	100	6.5	0.1	2.0	0.5	0.2	0.4	-0.9830	-0.9193	-0.9322	
0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.1	-0.7590	-0.6951	-0.7086	
0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	-1.0098	-0.9456	-0.9590	

Таблица 3. Численные значения поверхностного коэффициента трения f''(0) при различных значениях физических параметров и M = 0.5

Таблица 4. Численные значения числа Нуссельта на поверхности при различных значениях физических параметров и *M* = 0.5

۶	A	K	D.,	r R	Ri	ζ	Ec	Le	-θ'(0)			
ح			FI						CuO	Al_2O_3	TiO ₂	
0.01	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	4.804	4.806	4.816	
0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	4.460	4.465	4.511	
0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	4.460	4.465	4.511	
0.05	1.0	100	6.5	0.1	2.0	0.5	0.01	0.4	4.995	4.999	5.049	
0.05	0.5	10	6.5	0.1	2.0	0.5	0.01	0.4	4.455	4.460	4.506	
0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	4.460	4.465	4.511	
0.05	0.5	100	4.0	0.1	2.0	0.5	0.01	0.4	3.295	3.300	3.333	
0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	4.460	4.465	4.511	
0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	4.460	4.465	4.511	
0.05	0.5	100	6.5	1.0	2.0	0.5	0.01	0.4	3.160	3.163	3.179	
0.05	0.5	100	6.5	0.1	0.5	0.5	0.01	0.4	4.406	4.413	4.459	
0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	4.460	4.465	4.511	
0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	4.460	4.465	4.511	
0.05	0.5	100	6.5	0.1	2.0	1.0	0.01	0.4	4.498	4.503	4.548	
0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	4.460	4.465	4.511	
0.05	0.5	100	6.5	0.1	2.0	0.5	0.2	0.4	4.032	4.056	4.091	
0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.1	4.553	4.558	4.605	
0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	4.459	4.464	4.510	

ζ	1	V	Dr	R	Ri	щ	Fo	Le	- \$ '(0)			
	د	А	Л	11	Λ	Ki	ح	EC	Lt	CuO	Al ₂ O ₃	TiO ₂
	0.01	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	-0.6508	-0.6490	-0.6505
	0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	-0.6120	-0.6045	-0.6115
Î	0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	-0.6120	-0.6045	-0.6115
	0.05	1.0	100	6.5	0.1	2.0	0.5	0.01	0.4	-0.4905	-0.4854	-0.4902
Î	0.05	0.5	10	6.5	0.1	2.0	0.5	0.01	0.4	-0.6151	-0.6078	-0.6148
	0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	-0.6120	-0.6045	-0.6115
Î	0.05	0.5	100	4.0	0.1	2.0	0.5	0.01	0.4	-0.3878	-0.3821	-0.3863
	0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	-0.6120	-0.6045	-0.6115
Î	0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	-0.6120	-0.6045	-0.6115
	0.05	0.5	100	6.5	1.0	2.0	0.5	0.01	0.4	-0.5663	-0.5747	-0.5948
Î	0.05	0.5	100	6.5	0.1	0.5	0.5	0.01	0.4	-0.6378	-0.6306	-0.6371
	0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	-0.6120	-0.6045	-0.6115
Î	0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	-0.6120	-0.6045	-0.6115
	0.05	0.5	100	6.5	0.1	2.0	1.0	0.01	0.4	-0.5890	-0.5816	-0.5885
Î	0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	-0.6120	-0.6045	-0.6115
	0.05	0.5	100	6.5	0.1	2.0	0.5	0.2	0.4	-0.2337	-0.2446	-0.2423
Î	0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.1	-2.6573	-2.6528	-2.6826
I	0.05	0.5	100	6.5	0.1	2.0	0.5	0.01	0.4	-0.6103	-0.60280	-0.6095

Таблица 5. Численные значения числа Шервуда на поверхности при различных значениях физических параметров и *M* = 0.5

СПИСОК ЛИТЕРАТУРЫ

- Choi S.U.S., Zhang Z.G., Yu W., Lockwood F.E., Grulke E.A. // Appl. Phys. Lett. 2001. V. 79. P. 2252.
- Buongiorno J. // ASME J. Heat Transfer. 2006. V. 128. P. 240.
- Nada E.A., Masoud Z., Hijazi A. // Int. Commun. Heat Mass. 2008. V. 35. P. 657.
- Alloui Z., Vasseur P., Reggio M. // Int. J. Therm. Sci. 2011. V. 50. P. 385.
- Hamad M.A.A. // Int. Commun. Heat Mass. 2011. V. 38. P. 487.
- 6. Mahdy A. // Nucl. Eng. Des. 2012. V. 249. P. 248.
- Uddin M.J., Khan W.A., Ismail A.I.M. // Math. Probl. Eng. 2012. Article ID 934964.
- Akbar N.S., Nadeem S., Haq R.U., Khan Z.H. // Chin. J. Aeronaut. 2013. V. 26. P. 1389.
- Khan M.S., Alam M.M., Ferdows M. // Procedia Eng. 2013. V. 56. P. 316.
- 10. Pal D., Mandal G., Vajravelu K. // Int. J. Heat Mass Tran. 2013. V. 65. P. 481.
- 11. Sheikholeslami M., Hatami M., Ganji D.D. // Powder Technol. 2013. V. 246. P. 327.

- Pal D., Mandal G., Vajravelu K. // Appl. Math. Comp. 2014. V. 238. P. 208.
- Freidoonimehr N., Rashidi M.M., Mahmud S. // Int. J. Therm. Sci. 2015. V. 87. P. 136.
- Ghadam A.G.J., Moradi A. // J. Particle Sci. Technol. 2015. V. 1. P. 225.
- 15. Khan M., Azam M. // J. Mol. Liq. 2017. V. 225. P. 554.
- Alkasmoul F.S., Al-Asadi M.T., Myers T.G., Thompson H.M., Wilson M.C.T. // Int. J. Heat Mass Tran. 2018. V. 126. P. 639.
- 17. Aleem M., Asjad M.I., Shaheen A., Khan I. // Chaos Solitons Fractals. 2020. V. 130. Article ID 109437.
- Sharma P.R., Sinha Sharad, Yadav R.S., Filippov A.N. // Int. J. Heat Mass Transf. 2018. V. 117. P. 780.
- Nanoparticle Heat Transfer and Fluid Flow / Ed. by Minkowycz W.J., Sparrow E.M., Abraham, J.P. Boca Raton: CRC Press, 2012.
- Grubka L.J., Bobba K.M. // J. Heat Transf. 1985.
 V. 107. P. 248.
- Ishak A., Nazar R., Pop I. // Meccanica. 2009. V. 44. P. 369.