УДК 532.64

ЛОКАЛЬНЫЕ НАПРЯЖЕНИЯ В ПУСТОЙ ЦИЛИНДРИЧЕСКОЙ ЩЕЛИ С ДИСПЕРСИОННЫМИ ВЗАИМОДЕЙСТВИЯМИ

© 2021 г. Е. Н. Бродская^{1, *}, А. И. Русанов¹

¹Санкт-Петербургский государственный университет, Университетская наб., 7, Санкт-Петербург, 199034 Россия *e-mail: e.brodskaya@spbu.ru Поступила в редакцию 14.05.2021 г. После доработки 18.05.2021 г.

Принята к публикации 19.05.2021 г.

Произведен расчет тензора напряжений Ирвинга—Кирквуда в цилиндрической щели в аморфном твердом теле в рамках дисперсионных сил. Оценен вклад в расклинивающее давление от кривизны, и проведено сравнение со случаем сферической щели. Показано, что в условиях малой кривизны результаты для двух щелей совпадают при использовании среднего радиуса кривизны.

DOI: 10.31857/S0023291221050037

ВВЕДЕНИЕ

В предыдущей статье [1] мы исследовали поведение локального тензора напряжений в пустой сферической щели и оценивали вклад ее кривизны в расклинивающее давление. Продолжая изучение влияния искривления ограничивающих щель твердых поверхностей на поведение тензора напряжений, рассмотрим цилиндрическую щель, как еще один пример классического случая искривленных щелей, рассмотренных в [2] при анализе сорбострикционных явлений на основе асимптотического принципа. Рассмотрение будем проводить на основе дисперсионных взаимодействий с парным потенциалом между молекулами сорта *р* и *q*

$$\Phi_{pq}(R) = -A_{pq}R^{-6},$$
 (1)

где R — расстояние между молекулами и A — постоянная. Одним из первых эти силы использовал Гамакер [3] для определения силы взаимодействия между двумя шарами, между шаром и полубесконечным твердым телом с плоской поверхностью и между двумя плоскопараллельными поверхностями (на единицу поверхности *S*). Введение понятия расклинивающего давления Дерягиным [4, 5] было самым существенным дальнейшим развитием в этой области.

Во многих задачах с участием поверхностных сил важным является не только сила взаимодействия наночастиц как целых, но и распределение сил в самих частицах. Это распределение задается полем тензора напряжений \hat{E} (шляпка — символ тензора), вычисление которого также стало задачей коллоидной науки. Успехи в определении локальных сил в различных системах, включая тонкие пленки и тела ограниченных размеров, были получены на основе асимптотического принципа [6]. Вычисления такого рода можно осуществлять методом статистической механики с помощью тензора напряжений Ирвинга—Кирквуда [7]

$$\hat{E}(\mathbf{r}) = -kT\sum_{p} \rho_{p}(\mathbf{r})\hat{\mathbf{l}} + \frac{1}{2}\sum_{p>q} \int d\mathbf{R} \frac{\mathbf{R} \times \mathbf{R}}{R} \Phi'_{pq}(R) \times \\ \times \int_{0}^{1} d\eta \rho_{pq}^{(2)}(\mathbf{r} - \eta \mathbf{R}, \mathbf{r} - \eta \mathbf{R} + \mathbf{R}).$$
(2)

Здесь $\hat{E}(\mathbf{r})$ – значение тензора напряжений в точке **r**; k – постоянная Больцмана; T – температура; $\rho_p(\mathbf{r})$ – одночастичная функция распределения (локальная плотность) частиц сорта p; $\hat{1}$ – единичный тензор; **R** – вектор, соединяющий две взаимодействующие частицы с расстоянием Rмежду ними и проходящий через точку **r** (запись **R** × **R** символизирует прямое векторное произвеление, являющееся тензором): $\Phi'(R)$ – произ-

дение, являющееся тензором); $\Phi'_{pq}(R)$ – производная от потенциала парного взаимодействия (1) частиц сортов *p* и *q* (т.е. сила взаимодействия этих частиц); $\rho_{pq}^{(2)}(\mathbf{r} - \eta \mathbf{R}, \mathbf{r} - \eta \mathbf{R} + \mathbf{R})$ – двухчастичная функция распределения для частиц, находящихся одновременно в точках $\mathbf{r}_1 = \mathbf{r} - \eta \mathbf{R}$ и $\mathbf{r}_2 = \mathbf{r} - \eta \mathbf{R} + \mathbf{R}$ по разные стороны от единичной площадки с координатой **r** (что регулируется вспомогательной переменной η).

Рис. 1. Схема сечения цилиндрической щели.

Первым применением тензора напряжений Ирвинга—Кирквуда в коллоидной науке был расчет тензора давления и расклинивающего давления в плоской тонкой жидкой пленке [8]. Разработанный там алгоритм расчета многократно использовался в дальнейшем для описания поверхностных сил в телах различной конфигурации (см. обзор [9]). Важен был переход (уже в 21 веке) к телам ограниченных размеров и, в частности, к клиновидным пленкам, позволивший сформулировать термодинамику трещин [10] в дополнение к усовершенствованию теории разрушения твердых тел вообще [11].

Для широкого представления нужен полный расчет на основе формулы (2), что мы и сделаем в этом сообщении на примере пустой цилиндрической щели. Чтобы можно было использовать в расчетах интегрирование, мы должны принять, что объект не является монокристаллом (иначе замена суммирования по кристаллическим плоскостям интегрированием давало бы существенную ошибку). Но число компонентов ограничивать не будем.

ПРОЦЕДУРА РАСЧЕТА

Будем рассматривать бесконечную пустую цилиндрическую щель между твердыми телами (внешняя фаза β и внутренняя фаза γ) как еще один пример классической поры с искривленными поверхностями, чтобы выделить вклад от кривизны в расклинивающее давление и сравнить его со случаем ранее рассмотренной сферической щели. Схема сечения щели перпендикулярно оси *z* представлена на рис. 1.

Щель заключена между радиусами R_{ex} и R_{in} и имеет ширину $H = R_{ex} - R_{in}$. Расчетная точка O лежит внутри полости, но не в ее центре. Поместим начало цилиндрической системы координат в рассматриваемую точку O, расстояние которой до центра сечения равно r. Величина r изменяется от R_{in} до R_{ex} . В цилиндрической системе координат положение рассматриваемых точек задается величинами ρ , ϕ и z. Полярная ось, от которой отсчитывается полярный угол ϕ , направлена вдоль линии, соединяющей центр сечения и точку O. Отрезки ρ_1 и ρ_2 представляют собой проекции соответствующих векторов на координатную плоскость и равны расстояниям рассматриваемых точек до оси z. Не следует их смешивать в дальнейшем с

одночастичными плотностями компонентов ρ_p^β . Кроме того, если рассматривать точку 1 только в верхней части пространства по отношению к элементарной площадке в расчетной точке, а точку 2 – в нижней его части, то множитель 1/2 перед интегралом следует опустить. Тензор напряжений Ирвинга–Кирквуда в пустой поре принимает вид

$$\hat{E}(\mathbf{r}) = \sum_{p>q} \int d\mathbf{R} \frac{\mathbf{R} \times \mathbf{R}}{R} \Phi'_{pq}(R) \times \\ \times \int_{0}^{1} d\eta \rho_{pq}^{(2)}(\mathbf{r} - \eta \mathbf{R}, \mathbf{r} - \eta \mathbf{R} + \mathbf{R}).$$
(3)

С учетом симметрии системы в тензоре напряжений отличными от нуля будут только диагональные компоненты, а именно, нормальная $E_{\rho\rho} \equiv E_N$ и две тангенциальные $-E_{\phi\phi} \equiv E_{T1}$ и $E_{zz} \equiv E_{T2}$, которые должны удовлетворять следующим условиям механического равновесия:

$$\frac{\partial E_{\rm N}}{\partial r} + \frac{E_{\rm N}}{r} - \frac{E_{\rm T1}}{r} = 0, \tag{4}$$

$$\frac{\partial E_{\rm T2}}{\partial z} = 0. \tag{5}$$

Последнее – очевидное следствие бесконечности щели в направлении оси *z*.

Займемся непосредственным расчетом выражения (3), в котором заменим переменные **R** и η на $\mathbf{r}_1(\rho_1, z_1, \phi)$ и ρ_2 :

$$\mathbf{R} = \frac{\rho_1 + \rho_2}{\rho_1} \mathbf{r}_1, \quad D = \frac{\rho_1 + \rho_2}{\rho_1^2}, \quad \eta = \frac{\rho_2}{\rho_1 + \rho_2}, \quad (6)$$

где D — якобиан. Условие, чтобы прямая, соединяющая молекулы 1 и 2, проходила через расчетную точку, накладывает ограничения на пределы интегрирования L_k выбранных переменных, а именно (рис. 1),

КОЛЛОИДНЫЙ ЖУРНАЛ том 83 № 5 2021

$$L_{1} = -(R_{\rm in} + r)\cos\varphi + \left[R_{\rm ex}^{2} - (R_{\rm in} + r)^{2}\sin^{2}\varphi\right]^{1/2},$$

$$L_{4} = (R_{\rm in} + r)\cos\varphi + \left[R_{\rm ex}^{2} - (R_{\rm in} + r)^{2}\sin^{2}\varphi\right]^{1/2},$$
(7)

$$L_{2,3} = (R_{\rm in} + r)\cos\varphi \mp \left[R_{\rm in}^2 - (R_{\rm in} + r)^2 \sin^2\varphi \right]^{+}, (8)$$

< 0 < 0

$$\sin \varphi_{\rm lim} = \frac{r}{r + R_{\rm in}}, \quad R_{\rm in} < r < R_{\rm ex}.$$
⁽⁹⁾

Тензорное произведение под интегралом $\mathbf{R} \times \mathbf{R}$ преобразуется в $((\rho_1 + \rho_2)/\rho_1)^2 \mathbf{r}_1 \times \mathbf{r}_1$, и составляющие вектора \mathbf{r}_1 в цилиндрических координатах равны

$$r_{10} = \rho_1 \cos \varphi, \ r_{10} = \rho_1 \sin \varphi, \ r_{1z} = z_1.$$
 (10)

Учитывая, что

(0)

$$\Phi'_{pq}(R) = 6A_{pq}R^{-7},$$
(11)

подынтегральное выражение в формуле (3) представляется следующим образом:

$$6\sum_{p>q} A_{pq} \left(\frac{\rho_1}{\rho_1 + \rho_2}\right)^3 \frac{\mathbf{r}_1 \times \mathbf{r}_1}{\left(\rho_1^2 + z_1^2\right)^4} \times \\ \times \rho_{pq}^{(2)}(\mathbf{r}_1, \mathbf{r}_2) d\rho_1 d\phi dz_1 d\rho_2.$$
(12)

Далее, как и в случае сферической щели, разделим тензор напряжения на две части:

$$\hat{E}(\mathbf{r}) = \hat{E}_1(\mathbf{r}) + \hat{E}_2(\mathbf{r}), \qquad (13)$$

из которых первая соответствует вкладу взаимодействий молекул внешней фазы с молекулами внутреннего цилиндра, а вторая — вкладу взаимодействий молекул внешней фазы друг с другом. Для дальнейших преобразований заменим двухчастичную функцию $\rho_{pq}^{(2)}(\mathbf{r}_1, \mathbf{r}_2)$ произведением частичных плотностей твердых фаз $\rho_p^{\beta} \rho_q^{\gamma}$ или $\rho_p^{\beta} \rho_q^{\beta}$, пренебрегая молекулярными корреляциями. Теперь можно провести интегрирование по z_1 , принимая во внимание (10), что приведет к появлению перед интегралом множителя $15\pi/8$ и под интегралом останется функция

$$\frac{\hat{\kappa}(\phi)}{(\rho_1 + \rho_2)^5},\tag{14}$$

в которой диагональные компоненты тензора κ̂(φ) равны

$$\kappa_{\rho\rho}(\phi) = \cos^2 \phi, \quad \kappa_{\phi\phi}(\phi) = \sin^2 \phi, \quad \kappa_{zz}(\phi) = 1/5.$$
 (15)

Компонента $\kappa_{\rho\rho}$ соответствует нормальной компоненте тензора напряжения $E_{\rm N}$, а две другие – двум тангенциальным: $\kappa_{\phi\phi} - E_{\rm T1}$, $\kappa_{zz} - E_{\rm T2}$. Как было отмечено выше, в цилиндрической поре в

КОЛЛОИДНЫЙ ЖУРНАЛ том 83 № 5 2021

отличие от сферической появляются две различные тангенциальные компоненты.

ВКЛАД ВЗАИМОДЕЙСТВИЙ МОЛЕКУЛ ФАЗ β И γ

С учетом пределов изменения переменных ρ_1 и ρ_2 (7) и (8) получим следующие формулы для вкладов в тензор напряжений:

$$\hat{E}_{1}(r) = \frac{15\pi}{8} \sum_{p>q} A_{pq} \rho_{p}^{\beta} \rho_{q}^{\gamma} \times \\ \times \int_{-\varphi_{\rm lim}}^{\varphi_{\rm lim}} \hat{\kappa}(\varphi) d\varphi \int_{L_{1}}^{\infty} d\rho_{1} \int_{L_{2}}^{L_{3}} d\rho_{2} \frac{1}{(\rho_{1} + \rho_{2})^{5}}.$$
(16)

Интегрирование (16) по ρ_1 и ρ_2 легко выполняется. Рассмотрим сначала тензор $\hat{E}_1(r)$, для которо-

го после интегрирования получим следующее уравнение:

$$\hat{E}_{1}(r) = \frac{5\pi}{32} \sum_{p>q} A_{pq} \rho_{p}^{\beta} \rho_{q}^{\gamma} \times \int_{-\varphi_{\rm lim}}^{\varphi_{\rm lim}} d\varphi \hat{\kappa}(\varphi) \left(\frac{1}{(L_{1} + L_{2})^{3}} - \frac{1}{(L_{1} + L_{3})^{3}} \right),$$
(17)

Очевидно, что такие внешние параметры щели как R_{in} и H наряду с локальной переменной r будут определять локальную зависимость тензора напряжения. Введем относительные переменные для ширины щели $x = H/R_{in}$ и расстояния от внутренней поверхности $y = r/R_{in}$. После подстановки в (17) выражений (7) и (8) и ряда преобразований получим окончательную формулу для $\hat{E}_1(r)$ в терминах новых переменных

$$\hat{E}_{1}(x, y, H) = \frac{C_{1}}{R_{\text{in}}^{3}} \hat{F}_{1}(x, y, H), \qquad (18)$$

где введены постоянный множитель

$$C_1 \equiv \pi \sum_{p>q} A_{pq} \rho_p^\beta \rho_q^\gamma \tag{19}$$

и интегральный тензор

×

$$\hat{F}_{1}(x, y, H) = \frac{5}{16x^{3}(2+x)^{3}} \int_{-\phi_{lim}}^{\phi_{lim}} d\phi \times \hat{\kappa}(\phi) \sqrt{1 - (1+y)^{2} \sin^{2} \phi} \times (20) \times (1 + 3(1+x)^{2} - 4(1+y)^{2} \sin^{2} \phi).$$

Компоненты этого тензора выражаются посредством совокупности эллиптических интегралов, которые наиболее просто вычисляются численно.

На рис. 2 показаны нормальная и первая тангенциальная компоненты тензора \hat{F}_1 , простран-

Рис. 2. Компоненты интегрального тензора \hat{F}_1 в цилиндрической щели: (а) нормальная компонента, (б) первая тангенциальная компонента, (в) разность нормальных компонент в сферической и цилиндрической щелях.

ственное поведение которых совершенно аналогично полученному ранее для аналогичного тензора в сферической щели.

Следует заметить, что значения второй тангенциальной компоненты заметно меньше, чем первой. Как и следовало ожидать, значения компонент в цилиндрической щели заметно меньше, чем в соответствующей сферической, особенно, в области узких щелей. Это отчетливо демонстрирует рис. 2в, где приведена разность для нормальных компонент интегральных тензоров двух щелей. Это различие видно и при рассмотрении сечений поверхностей на рис. 3 для отдельных значений ширины щели. Все компоненты в цилиндрической щели (кривые 2) являются более пологими функциями расстояниями *r* от внутренней границы щели. Для нормальных компонент разность значений для тензоров в сферической и цилиндрической щелях сохраняется на всем протяжении шели, уменьшаясь при приближении к внешней границе щели. Для тангенциальных компонент вблизи внутренней поверхности соотношение такое же, как и для нормальных. Однако при движении к внешней границе функции быстро сближаются, а вблизи самой границы разность значений даже меняет знак.

Рис. 3. Сравнение локальной зависимости нормальных (a, б) и тангенциальных (b, г) компонент в сферической (кривые *I*) и цилиндрической (кривые *2*) щелях для заданной ширины щели H: (a, в) $H = 0.5R_{in}$, (б, г) $H = 0.95R_{in}$.

Так же как и в сферической щели, на основании анализа формул (18) и (20) можно оценить предельное поведение компонент тензора напряжений при $R_{in} \gg r$. Раскладывая подынтегральное выражение в ряд по степеням *x* и *y*, с точностью до первой степени получим следующие предельные функции для компонент тензора напряжений:

$$E_{\rm N} = \frac{C_1}{6H^3} \left(1 + 3\frac{H - 2r}{8R_{\rm in}} \right),$$

$$E_{\rm T1} = \frac{C_1}{24H^3} \left(1 + 9\frac{H - 2r}{4R_{\rm in}} \right),$$

$$E_{\rm T2} = \frac{C_1}{24H^3} \left(1 + 3\frac{H - 2r}{4R_{\rm in}} \right).$$
(21)

С точностью до главных вкладов полученные выражения удовлетворяют условию механического равновесия (4). Если перейти к среднему радиусу кривизны, который для цилиндрической симметрии равен $2R_{in}$, данные выражения совпадут с соответствующими соотношениями для сферической щели. Для такого сравнения в ци-

КОЛЛОИДНЫЙ ЖУРНАЛ том 83 № 5 2021

линдрической щели следует взять среднее значение двух тангенциальных компонент. Это означает, что в случае слабо искривленных поверхностей вклад от кривизны поверхности в первом приближении будет описываться соотношениями, полученными для сферической щели.

ВКЛАД ВЗАИМОДЕЙСТВИЙ МОЛЕКУЛ ФАЗЫ β

Оценим теперь вклад в тензор напряжений от взаимодействия друг с другом молекул внешней твердой фазы \hat{E}_2 , который запишется с использованием пределов интегрирования следующим образом:

$$\hat{E}_{2}(r) = \frac{15\pi}{8} \sum_{p>q} A_{pq} \rho_{p}^{\beta} \rho_{q}^{\beta} \int_{-\pi/2}^{\pi/2} \hat{\kappa}(\phi) d\phi \times \\ \times \int_{L_{1}}^{\infty} d\rho_{1} \int_{L_{4}}^{\infty} d\rho_{2} \frac{1}{(\rho_{1} + \rho_{2})^{5}}.$$
(22)

Рис. 4. Компоненты интегрального тензора \hat{F}_2 в цилиндрической щели: (а) нормальная компонента, (б) первая тангенциальная компонента.

Проделаем те же преобразования с этим интегралом, что и при анализе \hat{E}_1 . Вводя интегральный тензор \hat{F}_2 , запишем окончательное выражение для этого вклада в тензор напряжений

$$\hat{E}_2(x, y, R_{\rm in}) = \frac{C_2}{R_{\rm in}^3} \hat{F}_2(x, y, R_{\rm in}), \qquad (23)$$

где

$$C_2 = \pi \sum_{p>q} A_{pq} \rho_p^\beta \rho_q^\beta \tag{24}$$

И

ł

$$\hat{F}_{2}(x, y, R_{\rm in}) = \frac{5}{2^{7}(1+x)^{3}} \int_{0}^{\pi/2} \frac{\hat{\kappa}(\phi)d\phi}{\left(1 - \frac{(1+y)^{2}}{(1+x)^{2}}\sin^{2}\phi\right)^{3/2}}.$$
 (25)

Интегралы в (25) выражаются через полные эллиптические интегралы первого (K) и второго (E) рода, а именно,

$$F_{2N}(k) = \frac{1}{k^2} (K(k) - E(k)),$$

$$F_{2T1}(k) = \frac{1}{k^2} \left(\frac{1}{1 - k^2} E(k) - K(k) \right),$$
(26)

где $k \equiv \frac{1+y}{1+x}$. Можно убедиться, что компоненты этого вклада удовлетворяют условию равновесия (4), учитывая тождества операций $\frac{\partial}{\partial r} = \frac{\partial}{\partial y} = \frac{\partial}{\partial k}$. На рис. 4 показаны нормальная и первая тангенциальная компоненты этого тензора. Обе функции демонстрируют существенный рост при приближении к внешней границе щели. При этом в отличие от первого вклада значения первой тангенциальной компоненты в несколько раз превосходят значения нормальной компоненты, хотя обе почти на два порядка меньше по сравнению с соответствующими величинами, учитывающими взаимодействие двух твердых тел, ограничивающих щель. Как

и в случае сферической щели, при анализе влияния кривизны на поведение тензора напряжений этим вкладом можно пренебречь.

РАСКЛИНИВАЮЩЕЕ ДАВЛЕНИЕ

Для определения расклинивающего давления в условиях искривленной щели выберем, во-первых, поверхность внутреннего цилиндра, то есть, положим r = 0. Во-вторых, будем рассматривать только первый вклад в тензор напряжений с учетом приведенных выше оценок второго слагаемого (4). Тогда расклинивающее давление Π_{cyl} в пустой щели будет равно

$$\Pi_{\rm cyl} = -\hat{E}_{\rm N} = -\frac{C_1}{R_{\rm in}^3} \frac{1}{x^3 (1+x/2)^3} \left(\frac{1}{6} + \frac{10x+5x^2}{32}\right).$$
(27)

По сравнению с аналогичным определением расклинивающего давления в сферической щели [1]

$$\Pi_{\rm sph} = -\frac{C}{R_{\rm in}^3} \frac{1}{x^3 \left(1 + x/2\right)^3} \left(\frac{1}{6} + \frac{6x + 3x^2}{16}\right), \qquad (28)$$

как и следовало ожидать, абсолютное значение расклинивающего давления в цилиндрической щели будет несколько меньше, чем в сферической. На рис. 5 приведены относительные значения расклинивающего давления в плоскопарал-

КОЛЛОИДНЫЙ ЖУРНАЛ том 83 № 5 2021

Рис. 5. Относительные значения расклинивающего давления в плоскопараллельной (*1*), цилиндрической (*2*) и сферической (*3*) щелях.

лельной, сферической и цилиндрической щелях, а именно, $F_{\Pi} = |\Pi_{\text{pore}}| R_{\text{in}}^3 / C$. Видно, что абсолютные значения расклинивающего давления тем больше по сравнению с плоскопараллельной щелью, чем больше искривление щели.

ЗАКЛЮЧЕНИЕ

Сравнение со случаем сферической щели приводит к выводу, что чем больше искривление цилиндрической щели, тем больше вклад твердых поверхностей в компоненты тензора напряжений и, следовательно, в расклинивающее давление. Показано, что в условиях малой кривизны результаты для двух щелей совпадают при использовании среднего радиуса кривизны.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бродская Е.Н., Русанов А.И. // Коллоид. журн. 2021. Т. 83. С.
- Русанов А.И., Куни Ф.М. // Журн. общей химии. 2007. Т. 77. С. 404.
- 3. Hamaker H.C. // Physica. 1937. V. 4. P. 1058.
- 4. Derjaguin B.V. // Коллоид. журн. 1955. Т. 17. С. 207.
- 5. Дерягин Б.В., Чураев Н.В., Муллер В.М. Поверхностные силы. М.: Наука, 1985.
- Куни Ф.М., Русанов А.И. // Физическая адсорбция из многокомпонентных фаз / Под ред. Дубинина М.М., Серпинского В.В. М.: Наука, 1972. С. 182.
- Irving J.H., Kirkwood J.G. // J. Chem. Phys. 1950. V. 18. P. 817.
- Русанов А.И., Куни Ф.М. // Исследования в области поверхностных сил / Под ред. Дерягина Б.В. М.: Наука, 1967. С. 129.
- Rusanov A.I., Brodskaya E.N. // Russ. Chem. Rev. 2019. V. 88. P. 837.
- 10. Rusanov A.I. // Surf. Sci. Rep. 2012. V. 67. P. 117.
- 11. *Куни Ф.М., Русанов А.И. //* Коллоид. журн. 1971. Т. 33. С. 238.