УДК 548.3:546.65

ВЛИЯНИЕ УСЛОВИЙ СИНТЕЗА НА МОЛЕКУЛЯРНУЮ И КРИСТАЛЛИЧЕСКУЮ СТРУКТУРУ ГЕТЕРОМЕТАЛЛИЧЕСКИХ 1D-ПОЛИМЕРНЫХ АЦЕТАТНЫХ КОМПЛЕКСОВ С МОТИВОМ {Dy₂Co}_n

© 2019 г. А. В. Гавриков^{1, *}, А. Б. Илюхин¹, Н. Н. Ефимов¹

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия

*e-mail: penguin1990@yandex.ru Поступила в редакцию 22.08.2018 г. После доработки 24.08.2018 г. Принята к публикации 28.08.2018 г.

Синтезированы и исследованы новые гетерометаллические 1D-полимерные ацетатные комплексы с мотивом металлоостова $\{Dy_2Co\}_n - [Dy_2Co(CH_3COOO)_8(H_2O)_4]_n \cdot 6nH_2O$ (I) и $[Dy_2Co(CH_3COOO)_8(H_2O)_2]_n \cdot 2nCH_3COOH$ (II). Молекулярные структуры полученных соединений (ССDС № 1861619 (I), 1861620 (II)) различаются качественным составом координационного окружения Dy и структурными функциями ацетат-анионов, что существенно влияет на величины соответствующих расстояний Dy…Dy и Dy…Co в цепочке. Указанные различия, а также разный сольватный состав I и II определяются условиями синтеза комплексов.

Ключевые слова: гетерометаллические координационные соединения, 1D-полимерные комплексы, карбоксилатные комплексы, диспрозий, кристаллическая структура

DOI: 10.1134/S0132344X1901002X

В настоящее время разработка методов направленного синтеза и комплексное исследование новых представителей 3d-4f-гетерометаллических координационных соединений (КС) – одна из важнейших междисциплинарных задач [1-3]. Подобный интерес обусловлен возможностью проявления этими соединениями уникальных и практически важных свойств. например магнитных [4-6] и люминесцентных [7], и, следовательно, возможностью их использования в качестве действующих компонентов функциональных материалов [8]. Кроме того, в случае оптимального стехиометрического соотношения атомов гетерометаллов эти комплексы можно использовать в качестве прекурсоров для смешанных оксидов, уже находящих применение в качестве основы функциональных материалов [9-12].

Известно, что определяющее влияние на свойства практически всех соединений (в том числе КС) оказывает их строение. Последнее, в свою очередь, во многом определяется условиями синтеза — природой реагентов, их стехиометрическим соотношением и т.д. В случае КС управление их свойствами, в принципе, возможно на уровне отдельных структурных единиц [13, 14] и кристаллической структуры. Последнее достигается во многом за счет варьирования сольватных молекул [15, 16]. Очевидно, что для направленной модификации КС и улучшения их ценных характеристик (магнитных, люминесцентных и т.д.), в принципе, могут успешно применяться оба указанных метода. Однако этому должно предшествовать тщательное исследование комплексообразования в каждой конкретной системе.

В настоящей работе исследовано влияние условий синтеза на молекулярное и кристаллическое строение гетерометаллических ацетатных комплексов, образующихся в системе $Co(Acac)_2 \cdot 2H_2O-Dy(Acac)_3 \cdot 3H_2O-CH_3COOH-C_2H_5OH$.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза новых соединений использовали коммерчески доступные реактивы и растворители: CoCl₂ · 6H₂O ("х. ч.", Лабтех) DyCl₃ · 6H₂O (>99%, ЛАНХИТ), ацетилацетон НАсас (99%, Acros Organics), концентрированный водный раствор аммиака ("х. ч.", Лабтех), ледяную уксусную кислоту ("х. ч.", Химмед) и этанол (96%). Все реактивы использовали без предварительной очистки.

Ацетилацетонаты $Co(Acac)_2 \cdot 2H_2O$, $Dy(Acac)_3 \cdot 3H_2O$ синтезировали по обменным реакциям в водных растворах соответствующих хлоридов с ацетилацетонатом аммония, образующимся *in situ* [17].

РСА. Экспериментальные данные для соединений $[Dy_2Co(CH_3COOO)_8(H_2O)_4]_n \cdot 6nH_2O$ (I) и

ВЛИЯНИЕ УСЛОВИЙ СИНТЕЗА

Значение		
Ι	II	
173(2)	120(2)	
Триклинная	Триклинная	
$P\overline{1}$	$P\overline{1}$	
8.1587(2)	9.0696(2)	
10.2000(2)	9.2538(2)	
11.2955(2)	10.5208(2)	
111.4820(10)	79.8531(4)	
108.3450(10)	75.2262(4)	
92.8960(10)	77.4092(4)	
815.49(3)	826.44(3)	
1	1	
2.110	2.034	
5.134	5.055	
507	491	
	I 173(2) Триклинная Pī 8.1587(2) 10.2000(2) 11.2955(2) 111.4820(10) 108.3450(10) 92.8960(10) 815.49(3) 1 2.110 5.134 507	

Таблица 1. Основные структурные данные и результаты уточнения соединений I и II

Ζ	1	l
ρ (выч.), г/см ³	2.110	2.034
μ, мм ⁻¹	5.134	5.055
<i>F</i> (000)	507	491
Размер кристалла, мм	0.2 imes 0.12 imes 0.1	$0.2\times0.16\times0.12$
Область θ, град	2.076-31.563	2.274-31.522
Интервал индексов	$-12 \le h \le 12$ $-15 \le k \le 15$ $-16 \le l \le 16$	$-12 \le h \le 10$ $-13 \le k \le 12$ $-15 \le l \le 15$
Собранных отражений	12194	9703
Независимых отражений, <i>R</i> _{int}	5359, 0.0238	5002, 0.0224
Полнота до $\theta = 25.242^{\circ}, \%$	100	100
Max, min пропускание	0.7462, 0.4142	0.7462, 0.496
Уточняемых параметров	249	222
GOOF	1.007	1.054
$R_1, wR_2 (I > 2\sigma(I))$	0.0198, 0.0500	0.0206, 0.0480
R_1, wR_2 (весь массив)	0.0215, 0.0508	0.0224, 0.0488
$\Delta \rho_{\rm max} / \Delta \rho_{\rm min}, e {\rm \AA}^{-3}$	1.280, -0.898	1.041, -0.855

 $[Dy_2Co(CH_3COOO)_8(H_2O)_2]_n \cdot 2nCH_3COOH$ (II) собраны на дифрактометре Bruker SMART APEX2 $(\lambda(MoK_{\alpha}), графитовый монохроматор)$ [18] (табл. 1). Поглощение учтено полуэмпирическим методом по эквивалентам (SADABS) [19]. Структуры, определенные комбинацией прямого метода и Фурье-синтезов, уточнены полноматричным анизотропно-изотропным МНК. Атомы водорода метильных фрагментов рассчитаны из геометрических соображений и уточнены в модели наездника. Атомы Н, связанные с атомами О, локализованы из разностных Фурье-синтезов и уточнены в изотропном приближении. Все расчеты выполнены по программам SHELXS и SHELXL [20].

Экспериментальные данные для структур І и ІІ депонированы в Кембриджском банке структурных данных (СССС № 1861619, 1861620 соответственно); deposit@ccdc.cam.ac.uk или http:// www.ccdc.cam.ac.uk).

Рентгенофазовый анализ (РФА) проведен на дифрактометре Bruker D8 Advance (Cu K_{α} , Ni-фильтр, LYNXEYE детектор, геометрия на отражение).

Элементный анализ выполнен на автоматическом C,H,N-анализаторе EUROEA 3000 (Carlo Erba).

Синтез І. К раствору $Co(Acac)_2 \cdot 2H_2O$ (0.171 г, 0.58 ммоль) в 10 мл ЕtOH прибавляли при перемешивании раствор Dy(Acac)₃ · 3H₂O (0.3 г, 0.58 ммоль) в 10 мл EtOH, затем приливали смесь 10 мл ледяной уксусной кислоты и 30 мл этанола. Полученный малиново-красный раствор упаривали на водяной бане при пониженном давлении (водоструйный насос) и 76°С и охлаждали до

комнатной температуры. Образовавшиеся через несколько часов малиново-красные кристаллы I отделяли от маточного раствора и промывали холодным этанолом. Выход 0.21 г (70%).

Найдено, %:	C 18.35;	H 4.05.
Для C ₁₆ H ₄₄ O ₂₆ CoDy ₂		
вычислено, %:	C 18.54;	H 4.28.

По данным РФА, соединение однофазно (рис. 1а).

Синтез II. К смеси Co(Acac)₂ · 2H₂O (0.15 г, 0.51 ммоль) и Dy(Acac)₃ · 3H₂O (0.526 г, 1.02 ммоль) приливали 20 мл ледяной уксусной кислоты и перемешивали до полного растворения. К полученному малиново-красному раствору добавляли 15 мл этанола и упаривали на водяной бане при пониженном давлении (водоструйный насос) и температуре 90°С. При охлаждении до комнатной температуры в течение несколько часов сформировались малиново-красные кристаллы II, которые отделяли от маточного раствора и промывали холодным этанолом. Выход 0.33 г (68%).

Найдено, %:	C 23.73;	H 3.58.
Для C ₂₀ H ₃₆ O ₂₂ CoDy ₂		
вычислено, %:	C 23.20;	H 3.49.

По данным РФА, продукт содержит следовые количества соединения I (пик 1, рис. 16).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

3*d*-4*f*-гетерометаллических Метол синтеза карбоксилатных комплексов, использованный в данном исследовании и основанный на реакции взаимодействия *трис*-ацетилацетонатов металлов с карбоновыми кислотами, мы применяли ранее для синтеза гомометаллических карбоксилатных комплексов лантанидов [12, 13, 21, 22]. Движущей силой соответствующих реакций, очевидно, является существенное различие кислотных свойств ацетилацетона и карбоновых кислот. В случае реакций образования комплексов I и II, $K_{\rm a}$ (CH₃COOH) ≈ 2 × 10⁻⁵ [23], что на четыре порядка превышает соответствующую величину для ацетилацетона ($K_a \approx 1.5 \times 10^{-9}$ [24]). Таким образом, можно утверждать, что образование I и II термодинамически выгодно. Более полному протеканию подобных реакций способствует также частичное удаление из реакционной среды побочного продукта реакции – молекулярного ацетилацетона – в результате постепенного упаривания маточного раствора при нагревании.

Совместное действие вышеуказанных факторов приводит к существенному увеличению выхода I и II по сравнению с выходами ранее исследованных

Рис. 1. Рентгенограммы продуктов синтеза I (а) и II (б). Верхняя кривая экспериментальная, нижняя – теоретическая.

изоморфных комплексов других Ln, полученных в результате обменных реакций [25].

Структуры I и II образованы полимерными цепочками (рис. 2) и сольватными молекулами H₂O (I) или CH₃COOH (II). Координационное окружение атомов Co и Dy в I и II одинаковое – атомы Co расположены в центрах инверсии, координационный полиэдр – октаэдр. КЧ атомов Dy равно 9, полиэдр – одношапочная квадратная антипризма.

В структуре I два μ_2 - η^2 : η^1 -CH₃COO лиганда объединяют два атома Dy в центросимметричный димер, а два μ_2 -CH₃COO и один μ_2 - η^2 : η^1 -CH₃COO связывают атомы Dy и Co. Два атома O молекул H₂O достраивают координационное окружение Dy.

В структуре II два μ_2 - η^2 : η^1 -CH₃COO лиганда объединяют два атома Dy в центросимметричный димер, один μ_2 -CH₃COO и два μ_2 - η^2 : η^1 -CH₃COO связывают атомы Dy и Co. Атом O молекулы H₂O достраивает координационное окружение Dy.

(б)

Рис. 2. Строение полимерных цепочек в структуре I (а) и II (б).

Такое различие в строении цепочек приводит к существенной разнице в расстояниях Dy…Dy и Dy…Co в цепочке — 3.974 и 4.309 Å в I, 3.578 и 4.050 Å в II. В связи со столь значительными различиями указанных величин несомненный интерес представляет сравнительное исследование важнейших физико-химических свойств I и II, например магнитных свойств, термического поведения и др. Исследования в указанных направлениях будут продолжены.

Кристаллы соединения I изоструктурны кристаллам CoNd [26], CoGd [25], CoTb [27], MnNd [27], MnGd [25, 28]; II – аналогам CoEu, CoGd, CoTb, CoHo, CoEr, CoTm, CoYb, CoLu, MnEu, MnGd, MnTb, MnHo, MnEr, MnTm, MnYb, MnLu [27]. В [29] приводятся данные о синтезе $Na_2[Nd_2Mn(CH_3COOO)_8(H_2O)_4]_n(OH)_{2n} \cdot 2nH_2O$ (a = 8.255, b = 10.394, c = 11.550 Å, $\alpha = 111.48^\circ, \beta = 107.86^\circ, \gamma = 93.51^\circ, пр. гр. <math>P\overline{1}$). Значение U_{3KB} атома Na в этой структуре 0.094 Å², в то время как аналогичные значения атомов О (H₂O, OH) 0.037–0.062 Å². КЧ атома Na равно 4, расстояния Na $^{-1}O 2.74-2.99$ Å. Расчет баланса валентных усилий по [30] приводит для Na к нереальному значению 0.25. Все это однозначно доказывает, что кристаллы соединения, синтезированного в [29], изоструктурны кристаллам I и ранее описаны в [27].

Можно утверждать, что различное молекулярное строение (количество молекул воды, координированных атомами Dy) и сольватный состав комплексов I и II определяются условиями

КООРДИНАЦИОННАЯ ХИМИЯ том 45 № 1 2019

синтеза этих соединений. Действительно, комплекс I, в структуре которого содержится большее количество молекул H_2O , получили из системы, содержащей избыток воды за счет использования неабсолютированного (содержащего до 4 об. % воды) этанола. Напротив, синтез соединения II проводится в присутствии большого избытка ледяной уксусной кислоты, а избыток воды существенно ниже, чем при образовании I (за счет использования меньшего количества этанола). Избыток CH₃COOH в данном случае обеспечивает не только "вытеснение" сольватных молекул воды, но и удержание молекул воды в растворе (за счет образования прочной системы водородных связей) и их последующее удаление при упаривании.

Таким образом, в рамках данного исследования показано определяющее влияние условий синтеза (состава сольвосистемы, температуры) на молекулярную и кристаллическую структуру гетерометаллических 1D-полимерных ацетатных комплексов, образующихся в системе Co(Acac)₂ · $2H_2O-Dy(Acac)_3 \cdot 3H_2O-CH_3COOH-C_2H_5OH.$ Изученные комплексы, хотя и характеризуются одинаковым мотивом металлоостова — $\{Dy_2Co\}_n$, различаются качественным составом координационного окружения атомов Dy (за счет количества координированных молекул H₂O). Указанное отличие, в свою очередь, приводит к существенному изменению расстояний Dy…Dy и Dy…Co в цепочках исследованных комплексов, что определяет интерес к дальнейшему сравнительному исследованию полученных соединений (в частности, их магнитных свойств).

Исследования проводили с использованием оборудования ЦКП ФМИ ИОНХ РАН.

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 16-13-10407).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Winpenny R.E.P.* // Chem. Soc. Rev. 1998. V. 27. № 6. P. 447.
- Sakamoto M., Manseki K., Okawa H. // Coord. Chem. Rev. 2001. V. 219–221. P. 379.
- 3. Andruh M., Costes J.-P., Diaz C., Gao S. // Inorg. Chem. 2009. V. 48. № 8. P. 3342.
- Benelli C., Gatteschi D. // Chem. Rev. 2002. V. 102. № 6. P. 2369.
- 5. *Huang Y.-G., Wang X.-T., Jiang F.-L. et al.* // Chem. Eur. J. 2008. V. 14. № 33. P. 10340.

- 6. Zaleski C.M., Depperman E.C., Kampf J.W. et al. // Angew. Chem. Int. Ed. 2004. V. 43. № 30. P. 3912.
- Huang Y.-G., Jiang F.-L., Hong M.-C. // Coord. Chem. Rev. 2009. V. 253. № 23. P. 2814.
- 8. *He R., Liang Q., Song H.-H., Wei Z.* // Struct. Chem. 2010. V. 21. № 5. P. 923.
- Dobrohotova Z.V., Sidorov A.A., Kiskin M.A. et al. // J. Solid State Chem. 2010. V. 183. № 10. P. 2475.
- Zauzolkova N., Dobrokhotova Z., Lermontov A. et al. // J. Solid State Chem. 2013. V. 197. P. 379.
- 11. *Gavrikov A., Koroteev P., Ilyukhin A. et al.* // Polyhedron. 2017. V. 122. P. 184.
- Gavrikov A.V., Koroteev P.S., Dobrokhotova Z.V. et al. // Polyhedron. 2015. V. 102. P. 48.
- 13. *Gavrikov A.V., Koroteev P.S., Efimov N.N. et al.* // Dalton Trans. 2017. V. 46. № 10. P. 3369.
- Koroteev P.S., Ilyukhin A.B., Efimov N.N. et al. // Polyhedron. 2018. V. 154. P. 54.
- 15. *Sun W.-B., Yan B., Jia L.-H. et al.* // Dalton Trans. 2016. V. 45. № 21. P. 8790.
- *Zhang S., Ke H., Sun L. et al.* // Inorg. Chem. 2016. V. 55. № 8. P. 3865.
- Binnemans K. // Handbook on the Physics and Chemistry of Rare Earths. V. 35 / Eds. Gschneidner K.A., Bünzli J.-C.G., Pecharsky V.K. Elsevier, 2005. P. 107.
- 18. APEX II and SAINT. Madison (W, USA): Bruker AXS Inc., 2007.
- 19. *Sheldrick G.M.* SADABS. Göttingen (Germany): Univ. of Göttingen, 1997.
- 20. *Sheldrick G.* // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3.
- 21. *Gavrikov A.V., Efimov N.N., Dobrokhotova Z.V. et al.* // Dalton Trans. 2017. V. 46. № 35. P. 11806.
- 22. *Gavrikov A.V., Efimov N.N., Ilyukhin A.B. et al.* // Dalton Trans. 2018. V. 47. № 17. P. 6199.
- 23. *Pham H.H., Taylor C.D., Henson N.J.* // Chem. Phys. Lett. 2014. V. 610–611. P. 141.
- 24. Bunting J.W., Kanter J.P., Nelander R., Wu Z. // Can. J. Chem. 1995. V. 73. № 8. P. 1305.
- 25. *Pan Y.-Y., Yang Y., Long L.-S. et al.* // Inorg. Chem. Front. 2014. V. 1. № 8. P. 649.
- Gonzalez A., Beltran A., Le Bail A. // Acta Crystallogr. C. 1991. V. 47. № 8. P. 1624.
- 27. *Bierke T*. Thesis. Koln (Deutschland): Department fur Chemie. Univ. zu Koln, 2012.
- Zhang C., Zhang D., Ma H. et al. // J. Mol. Struct. 2013. V. 1054–1055. P. 53.
- Zhang C., Chen Y., Ma H. et al. // New J. Chem. 2013.
 V. 37. № 5. P. 1364.
- Brese N.E., O'Keeffe M. // Acta Crystallogr. B. 1991. V. 47. № 2. P. 192.