УДК 546.05:547.677.6:547.792.1:54_122

СИНТЕЗ, СПЕКТРАЛЬНЫЕ ИССЛЕДОВАНИЯ И КВАНТОВО-ХИМИЧЕСКОЕ МОДЕЛИРОВАНИЕ СТРОЕНИЯ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ Со(II), Ni(II), Cu(II) C (Z)-10-(2-(4-АМИНО-5-ТИОКСО-4,5-ДИГИДРО-1*H*-1,2,4-ТРИАЗОЛ-3-ИЛ)ГИДРАЗОНО)-9-ФЕНАНТРОНОМ

© 2019 г. Р. В. Линко^{1,} *, Н. А. Полянская¹, М. А. Рябов¹, В. С. Сергиенко², П. В. Страшнов³, В. В. Давыдов¹, Г. М. Дрогова¹

¹Российский университет дружбы народов, Москва, Россия ²Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия ³Институт элементоорганических соединений им. А.Н. Несмеянова РАН, Москва, Россия *e-mail: rlinko@mail.ru Поступила в редакцию 05.02.2018 г. После доработки 07.05.2018 г. Принята к публикации 15.06.2018 г.

Синтезированы и изучены комплексы (Z)-10-(2-(4-амино-5-тиоксо-4,5-дигидро-1H-1,2,4-триазол-3-ил)гидразоно)-9-фенантрона (HL) с солями Co(II), Ni(II) и Cu(II) состава [CoLAcДМФА] (I), [NiLAcДМФА] (II), [CuL(H₂O)]ClO₄ (III) и [CuLAc] (IV). При титровании раствора HL в ДМФА водными растворами CoAc₂, NiAc₂, Cu(ClO₄)₂, CuAc₂, Cd(NO₃)₂, ZnSO₄ в ЭСП наблюдается батохромный сдвиг длинноволновой полосы поглощения на 35–77 нм. По результатам титрования определены константы образования и состав комплексов в растворах. На основании расчетов методом DFT и спектральных данных высказано предположение о строении комплексов I–IV: лиганд, находясь в депротонированной форме тионного таутомера, координируется катионами металлов через атом кислорода карбонильной группы, атомы азота гидразо- и аминогрупп с образованием двух металлоциклов – шестичленного и пятичленного (6 + 5); координационный узел достраивается ацетат-ионом и молекулой ДМФА (в I и II), ацетат-ионом (в IV) или молекулой H₂O (в III).

Ключевые слова: квантово-химические расчеты, гетероциклические азопроизводные, 9,10-фенантренхинон, спектральные исследования

DOI: 10.1134/S0132344X19010055

Металлосодержащие соединения гетероциклических азопроизводных 9,10-фенантренхинона могут применяться в качестве красителей для синтетических волокон [1], цветной печати [2], а также носителей для записи и хранения информации [3] и остаются малоизученными. Строение некоторых гетероциклических азопроизводных 9,10-фенантренхинона, содержащих фрагменты 3,3-диметил-3,4-дигидроизихинолина (HL¹) [4], бензотиазола (HL²) [5] и фталазина (HL³) [6] было рассмотрено ранее.

Эти соединения представляют интерес для координационной химии, поскольку содержат несколько электронодонорных центров и способны образовывать с *d*-металлами разные по составу комплексные соединения, которые могут обладать новыми полезными свойствами. Каждый из этих лигандов, находясь в анионной форме, присоединяется к атому металла N,N,O-тридентатно-хелатным способом с замыканием двух пятичленных (5 + 5) металлоциклов и образованием комплексов состава 1 : 2 для Co(II), Ni(II), Cd(II) [6–9] и состава 1 : 1 для Cu(II) [10, 11].

Различные производные, содержащие 1,2,4триазольный цикл, обладают широким спектром биологической активности и представляют интерес для получения новых лекарственных форм. Они используются для борьбы с ВИЧ и в качестве противогрибковых препаратов [12, 13], противовоспалительных [14, 15] и антибактериальных средств [16], а также как агонисты бензодиазепиновых рецепторов [17]. Производные 4-амино-4*H*-1,2,4-триазол-3-тиола взаимодействуют с солями переходных металлов, входя в состав металлокомплексов в нейтральной тионной форме и образуя хелатные связи с участием атомов азота аминогруппы и атома серы [18].

Настоящее исследование – продолжение работ [4–11], цель которого – получение, изучение строения и свойств комплексных соединений Co(II), Ni(II) и Cu(II) с новым азопроизводным 9,10-фенантренхинона, содержащим аминомеркапто-4*H*-1,2,4-триазол в качестве гетероциклической составляющей.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез CoLAc · ДМФА (I), NiLAc · ДМФА (II), CuLClO₄ · H₂O (III) (L⁻ = анион (Z)-10-(2-(4амино-5-тиоксо-4,5-дигидро-1*H*-1,2,4-триазол-3-ил)гидразоно)-9-фенантрона). К свежеприготовленному раствору 0.297 ммоль HL [19] в 20 мл ДМФА добавляли при перемешивании небольшими порциями 0.297 ммоль соли соответствующего металла (CoAc₂ · 4H₂O, NiAc₂ · 4H₂O, Cu(ClO₄)₂ · 6H₂O) в 5 мл ДМФА и выдерживали на водяной бане при ~90°C 2 ч. Реакционную смесь охлаждали до комнатной температуры и оставляли на сутки. Образовавшиеся осадки отфильтровывали на стеклянном фильтре Шотта, промывали этанолом, водой и высушивали при пониженном давлении до постоянной массы.

Синтез CuLAc (IV). К свежеприготовленному раствору 0.149 ммоль HL в 10 мл ДМФА приливали 1 мл концентрированного раствора NH₃, после чего при перемешивании небольшими порциями добавляли раствор 0.149 ммоль CuAc₂ · H₂O в 3 мл ДМФА и выдерживали реакционную смесь на водяной бане при ~90°C 3 ч. Реакционную смесь охлаждали до 8°С и оставляли на 3 сут. Образовавшийся осадок отфильтровывали на стеклянном фильтре Шотта, промывали этанолом, водой и высушивали при пониженном давлении до постоянной массы.

Данные элементного анализа, ИК-спектроскопии и ЭСП соединений I–IV, а также результаты изучения процессов комплексообразования в растворах приведены в табл. 1.

ИК-спектры регистрировали на ИК-Фурьеспектрометре Infralum FT-801 в кристаллическом состоянии (таблетки KBr) в диапазоне 4000–400 см⁻¹. Точность определения частот, зависящая от полуширины полос, составляет ± 0.1 см⁻¹.

ЭСП растворов I–IV в ДМФА снимали на спектрофотометре Varian Cary 50 Scan в кварцевых кюветах толщиной 1.0 см. На основании результатов спектрофотометрического титрования HL ($c = 3.4-3.5 \times 10^{-5}$ моль/л) растворами соответствующих солей металлов ($c = 2.0-2.4 \times 10^{-3}$ моль/л) по методу насыщения [20] рассчитывали константы образования и состав комплексов в растворах (табл. 1).

Квантово-химическое моделирование электронной структуры молекул комплексов проводили в рамках приближения теории функционала плотности с использованием гибридного трехпараметрического обменного функционала Беке [21] с корреляционным функционалом Ли–Янга–Парра [22] (B3LYP) [23] и базисного набора def2-SV(P) и def2-TZVP [24]. Для анализа электронной структуры основного состояния молекул лигандов и комплексов применяли подход естественных связывающих орбиталей (NBO) [25]. Все вычисления проводили средствами программного комплекса Firefly 7.1.G [26].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Молекула HL (рис. 1) содержит два "подвижных" атома водорода, что предполагает потенциальную возможность наличия для нее как азогидразонной, так и тион-тиольной таутомерии [19]. Наиболее вероятной формой нахождения HL в кристаллическом состоянии и в насыщенных растворах является форма тионного хинонгидразонного таутомера, стабилизированного внутримолекулярной водородной связью O(1)…H–N(2), что, однако, не исключает изменение таутомерной формы в разбавленных растворах и в процессе комплексообразования.

Наличие в молекуле HL нескольких электронодонорных атомов дает возможность координироваться к *d*-металлам различными способами. С одной стороны, молекула HL, аналогично HL¹, HL² и HL³ [7–11], находясь в анионной форме и изменив свою изомерную форму, может взаимодействовать с катионом металла через атомы

Таблица d-металл	I. Состав, данные эле ов	ментного а	нализа, ИК-	-спектроско	пии и ЭСШ	соединени	й І-1V, а так	же результа	иты титровани	ая HL солям	и некоторых
Соеди-	Брутто-формула		Элеме найд	нтный анал ено (вычисл	из, %, (ено)		ИК-спектр	ЭСП А _{тах} ,	Титровани	е HL солями	і металлов
нение	(цвет кристаллов, выход, %)	U	Н	z	s	Σ	v, cm ⁻¹	МН	ЭСП λ _{max} , нм (lgε)	lgβ	M ²⁺ : L
-	С ₂₁ Н ₂₁ N ₇ O ₄ SCo (зеленые, 57.30)	47.72 (47.93)	4.74 (3.99)	18.49 (18.62)	5.86 (6.09)	10.90 (11.20)	1673 ср 1607 сл 1564 сл 1535 сл 1507 сл	511	509 ² (4.16)	6.08	1:1
=	С ₂₁ Н ₂₁ N ₇ O ₄ SNi (фиолетовые, 42.50)	47.78 (47.95)	4.55 (3.99)	18.29 (18.63)	5.87 (6.10)	10.83 (11.16)	1677 сл 1639 сл 1540 сл 1528 сл	542	562 ¹ (4.11) 544 ² (4.23)	6.29	1:1
	С ₁₆ Н ₁₃ N ₆ O ₆ SCICu (фиолетовые, 54.70)	38.67 (37.23)	2.66 (2.52)	16.87 (16.27)	6.37 (6.21)	12.15 (12.31)	1626 сл 1576 сл 1514 сл	549	546 ¹ (4.09) 532 ² (4.20)	6.17	1:1
2	С ₁₈ Н ₁₄ N ₆ O ₃ SCu (фиолетовые, 71.98)	46.84 (47.23)	3.65 (3.06)	18.06 (18.35)	6.95 (7.00)	13.69 (13.88)	1639 ср 1589 сл 1564 сл 1540 сл 1511 сл	539	539 ¹ (4.07)	6.87	1:1
* CBexen ** PacrBop	приготовленный раствор выдержан 48 ч.										

СИНТЕЗ, СПЕКТРАЛЬНЫЕ ИССЛЕДОВАНИЯ

5

Рис. 1. Молекулярное строение HL по данным расчета методом DFT.

O(1), N(1) и N(3) с образованием двух пятичленных металлоциклов. С другой стороны, наличие в HL группы NH₂ и атома S, которые отсутствовали в HL¹, HL² и HL³, предполагает два новых способа координации металлов: в анионной форме – с образованием пятичленного и шестичленного или шестичленного и пятичленного металлоциклов с участием, соответственно, атомов O(1), N(1) или N(2) и N(6), в нейтральной форме – с участием атомов S и N(6) и образованием пятичленного металлоцикла, как показано для соединения, содержащего аминомеркапто-4*H*-1,2,4-триазольный фрагмент [18, 27].

При взаимодействии HL с солями Co(II), Ni(II) и Cu(II) получены в кристаллическом состоянии комплексные соединения CoLAcДМФА, NiLAcДМФА, CuL(H₂O)(ClO₄) и CuLAc, состав и строение которых установлены на основании данных элементного анализа, ИК- и электронной спектроскопии, квантово-химических расчетов методом DFT.

С целью изучения процесса комплексообразования в растворах выполнено спектрофотометрическое титрование HL солями некоторых *d*-металлов по методу насыщения, которое позволяет определить максимумы длинноволновой полосы поглощения (ДПП), константы образования и состав комплексов в растворах. Поскольку ЭСП соединения HL в растворе претерпевает изменения с течением времени (максимум ДПП свежеприготовленного раствора 485 нм смещается гипсохромно до 474 нм после выдерживания его 48 ч [19]), проведено изучение процесса комплексообразования для обоих случаев (табл. 1).

При титровании свежеприготовленного раствора HL ($\lambda_{max} = 485$ нм) в ДМФА водными растворами NiAc₂, Cu(ClO₄)₂, CuAc₂, Cd(NO₃)₂, ZnSO₄ (рис. 2, 3) наблюдается батохромный сдвиг ДПП на 77, 61, 54, 46 и 48 нм соответственно, а при титровании выдержанного 48 ч раствора HL ($\lambda_{max} =$

= 474 нм) растворами CoAc₂, NiAc₂ и Cu(ClO₄)₂ в ЭСП (рис. 4) наблюдается аналогичный сдвиг ДПП на 35, 70 и 58 нм соответственно. Необходимо отметить, что во всех ЭСП наблюдается одна изобестическая точка, наличие которой свидетельствует о присутствии в исследуемых растворах двух форм - свободного лиганда и лиганда в составе комплекса, а также практически во всех случаях наблюдается значительный рост интенсивности ДПП. Можно утверждать, что наблюдаемый характер изменения ЭСП обусловлен процессами комплексообразования, а поскольку аналогичное изменение ЭСП наблюдалось при титровании HL раствором NaOH [19], то это свидетельствует о вхождении лиганда в состав комплексов в депротонированной форме.

Анализ кривых насыщения позволил определить значения констант образования, а также состав комплексов в растворах (табл. 1). Установлено, что при титровании HL солями Co(II), Ni(II) и Cu(II) в растворе образуются комплексы состава 1 : 1, что согласуется с составом полученных комплексов I-IV, при титровании солями Cd(II) и Zn(II) в растворе образуются комплексы с соотношением металл : лиганд 1 : 2, которые, однако, не удалось выделить в кристаллическом состоянии. Ранее показано [8], что HL², отличающийся от HL только гетероциклическим фрагментом, в растворах и в кристаллическом состоянии образует комплексы 1 : 2 с солями Co(II), Ni(II), Cd(II) и Zn(II), но только с солями Cu(II) наблюдается различие: в кристаллическом состоянии образует комплексы 1:2, в растворах присутствуют комплексы 1:1 и 1:2.

Положения ДПП в ЭСП комплексов I–IV, выделенных в кристаллическом состоянии, и комплексов, образующихся в растворах при титровании HL солями Co(II), Ni(II), Cu(II), приведены в табл. 1. Следует обратить внимание на то, что для синтеза комплексных соединений I–IV использованы свежеприготовленные растворы HL, однако положение ДПП в ЭСП комплексов I и II соответствует положению ДПП при титровании выдержанного 48 ч раствора HL солями Co(II), Ni(II), чего не наблюдается для комплексов с Cu(II) – III и IV, для которых ДПП в ЭСП соответствует титрованию свежеприготовленного раствора HL.

Возможная причина наблюдаемого различия может состоять в том, что HL в кристаллической форме и в концентрированных растворах существует в димерной "сэндвичеобразной" форме [28], в которой молекулы HL и HL' связаны π - π -стекинг взаимодействием по типу PD (parallel – displaced) [29], в разбавленных растворах – в мономерной форме. Предположение о переходе из димерной формы в мономерную объясняет гипсохромный характер изменения ЭСП соедине-

Рис 2. ЭСП, полученные по результатам титрования свежеприготовленного раствора HL ($c = 3.4 \times 10^{-5}$ моль/л, линия *I*) раствором Ni(Ac)₂ ($c = 2.0 \times 10^{-3}$ моль/л, линии 2–10) (a); раствором Cu(ClO₄)₂ ($c = 2.0 \times 10^{-3}$ моль/л, линии 2–18) (6).

Рис. 3. ЭСП, полученные по результатам титрования свежеприготовленного раствора HL ($c = 3.4 \times 10^{-5}$ моль/л, линия *I*) раствором Cd(NO₃)₂ ($c = 2.05 \times 10^{-3}$ моль/л, линии 2–10) (a); раствором ZnSO₄ ($c = 2.4 \times 10^{-3}$ моль/л, линии 2–10) (b).

ния HL во времени. Наблюдаемое различие в ЭСП комплексов можно объяснить тем, что в состав I и II лиганд входит в мономерной форме, в состав III и IV – в димерной, как для димерного комплекса $[Cu_2(L^3)_2(H_2O)_4](ClO_4)_2$ [10]. В этой связи строение комплексов III и IV можно описать формулами $[Cu_2L_2(H_2O)_2](ClO_4)_2$ и $[Cu_2L_2Ac_2]$.

В ИК-спектрах выделенных комплексных соединений I–IV в поликристаллическом состоянии при ~3430 см⁻¹ сохраняется широкая интенсивная полоса, отнесенная в случае HL к валентным колебаниям группы N(4)–H, и отсутствуют полосы, отнесенные в [19] к валентным колебаниям групп N(2)-Н и NH₂, связанной внутримолекулярной водородной связью. Характерная для HL полоса v(C=O) 1618 см⁻¹ отсутствует, полосы с максимумами поглощения в области 1573–1501 см⁻¹, относящиеся к колебаниям связей C=N и C=C, немного сдвигаются относительно HL в низкочастотную область с одновременным перераспределением их относительной интенсивности. В состав комплексных соединений I и II входят молекулы ДМФА, что подтверждается наличием в их ИКспектрах полосы v(C=O) 1677 см⁻¹, характерной для координированной молекулы ДМФА [30]. Наличие в ИК-спектрах соединений I, II и IV поЛИНКО и др.

Рис. 4. ЭСП, полученные по результатам титрования выдержанного 48 ч раствора HL ($c = 3.52 \times 10^{-5}$ моль/л, линия *1*) раствором Ni(Ac)₂ ($c = 2.0 \times 10^{-3}$ моль/л, линии 2–6) (a); раствором Cu(ClO₄)₂ ($c = 2.0 \times 10^{-3}$ моль/л, линии 2–11) (б).

Рис. 5. Молекулярное строение некоторых форм комплекса V (а-г) и их относительные энергии (кДж/моль).

лос средней интенсивности при $1639 \, \text{см}^{-1}$, которые можно отнести к валентным колебаниям координированной карбоксильной группы ацетат-аниона, позволяет предположить, что ацетат-ион достраивает внутреннюю координационную сферу Co(II), Ni(II) и Cu(II) в этих комплексах.

Данные элементного анализа указывают на то, что лиганд входит в состав комплекса в анионной форме. Анализ распределения электронной плотности в молекуле HL указывает на смещение 0.166 ē с триазольного фрагмента на гидразогруппу. Это уменьшает донорные свойства атомов триазольного фрагмента и делает координацию нейтральной молекулы HL с участием атомов S и N(6) маловероятной.

Для определения наиболее вероятного способа координации L⁻ катионами металлов мы выполнили квантово-химический расчет строения модельного комплекса ZnLAc · ДМФА (V). Состав этого комплекса аналогичен выделенным комплексам I и II, однако сам подобный комплекс выделен не был. На рис. 5 приведено молекулярное строение возможных форм комплекса V и их относительные энергии в кДж/моль.

В первых двух комплексах Va и Vб лиганд в анионной форме играет роль тридентатного лиганда и координируется катионом металла через атомы O(1), N(1) и N(3) с образованием двух пятичленных металлоциклов, как это имело место ранее [7–11]. Комплекс Vб, в котором лиганд находится в тионной форме, более устойчив, чем комплекс Va, в котором лиганд имеет тиольную форму. Можно предположить, что в комплексах с другими металлами лиганд HL будет присутство-

Рис. 6. Молекулярное строение комплексов CoLAc · ДМФА (VIa) и NiLAc · ДМФА (VIб) по данным расчета методом DFT.

вать в анионной форме тионного таутомера. Однако HL имеет возможность координироваться не только через атом азота N(3) гетероциклического фрагмента [7–11], но и через атом азота N(6) аминогруппы. При этом также образуются два металлоцикла: пятичленный и шестичленный. Наиболее устойчивая форма Vr, в которой атом O(1) участвует в шестичленном металлоцикле, а атом N(6) – в пятичленном.

В рассчитанных комплексах (Va–Vr) координационный полиэдр цинка — искаженный октаэдр. При этом анион L^- тридентатный, ацетат-ион бидентатный, ДМФА — монодентатный лиганд (рис. 5).

Моделирование строения выделенного комплекса CoLAc · ДМФА (VI), помимо выбора оптимальной схемы координации, включает и выбор спинового состояния иона кобальта в комплексе. Здесь возможны два варианта: высокоспиновый комплекс с мультиплетностью 4 и низкоспиновый с мультиплетностью 2. Высокоспиновый комплекс на 31 кДж/моль устойчивее низкоспинового. Аналогично для комплекса NiLAc · ДМФА: высокоспиновый комплекс с мультиплетностью 3 на 41 кДж/моль устойчивее, чем низкоспиновый с мультиплетностью 1. Из значений энергий следует, что высокоспиновые комплексы кобальта и никеля более устойчивы, чем низкоспиновые, и можно предположить, что синтезированные комплексы I и II имеют строение, приведенное на рис. 6.

В высокоспиновых комплексах кобальта и никеля координационный полиэдр металла – искаженный октаэдр. При этом анион L⁻ тридентатный, ацетат-ион бидентатный, ДМФА – монодентатный лиганд (рис. 6).

Комплекс меди IV имеет состав CuLAc, т.е. в составе комплекса нет молекулы ДМФА. В этой связи мы выполнили расчет как для комплекса CuLAc (рис. 7а), так и для CuLAc · ДМФА (рис. 7б), аналогичного ранее рассмотренным комплексам никеля и кобальта.

В расчетном комплексе CuLAc (VIIa) координационный полиэдр меди — искаженный квадрат. При этом анион L⁻ является тридентатным, а ацетат-ион — монодентатный лиганд. В модельном комплексе CuLAc · ДМФА (VII6) координационным полиэдром меди является вытянутая тетрагональная пирамида, в которой расстояние между атомом Cu и атомом O(4) ДМФА (2.302 Å) больше, чем в случае октаэдрических комплексов кобальта (2.166 Å) и никеля (2.132 Å) (рис. 6). Можно полагать, что отмеченное в расчете для газовой фазы ослабление связи меди с молекулой ДМФА приводит к ее отрыву и образованию в твердой фазе характерного для меди квадратного комплекса.

Выделенный нами комплекс меди III имеет состав CuLClO₄ · H_2O . Расчет этого комплекса (рис. 7в) показывает, что координационный полиэдр меди – вытянутая тетрагональная пирамида, в которой расстояние между металлом и атомом кислорода перхлорат-иона (2.284 Å) заметно больше, чем расстояния между атомом меди и атомами O(1), O(2), N(2), N(6) (табл. 2). Наличие слабой связи перхлорат-иона с металлом, несмотря на наличие водородной связи (1.760 Å) между атомом водорода аминогруппы и одним из атомов кислорода перхлорат-иона (рис. 7в), может привести к выходу перхлорат-ион из внутренней сферы комплекса III, которому можно приписать следующий состав [CuL(H₂O)]ClO₄. В этом случае координационный полиэдр меди – искаженный квадрат. Аналогичная ситуация наблюдалась

Рис. 7. Молекулярное строение комплексов CuLAc (VIIa), CuLAc · ДМФА (VIIб) и CuLClO₄ · H_2O (VIIв) по данным расчета методом DFT.

для рассчитанного комплекса CuLAc · ДМФА, где есть слабая связь между атомом меди и атомом кислорода ДМФА, а выделенный комплекс IV не содержал молекул ДМФА. Вывод о том, что перхлорат-ион находится во внешней сфере комплекса III, согласуется с данными о строении комплекса [Cu₂(L³)₂(H₂O)₄](ClO₄)₂ [10]. На основании выше сказанного можно предположить, что и комплексы III и IV имеют димерное строение: [Cu₂L₂(H₂O)₂](ClO₄)₂ и [Cu₂L₂Ac₂]. Рассчитанные длины некоторых связей в молекулах HL, CoLAc \cdot ДМФА, NiLAc \cdot ДМФА, CuLAc и CuLClO₄ \cdot H₂O приведены в табл. 2, рассчитанные заряды некоторых атомов в этих молекулах — в табл. 3.

Рассчитанные длины связей металла с атомами O(1), O(2), O(3), O(4), N(2) и N(6) в комплексах кобальта и никеля (табл. 2) находятся в сравнительно узких пределах, при этом связи металла с атомом O(4) ДМФА короче, чем связи металла с

Связь	Молекула						
	HL	СоLAc · ДМФА	NiLAc · ДМФА	CuLAc	$CuLClO_4 \cdot H_2O$		
M-O(1)*		2.028	2.011	1.952	1.941		
M-O(2)		2.118	2.115		2.024		
M-O(3)		2.168	2.096	1.924	2.284		
M-O(4)		2.166	2.132				
M-N(2)		2.072	2.036	1.979	1.963		
M-N(6)		2.248	2.179	2.086	2.139		
O(1)–C(1)	1.239	1.263	1.262	1.265	1.268		
C(1)–C(2)	1.481	1.451	1.453	1.455	1.454		
C(2)–N(1)	1.312	1.334	1.336	1.328	1.328		
N(1)–N(2)	1.314	1.293	1.289	1.289	1.282		
N(2)–C(3)	1.375	1.378	1.375	1.382	1.380		
C(3)–N(3)	1.302	1.306	1.306	1.302	1.301		
C(3)–N(5)	1.382	1.387	1.389	1.384	1.384		
N(3)–N(4)	1.372	1.371	1.371	1.371	1.370		
N(4)–C(4)	1.360	1.363	1.362	1.368	1.367		
C(4)–N(5)	1.395	1.387	1.387	1.391	1.391		
N(5)–N(6)	1.382	1.385	1.386	1.384	1.386		
C(4)–S	1.659	1.660	1.660	1.653	1.653		

Таблица 2. Длины некоторых связей (Å) в молекуле HL и в комплексах CoLAc \cdot ДМФА, NiLAc \cdot ДМФА, CuLAc и CuLClO₄ \cdot H₂O по данным расчета методом DFT

* M = Co, Ni, Cu.

КООРДИНАЦИОННАЯ ХИМИЯ том 45 № 1 2019

Атом	Молекула						
	HL	CoLAc · ДМФА	NiLAc · ДМФА	CuLAc	$CuLClO_4 \cdot H_2O$		
M*		+1.482	+1.433	+1.261	+1.289		
O(1)	-0.613	-0.736	-0.725	-0.698	-0.710		
O(2)		-0.787	-0.762	-0.714	-0.960		
O(3)		-0.793	-0.802	-0.825	-0.895		
O(4)		-0.740	-0.734				
C(1)	+0.511	+0.498	+0.503	+0.508	+0.513		
C2)	+0.114	+0.077	+0.070	+0.088	+0.088		
N(1)	-0.199	-0.188	-0.182	-0.165	-0.148		
N(2)	-0.385	-0.498	-0.478	-0.493	-0.458		
C(3)	+0.614	+0.607	+0.607	+0.599	+0.601		
N(3)	-0.334	-0.326	-0.326	-0.318	-0.311		
N(4)	-0.383	-0.379	-0.379	-0.380	-0.377		
C(4)	+0.217	+0.221	+0.221	+0.214	+0.213		
S	-0.233	-0.239	-0.240	-0.199	-0.195		
N(5)	-0.292	-0.289	-0.291	-0.295	-0.293		
N(6)	-0.637	-0.684	-0.683	-0.729	-0.705		

Таблица 3. Рассчитанные NBO заряды на атомах в молекуле HL и в комплексах CoLAc \cdot ДМФА, NiLAc \cdot ДМФА, CuLAc и CuLClO₄ \cdot H₂O по данным расчета методом DFT

* M = Co, Ni, Cu.

атомами N(6). В этой связи можно заключить, что молекула ДМФА находится в комплексах I и II во внутренней сфере и они могут иметь формулы [CoLAc · ДМФА] и [NiLAc · ДМФА]. В ряду Со-Ni-Си длины связей металла с атомами кислорода и азота несколько уменьшаются (табл. 2). Однако связь Си с О(3) перхлорат-иона в комплексе CuLClO₄ · H₂O (2.284 Å) заметно длиннее других связей металла с гетероатомами, в частности длиннее связи Cu с O(2) воды (2.024 Å). Можно предположить, что во внутренней сфере комплекса находится молекула воды, а перхлоратион – во внешней сфере, удерживаясь водородными связями. Это и позволяет, как было сделано ранее, предложить для комплекса III формулу [CuL(H₂O)]ClO₄ или [Cu₂L₂(H₂O)₂](ClO₄)₂.

Рассчитанные заряды атомов металла лежат в пределах от +1.482 до +1.261 и заметно отличаются от значения +2, указывая на перенос электронной плотности с лигандов на катион металла (табл. 3). Значение переноса электронной плотности от моноаниона L⁻ на катион металла равно 0.248, 0.279, 0.452 и 0.536 е для четырех выделенных комплексов соответственно. При этом на атомах O(1), N(2) и N(6), непосредственно связанных с металлом, электронная плотность при координации существенно возрастает (табл. 3), а перенос плотности осуществляется за счет атомов, непосредственно с металлом не связанных, в том числе с атомов водорода.

Учитывая характер ИК-, электронных спектров, а также данные квантово-химического расчета, можно считать, что лиганд входит в состав комплекса в анионной форме, образуя координационные соединения состава 1:1. Согласно квантово-химическим расчетам методом DFT наиболее вероятно образование комплексных соединений, в которых атом металла координирован атомом O(1) с образованием шестичленного цикла и атомом N(6) с образованием пятичленного цикла (6 + 5). При этом координационный полиэдр в высокоспиновых комплексах никеля и кобальта – искаженный октаэдр, в медных комплексах – искаженный квадрат. Предположено вхождение лиганда в состав комплексов с медью в димерной "сэндвичеобразной" форме.

Публикация подготовлена при поддержке Программы РУДН "5-100".

СПИСОК ЛИТЕРАТУРЫ

- 1. Wunderlich H., Wolfrum G. Patent FR 1.442.867, C09b/D06p, 1966.
- Foster C.E., James R.A. Patent WO 2006/125951 A2, C09B 27/00, C09B 45/34, C09D 11/00, 30 November 2006.
- 3. Tosaki Y.I., Hosaka T.Y., Kunieda T.M. et al. Patent US 6.551.682 B1, B32B 3/02, 22 April 2003.
- 4. Давыдов В.В., Сокол В.И., Рычагина Н. В. и др. // Журн. неорган. химии. 2009. Т. 54. № 6. С. 958 (Davydov V.V., Rychagina N.V., Linko R.V. et al. // Russ.

J. Inorg. Chem. 2009. V. 54. № 6. P. 893. doi 10.1134/S0036023609060126).

- 5. Давыдов В.В., Сокол В.И., Полянская Н.А. и др. // Кристаллография. 2012. Т. 57. № 2. С. 276 (Davydov V.V., Polyanskaya N.A., Linko R.V. et al. // Crystallogr. Rep. 2012. V. 57. № 2. Р. 227. doi 10.7868/ S0044457X14010097).
- 6. Линко Р.В., Сокол В.И., Полянская Н.А. и др. // Журн. неорган. химии. 2013. Т. 58. № 3. С. 332 (Linko R.V., Polyanskaya N.A., Ryabov M.A. et al. // Russ. J. Inorg. Chem. 2013. V. 58. № 3. Р. 284. doi 10.1134/ S0036023613030091).
- Давыдов В.В., Сокол В.И., Рычагина Н.В. и др. // Журн. неорган. химии. 2011. Т. 56 № 5 С. 728 (Davydov V.V., Rychagina N.V., Linko R.V. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 5. Р. 680. doi 10.1134/ S003602361105007X).
- Линко Р.В., Сокол В.И., Полянская Н.А. и др. // Журн. неорган. химии. 2013. Т. 58. № 2. С. 178 (Linko R.V., Polyanskaya N.A., Ryabov M.A. et al. // Russ. J. Inorg. Chem. 2013. V. 58. № 2. Р. 144. doi 10.1134/S0036023613020150)
- Линко Р.В., Сокол В.И., Полянская Н.А. и др. // Кристаллография. 2013. Т. 58. № 3. С. 416 (Linko R.V., Polyanskaya N.A., Ryabov M.A. et al. // Crystallogr. Rep. 2013. V. 58. № 3. Р. 427. doi 10.1134/ S1063774513030103).
- 10. Линко Р.В., Сокол В.И., Полянская Н.А. и др. // Журн. неорган. химии. 2014. Т. 59. № 1. С. 28 (Linko R.V., Polyanskaya N.A., Ryabov М.А. et al. // Russ. J. Inorg. Chem. 2013. V. 58. № 12. Р. 1457. doi 10.1134/S0036023614010094).
- Давыдов В.В., Сокол В.И., Рычагина Н.В. и др. // Журн. неорган. химии. 2014. Т. 59. № 9. С. 1158 (Davydov V.V, Rychagina N.V., Linko R.V. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 9. Р. 927. doi 10.1134/ S0036023614090046).
- 12. *Pandeya S.N., Sriram D., Nath G. et al.* // Arzneimittelforschung. 2000. V. 50. № 1. P. 55. doi 10.1055/s-0031-1300164.
- Holla B. S., Poojary K.N., Kalluraya B., and Gowda P.V. // Farmaco. 1996. V. 51. P. 793.

- 14. Labanauskas L., Kalcas V., Udrenaite E. et al. // Pharmazie. 2001. V. 56. № 8. P. 617.
- 15. *Kamble P.N., Mote D.A., Chalke S.A. et al.* // Intern. J. Univ. Pharm. Bio Sci. 2015. V. 4. № 4. P. 13.
- 16. Ulusoy N. G., Ergenc N., Otuk G., Kiraz M. // Boll. Chim. Farm. 2001. V. 140. № 6. P. 417.
- 17. Akbarzadeh T., Tabatabai S. A., Khoshnoud M. J. et al. // Bioorg. Med. Chem. 2003. V. 11. № 5. 769.
- Haddad R., Yousif E., Ahmed A. // SpringerPlus. 2013.
 V. 2. P. 510. doi 10.1186/2193-1801-2-510
- Полянская Н.А., Рябов М.А., Страшнов П.В. и др. // Изв. вузов. Химия и хим. технология. 2018. Т. 61. № 1. С. 55 (*Polyanskaya N.A., Ryabov М.A., Strashnov P.V. et al.* // Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. № 1. P. 55. doi 10.6060/ tcct.20186101.5677).
- 20. Бек М., Надыпал И. Исследование комплексообразования новейшими методами М.: Мир. 1989. 413 с.
- 21. Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648.
- 22. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785.
- Stephens P.J., Devlin F.J., Chabalowski C.F., Frisch M.J. // J. Phys. Chem. 1994. V. 98. P. 11623.
- 24. Schaefer A., Huber C., Ahlrichs R. // J. Chem. Phys. 1994. V. 100. P. 5829.
- NBO 5.G Madison (WI, USA): Theoretical Chemistry Institute, Univ. of Wisconsin, 2004. http:// www.chem. wisc.edu/~nbo5.
- 26. *Granovsky A.*, Firefly version 7.1.G. http://classic.chem.msu.su/gran/firefly/index.html.
- Yousif E., Haddad R., Ameer A.A. et al. // Eur. J. Chem. 2014. V. 5. № 4. P. 607.
- 28. Шаров К.С., Иванов В.М. // Вестн. Моск. ун-та. Сер. хим. 2003. Т. 44. № 6. С. 397.
- 29. Janiak C. // Dalton Trans. 2000. № 22. P. 3885.
- 30. Шундалов М.Б., Чибирай П.С., Комяк А.И. и др. // Журн. прикл. спектроскопии. 2011. Т. 78. № 3. С. 351 (Shundalau M. B., Chibirai P. S., Komyak A. I. et al. // J. Appl. Spectrosc. 2011. V. 78. № 3. P. 326).