УДК 546.47-386:543.427

# СИНТЕЗ, КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА КООРДИНАЦИОННЫХ ПОЛИМЕРОВ Zn И Cd НА ОСНОВЕ ДВУХ ИЗОМЕРНЫХ АЗИНОВЫХ ЛИГАНДОВ

© 2019 г. В. Лозован<sup>1, 2</sup>, Э. Б. Коропчану<sup>1, 2, \*</sup>, П. Н. Боурош<sup>2, 3</sup>, А. Мику<sup>3</sup>, М. С. Фонарь<sup>3, \*\*</sup>

<sup>1</sup>Институт химии, Кишинев, Республика Молдова

<sup>2</sup>Тираспольский государственный университет, Кишинев, Республика Молдова

<sup>3</sup>Институт прикладной физики, Кишинев, Республика Молдова

\*e-mail: ecoropceanu@yahoo.com \*\*e-mail: fonari.xray@phys.asm.md Поступила в редакцию 20.01.2018 г. После доработки 04.06.2018 г.

Принята к публикации 15.06.2018 г.

Получены одномерные металл-органические координационные полимеры Zn(II) и Cd(II) состава:  $[{Zn(3-Bphz)(H_2O)_4}(3-Bphz)(NO_3)_2]_n$  (I),  $[Zn(3-Bphz)I_2]_n$  (II),  $[Cd(3-Bphz)I_2]_n$  (III),  $[Cd(4-Bphz)]_n$  $(CH_3COO)_2(H_2O)]_n$  (IV) и  $[Cd(4-Bphz)(NO_3)_2(H_2O)_2]_n$  (V), содержащие в качестве мостиковых лигандов азины N, N'-типа, 1,2-бис(пиридин-3-илметилен)гидразин (3-Bphz) и 1,2-бис(пиридин-4илметилен)гидразин (4-Bphz). Состав и строение соединений подтверждены данными элементного анализа, ИК- и ЯМР-спектроскопии, а также монокристальным PCA (CIF files CCDC № 1812634-1812638 для I–V). Координационные полимеры I–III имеют зигзагообразную структуру. В I октаэдрическое окружение иона Zn<sup>2+</sup> формируют два лиганда 3-Bphz и четыре молекулы воды. Во внешней сфере присутствуют нитрат-анионы и некоординированные молекулы 3-Bphz. В изоморфных соединениях II и III тетраэдрическое окружение металла формируют два атома азота двух мостиковых лигандов 3-Bphz и два атома иода. Координационные полимеры IV и V имеют линейную структуру. В соединении IV координационный полиэдр иона Cd<sup>2+</sup> – пентагональная бипирамида, две вершины которой заняты атомами азота двух молекул 4-Bphz, а экваториальную плоскость формируют два бидентатно-хелатных апетат-аниона и молекула воды. В соединении V октаэдрическое окружение иона Cd<sup>2+</sup> формируют две молекулы лиганда 4-Bphz, два монодентатных нитрат-аниона и две молекулы воды. Все комплексы — слабые люминофоры со свечением в сине-зеленой области спектра.

*Ключевые слова:* азиновые лиганды, координационные полимеры, кристаллическая структура, люминесценция

**DOI:** 10.1134/S0132344X19010079

Координационные полимеры (КП) [1, 2], включая трехмерные координационные каркасы [3], являются одними из важнейших представителей полиядерных комплексов и остаются в центре внимания современной координационной химии. Наряду с другими исследователями, ранее, с целью получения дискретных биядерных координационных соединений и КП, мы применяли один из наиболее эффективных синтетических приемов, состоящий в объединении строительных блоков посредством мостиковых лигандов, в качестве которых выступали неорганические анионы [4], азотсодержащие ароматические дипиридиновые [5-7] или дикарбоксильные лиганды [8, 9]. Благодаря стабильности и полидентатности, N-донорные лиганды, содержащие в молекуле два и более функциональных атомов азота, широко используются при сборке КП разной размерности [10–16].

Последние обладают потенциально полезными свойствами, включающими катализ, оптическую активность, проводимость, люминесценцию, магнетизм, пористость [17–31]. Среди важнейших факторов, влияющих на размерность координационной сетки и топологию КП, следует отметить молекулярную структуру и дентатность органических лигандов, электронную конфигурацию и координационную емкость иона металла-комплексообразователя, природу растворителя, молярное соотношение металл : лиганд [23–35].

Наряду с трехмерными координационными каркасами [3], низкоразмерные (одно- и двумерные) КП, как объекты исследования материаловедения и инженерии кристаллов [36, 37], демонстрируют примеры молекулярных ферромагнетиков, синтетических проводников, нелинейно-оптических

материалов и сегнетоэлектриков, чьи кристаллические структуры и полезные свойства можно варьировать путем подгонки составляющих их молекул [38, 39]. В литературе приведены примеры КП, содержащих в качестве мостиковых лигандов азины N,N'-типа, 1,2-бис(пиридин-3-илметилен)гидразин (3-Bphz) и 1,2-бис(пиридин-4-илметилен)гидразин (4-Врhz) [14, 17, 21-28]. Эти длинные ароматические молекулы с сопряженной системой чередующихся связей C=N и N-N, способны координировать ионы переходных металлов как атомами азота концевых пиридиновых, так и азиновых фрагментов [40], образуя новые КП, а также участвовать в водородных связях (ВС) в присутствии сильных протоно-донорных агентов [41]. Наряду с разнообразной архитектурой для КП Zn(II) и Cd(II) с этими лигандами в некоторых публикациях отмечены их люминесцентные свойства [17, 42, 43], причем для ряда соединений Cd(II) с 4-Врһz авторы демонстрируют корреляцию структура-свойство с учетом тонких эффектов упаковки [42].

В продолжение наших исследований по изучению КП Zn и Cd с люминесцентными свойствами [4, 44-46] мы осуществили синтез двух изомерных азиновых лигандов 3-Bphz и 4-Bphz по несколько модифицированной по сравнению с опубликованной методикой [26], а также получены четыре новых одномерных координационных полимера на их основе:  $[{Zn(3-Bphz)(H_2O)_4}(3-Bphz)(NO_3)_2]_n$  (I),  $[Cd(3-Bphz)I_2]_n$  (II),  $[Zn(3-Bphz)I_2]_n$  (III),  $[Cd(4-C)]_n$ Bphz)(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)]<sub>n</sub> (**IV**), изучено их строение и эмиссионные свойства. Депонированы также в Кембриджский банк структурных данных в виде CIF-файла улучшенные по сравнению с опубликованными ранее [17] результаты РСА для полученного по аналогичной методике одномерного КП [Cd(4-Bphz)(NO<sub>3</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]<sub>n</sub>(V).

#### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез 3-Врhz. Навеску гидразин сульфата 6.5 г (0.05 моль) растворяли в 250 мл воды. Полученный раствор нагревали на магнитной мешалке до 70°С. К раствору добавляли 9.4 мл (0.1 моль) 3-пиридинкарбоксальдегида. Далее добавляли раствор NaOH до нейтральной реакции и перемешивали еще ~2 ч. Полученную массу фильтровали, промывали водой для удаления сульфата натрия и растворяли в 50 мл этанола. Раствор оставляли для медленного испарения при комнатной температуре для кристаллизации. Выход ~70%.

ИК (v, см<sup>-1</sup>): 3087, 3038, 3012, 1625, 1586, 1571, 1511.

**Синтез 4-Врhz** проводили по аналогичной для 3-Вphz методике, заменив 3-пиридинкарбоксальдегид на 4-пиридинкарбоксальдегид. Выход ~70%.

ИК (v, см<sup>-1</sup>): 3072, 3054, 3038, 3030, 3018, 1628, 1594, 1551, 1496.

Синтез комплекса I. В 10 мл метанола растворяли при перемешивании 0.03 г (0.1 ммоль) Zn(NO<sub>3</sub>)<sub>2</sub> · 6H<sub>2</sub>O. После растворения добавляли 0.042 г (0.2 ммоль) 3-Bphz. Смесь нагревали при 70°C в течение 5 мин на магнитной мешалке, затем добавляли 1 мл ДМФ. Полученный раствор фильтровали и оставляли для медленного испарения при комнатной температуре. После 2 нед. из раствора выпадали кристаллы желтого цвета, пригодные для PCA. Выход ~35%. Вещество растворимо в спиртах, ДМФ, ДМСО, воде.

| Найдено, % :              | C 48.43;         | H 4.26; | N 21.97. |
|---------------------------|------------------|---------|----------|
| Для $C_{36}H_{38}N_{14}O$ | <sub>10</sub> Zn |         |          |
| вычислено, %:             | C 48.27;         | H 4.12; | N 21.89. |

ИК (v, см<sup>-1</sup>): 3085, 3039, 3021, 1627, 1595, 1578, 1412, 1395, 1227, 1223, 1033, 1029.

Синтез комплекса II. В 6 мл ДМФ растворяли 0.031 г (0.1 ммоль)  $ZnI_2$  с последующим добавлением 0.021 г (0.1 ммоль) 3-Врhz. Раствор перемешивали при 70°С в течение 10 мин, после чего раствор фильтровали и оставляли при комнатной температуре для кристаллизации. Через 3 нед. из раствора выпадали желтые кристаллы, которые отфильтровывали, промывали этанолом и сушили при комнатной температуре. Выход ~23%. Вещество нерастворимо в воде и спиртах, растворимо в ДМФ, ДМСО.

| Найдено, % :                                                        | C 27.22; | H 1.90; | N 10.58. |
|---------------------------------------------------------------------|----------|---------|----------|
| Для C <sub>12</sub> H <sub>10</sub> N <sub>4</sub> I <sub>2</sub> Z | Zn       |         |          |
| вычислено, %:                                                       | C 26.97; | H 1.82; | N 10.34. |

ИК (v, см<sup>-1</sup>): 3080, 3026, 1630, 1600, 1580.

Синтез комплекса III. В 4 мл воды растворяли 0.036 г (0.1 ммоль)  $CdI_2$ , переносили раствор в пробирку и медленно добавляли пипеткой смесь 2 мл воды и этанола (1:1). После этого добавляли этанольный раствор (4 мл), содержащий 0.021 г (0.1 ммоль) 3-Bphz. Пробирку закрывали и оставляли при комнатной температуре. Через неделю в растворе образовывались кристаллы желтого цвета, которые отфильтровывали и высушивали при комнатной температуре. Выход ~30%. Вещество растворимо в ДМФ, ДМСО, нерастворимо в воде и спиртах.

| Найдено, %:                                                          | C 25.00; | H 1.74; | N 9.71. |
|----------------------------------------------------------------------|----------|---------|---------|
| Для C <sub>12</sub> H <sub>10</sub> N <sub>4</sub> I <sub>2</sub> Cd |          |         |         |
| вычислено, %:                                                        | C 24.83; | H 1.41; | N 9.47. |

ИК (v, см<sup>-1</sup>): 3083, 3024, 1629, 1597, 1578.

Синтез комплекса IV. В 10 мл этанола растворяли при перемешивании (70°С) 0.026 г (0.1 ммоль) Cd(CH<sub>3</sub>COO)<sub>2</sub> · 2H<sub>2</sub>O. К раствору добавляли 0.021 г (0.1 ммоль) 4-Bphz, что сопровождалось выпадением осадка. После добавления 2 мл воды осадок растворялся, и раствор становился прозрачным. Полученный раствор фильтровали и оставляли для медленного испарения при комнатной температуре. Через неделю из раствора выпадали кристаллы желтого цвета, пригодные для PCA.

Выход ~42%. Вещество растворимо в ДМФ, ДМСО, нерастворимо в спиртах.

| Найдено, %:                                                       | C 41.89; | Н 3.95; | N 12.21. |
|-------------------------------------------------------------------|----------|---------|----------|
| Для C <sub>16</sub> H <sub>18</sub> N <sub>4</sub> O <sub>5</sub> | Cd       |         |          |
| вычислено, %:                                                     | C 41.73; | H 3.69; | N 11.94. |

ИК (v, см<sup>-1</sup>): 3088, 3035, 1630, 1605, 1551, 1485, 1410, 681, 679.

Синтез комплекса V. В 10 мл метанола растворяли при перемешивании (70°С) 0.035 г (0.1 ммоль) Cd(NO<sub>3</sub>)<sub>2</sub> · 6H<sub>2</sub>O. К раствору добавляли 0.021 г (0.1 ммоль) 4-Врhz, что сопровождалось выпадением осадка. После добавления 3 мл ДМФ осадок растворялся, и раствор становился прозрачным. Полученный раствор фильтровали и оставляли для медленного испарения при комнатной температуре. Через 3 нед. из раствора выпадали кристаллы желтого цвета, пригодные для РСА. Выход ~37%. Вещество растворимо в ДМФ, ДМСО, нерастворимо в спиртах.

| Найдено, %:                             | C 24.21;                    | H 2.37;   | N 14.12.  |
|-----------------------------------------|-----------------------------|-----------|-----------|
| Для C <sub>12</sub> H <sub>14</sub> CdN | <sub>5</sub> O <sub>8</sub> |           |           |
| вычислено, %:                           | C 23.92;                    | H 2.11;   | N 13.87.  |
| $\mathbf{W}$                            | 2000 2042                   | 1650 1611 | 1550 1400 |

ИК (v, см<sup>-1</sup>): 3099, 3043, 1652, 1611, 1558, 1423, 1386, 1342, 1304, 1021.

Состав и строение соединений установили на основе элементного анализа и данных ИК- и ЯМР-спектроскопии. ИК-спектры снимали на FT-IR Perkin-Elmer Spectrum100 спектрометре в вазелиновом масле в области 4000–400 см<sup>-1</sup> и АТР в области 4000–650 см<sup>-1</sup>. Спектры ЯМР записывали на спектрометре Bruker Avance III. Кристалличе-

ские структуры I–V установили методом монокристального PCA. Твердотельные спектры люминесценции записывали с использованием импульсного азотного лазера ( $\lambda_{воз5} = 337.1$  нм) при 300°С. Длительность импульса возбуждения 15 нс, частота повторения 50 Гц, энергия импульса 0.2 мДж. Регистрировали излучение с помощью ФЭУ-79 (мультищелочной фотокатод, Sb(Na<sup>2</sup>K) с адсорбированным слоем цезия на поверхности, характеристика типа S20). Собственное время регистрирующей системы 20 нс. Длительность послесвечения (при 300°С) для всех исследуемых в работе соединений была меньше, чем временное разрешение регистрирующей системы.

**РСА.** Структурные данные для I–V получены при комнатной температуре на дифрактометре Xcalibur CCD Oxford Diffraction (Мо $K_{\alpha}$ -излучение,  $\lambda = 0.71073$  Å, графитовый монохроматор, ω-сканирование). Параметры элементарных ячеек уточнены по всему массиву экспериментальных данных. Кристаллические структуры решены прямыми методами и уточнены методом наименьших квадратов в анизотропном полноматричном варианте для неводородных атомов (SHELX-97) [47]. Позиции атомов водорода молекул воды найдены из разностных синтезов Фурье, положения остальных атомов Н рассчитаны геометрически и уточнены изотропно в модели "жесткого тела". Массив экспериментальных дифракционных данных для соединения II получен с немероэдрического двухкомпонентного двойникового кристалла. Разрешение двойникования выполнено в комплексе программ CrysAlisPro, матрица двойникования [0.9992 0.0148 0.0196-0.0255 0.9987 0.0093-0.0668-0.0162 1.0011], соотношение блоков 0.524: 0.476. Уточнение проведено по набору  $F^2$  структурных данных в формате SHELX HKLF 5. Кристаллографические данные и характеристики эксперимента для I-IV приведены в табл. 1, межатомные расстояния и валентные углы – в табл. 2. Позиционные и тепловые параметры для структур I-V депонированы в Кембриджструктурных ском банке данных (CCDC № 1812634-1812638; deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk).

### РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Лиганды 3-Bphz и 4-Bphz получали по реакции конденсации соответствующего пиридинкарбоксальдегида с гидразин сульфатом (схема 1). Структура полученных лигандов подтверждена ИК- и ЯМР-спектроскопией.

| ntemene                                                            |                                                              |                                                              | Значение                                              |                                                         |                                                       |
|--------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|
| Trapamorp                                                          | Ι                                                            | II                                                           | III                                                   | IV                                                      | V                                                     |
| M                                                                  | 892.17                                                       | 529.41                                                       | 576.44                                                | 458.74                                                  | 482.69                                                |
| Сингония                                                           | Триклинная                                                   | Ромбическая                                                  | Ромбическая                                           | Ромбическая                                             | Моноклинная                                           |
| Пр. гр.                                                            | <u>P1</u>                                                    | Рпта                                                         | Pnma                                                  | Pnna                                                    | $P2_{1}/c$                                            |
| <i>a</i> , Å                                                       | 7.4374(7)                                                    | 8.5990(7)                                                    | 8.5789(3)                                             | 8.4218(3)                                               | 9.0563(5)                                             |
| $b, { m \AA}$                                                      | 11.1666(7)                                                   | 15.7232(14)                                                  | 15.7532(7)                                            | 13.5348(5)                                              | 12.9302(5)                                            |
| <i>c</i> , Å                                                       | 12.8277(9)                                                   | 11.4567(12)                                                  | 11.7425(5)                                            | 16.5056(5)                                              | 7.2618(4)                                             |
| α, град                                                            | 102.093(6)                                                   | 90                                                           | 90                                                    | 06                                                      | 06                                                    |
| β, град                                                            | 93.377(7)                                                    | 90                                                           | 90                                                    | 06                                                      | 90.282(5)                                             |
| ү, град                                                            | 94.644(7)                                                    | 90                                                           | 90                                                    | 90                                                      | 90                                                    |
| $V, Å^3$                                                           | 1035.13(15)                                                  | 1549.0(3)                                                    | 1586.95(11)                                           | 1881.42(11)                                             | 850.35(7)                                             |
| Ζ                                                                  | 1                                                            | 4                                                            | 4                                                     | 4                                                       | 2                                                     |
| р(выч.), г/см <sup>3</sup>                                         | 1.431                                                        | 2.270                                                        | 2.413                                                 | 1.620                                                   | 1.885                                                 |
| μ, <sub>MM</sub> <sup>-1</sup>                                     | 0.666                                                        | 5.563                                                        | 5.259                                                 | 1.194                                                   | 1.342                                                 |
| F(000)                                                             | 462                                                          | 984                                                          | 1056                                                  | 920                                                     | 480                                                   |
| Размеры кристалла, мм                                              | 0.4 	imes 0.18 	imes 0.18                                    | 0.3 	imes 0.08 	imes 0.03                                    | $0.36 \times 0.22 \times 0.20$                        | $0.42 \times 0.42 \times 0.36$                          | $0.36 \times 0.10 \times 0.05$                        |
| Область θ, град                                                    | 3.091 - 25.499                                               | 2.962 - 24.993                                               | 3.21 - 25.05                                          | 3.010 - 25.045                                          | 3.151 - 25.499                                        |
| Интервалы индексов отражений                                       | $-9 \le h \le 8$<br>$-13 \le k \le 13$<br>$-15 \le l \le 11$ | $-8 \le h \le 10$<br>$-11 \le k \le 18$<br>$-13 \le l \le 6$ | $-10 \le h \le 6$ $-7 \le k \le 18$ $-9 \le l \le 13$ | $-10 \le h \le 5$ $-10 \le k \le 16$ $-19 \le l \le 14$ | $-7 \le h \le 10$ $-15 \le k \le 14$ $-7 \le l \le 8$ |
| Число измеренных/независимых рефлексов ( <i>R</i> <sub>int</sub> ) | 5780/3835 (0.0248)                                           | 2842/2842                                                    | 3348/1447 (0.0223)                                    | 4007/1654 (0.0226)                                      | 2948/1567 (0.0222)                                    |
| Число рефлексов с $I > 2\sigma(I)$                                 | 3106                                                         | 1406                                                         | 1228                                                  | 1281                                                    | 1262                                                  |
| Число уточняемых параметров                                        | 290                                                          | 92                                                           | 92                                                    | 122                                                     | 130                                                   |
| GOOF                                                               | 0.967                                                        | 0.922                                                        | 1.038                                                 | 1.000                                                   | 1.048                                                 |
| $R_1, wR_2 (I > 2\sigma(I))$                                       | 0.0459, 0.1059                                               | 0.0534, 0.1156                                               | 0.0271, 0.0568                                        | 0.0288, 0.0764                                          | 0.0302, 0.0673                                        |
| $R_1$ , $wR_2$ (весь массив)                                       | 0.0621, 0.1148                                               | 0.1093, 0.1237                                               | 0.0358, 0.0605                                        | 0.0426, 0.0849                                          | 0.0417, 0.0725                                        |
| $\Delta  ho_{ m max} / \Delta  ho_{ m min}, e \ { m \AA}^{-3}$     | 0.337/-0.296                                                 | 1.273/-1.156                                                 | 0.751/-0.796                                          | 0.341/-0.303                                            | 0.392/-0.340                                          |

16

Таблица 1. Кристаллографические данные и характеристики эксперимента для соединений I–V

ЛОЗОВАН и др.

КООРДИНАЦИОННАЯ ХИМИЯ том 45 № 1 2019

| Связь                              | d, Å       | Связь                | <i>d</i> , Å |  |  |
|------------------------------------|------------|----------------------|--------------|--|--|
|                                    |            | I                    |              |  |  |
| Zn(1)-O(4)                         | 2.0355(19) | Zn(1) - N(1)         | 2.2081(19)   |  |  |
| Zn(1)-O(5)                         | 2.097(2)   |                      |              |  |  |
| II                                 |            |                      |              |  |  |
| Zn(1)-N(1)                         | 2.087(9)   | Zn(1)-I(1)           | 2.557(3)     |  |  |
| Zn(1)–I(2)                         | 2.544(2)   |                      |              |  |  |
| III                                |            |                      |              |  |  |
| Cd(1)-N(1)                         | 2.311(3)   | Cd(1)–I(2)           | 2.6854(6)    |  |  |
| Cd(1)–I(1)                         | 2.6954(6)  |                      |              |  |  |
| IV                                 |            |                      |              |  |  |
| Cd(1)-N(1)                         | 2.413(2)   | Cd(1)-O(2)           | 2.354(2)     |  |  |
| Cd(1)-O(1)                         | 2.439(2)   | Cd(1)-O(3)           | 2.332(3)     |  |  |
| Угол                               | ω, град    | Угол                 | ω, град      |  |  |
| Ι                                  |            |                      |              |  |  |
| O(4)Zn(1)O(5)                      | 88.40(9)   | O(5)Zn(1)N(1)        | 89.95(8)     |  |  |
| O(4)Zn(1)N(1)                      | 89.37(7)   |                      |              |  |  |
| II                                 |            |                      |              |  |  |
| $N(1)Zn(1)N(1)^i$                  | 99.0(5)    | N(1)Zn(1)I(1)        | 106.2(3)     |  |  |
| N(1)Zn(1)I(2)                      | 109.4(3)   | I(2)Zn(1)I(1)        | 123.79(8)    |  |  |
| III                                |            |                      |              |  |  |
| $N(1)Cd(1)N(1)^{i}$                | 92.41(17)  | I(2)Cd(1)I(1)        | 134.51(2)    |  |  |
| N(1)Cd(1)I(2)                      | 106.91(8)  | N(1)Cd(1)I(1)        | 104.12(8)    |  |  |
| IV                                 |            |                      |              |  |  |
| O(3)Cd(1)O(2)                      | 85.50(5)   | $N(1)Cd(1)O(1)^{ii}$ | 87.71(9)     |  |  |
| O(3)Cd(1)N(1)                      | 83.71(6)   | O(3)Cd(1)O(1)        | 138.33(6)    |  |  |
| O(2)Cd(1)N(1)                      | 87.54(9)   | O(2)Cd(1)O(1)        | 53.98(8)     |  |  |
| N(1)Cd(1)O(2) <sup><i>ii</i></sup> | 91.47(9)   | N(1)Cd(1)O(1)        | 101.76(9)    |  |  |
| O(2)Cd(1)O(1) <sup><i>ii</i></sup> | 134.86(8)  |                      |              |  |  |

Таблица 2. Основные межатомные расстояния и валентные углы в соединениях I-IV\*

\* Преобразования симметрии: <sup>*i*</sup> *x*, 1/2 – *y*, *z*; <sup>*ii*</sup> 3/2 – *x*, 1 – *y*, *z*.

КООРДИНАЦИОННАЯ ХИМИЯ том 45 № 1 2019

17





#### Схема 1.

В ИК-спектрах лигандов 3-Врhz и 4-Врhz присутствуют полосы при 1625.8 и 1628.3 см<sup>-1</sup>, соответствующие колебаниям v(C=N)<sub>ar</sub>. В комплексе I присутствуют полосы, характерные для нитрат-анионов: 1412, 1395 v<sub>as</sub>(NO<sub>2</sub>); 1227, 1223 v<sub>e</sub>(NO<sub>2</sub>); 1029, 1033 см<sup>-1</sup> v(NO). Полосы, обусловленные связанной группой v(OH), проявляются при 3500-2800; а также имеются полосы при 3021, 3039, 3085v(CH); 1627 v(C=N)<sub>ar</sub>; 1595, 1578 см<sup>-1</sup> v(C=C)<sub>ar</sub>. В ИК-спектрах II и III наблюдаются следующие полосы поглощения (см<sup>-1</sup>): 1629 и 1630 v(C=N)<sub>а</sub>; 1597, 1578 и 1600, 1580 v(C=C)<sub>а</sub>; 3024, 3083 и 3026, 3080 v(CH) соответственно. Для ацетат-ионов в спектре IV характерны полосы поглощения при 1605, 1551 v<sub>as</sub>(C-O); 1410, 1485 v<sub>e</sub>(C−O); 681, 679 см<sup>-1</sup> v(O−C−O). К колебаниям v(OH) связанной группы могут быть отнесены полосы при 3400-3000 см<sup>-1</sup>. Полосы (см<sup>-1</sup>): 3035, 3088 v(CH); 1630 v(C=N)ar; 1604 v(C=C)ar относятся к мостиковому лиганду. В ИК-спектре соединения V присутствуют полосы (см<sup>-1</sup>): 3500– 2800 v(OH) (связанная группа); 3043, 3099 v(CH); 1652 v(C=N)<sub>ar</sub>; 1611, 1558 v(C=C)<sub>ar</sub>; 1423, 1386  $v_{as}$ (NO<sub>2</sub>); 1342, 1304 v<sub>s</sub>(NO<sub>2</sub>), а также 1021 v(NO). Эти значения подтверждают, что нитрат-анион координирован монодентатно.

Различная точечная симметрия лигандов ( $C_i$  для 3-Врhz и  $C_s$  для 4-Вphz) определяет различия в их спектрах ЯМР <sup>1</sup>Н и <sup>13</sup>С. Для лиганда 3-Вphz характерны пять сигналов, соответствующих пяти типам неэквивалентных атомов водорода: 8.79, 9.02, 8.70, 8.27 м.д. В спектре ЯМР <sup>1</sup>Н лиганда 4-Вphz регистрируются только три сигнала: 8.67, 7.80, 8.73 м.д. В спектре ЯМР <sup>13</sup>С лиганда 3-Вphz наблюдаются шесть характерных сигналов для шести типов неэквивалентных атомов углерода: 160.1, 129.9, 124.6, 124.6, 135.3. 150 м.д.; для лиганда 4-Вphz характерны четыре сигнала: 160, 140.8, 122.5, 150.9 м.д. ЯМР <sup>1</sup>Н и <sup>13</sup>С сигналы 3-Вphz и 4-Вphz представлены на схеме 2:





В спектре соединения IV имеются пять протонных сигналов, три из которых относятся к лиганду 4-Bphz, и никаких значительных смещений не наблюдается. Один сигнал относится к CH<sub>3</sub>группе ацетат-аниона (1.83 м.д.). Сигнал для ЯМР<sup>1</sup>Н в молекуле воды, координированной к металлу, совпадает с сигналом воды в ДМСО-d (3.4 м.д.). В спектре ЯМР<sup>13</sup>С присутствуют шесть углеродных сигналов – четыре при тех же значениях, что и в лиганде 4-Врhz и два характерных

КООРДИНАЦИОННАЯ ХИМИЯ том 45 № 1 2019



Рис. 1. Координационное окружение атома цинка в соединении І с нумерацией базисных атомов.

сигнала для атомов углерода ацетатного аниона:  $\delta(CH_3)$  22.13 м.д. и  $\delta(COO^-)$  178.39 м.д.

Для спектров ЯМР <sup>1</sup>Н и <sup>13</sup>С соединений I–III, V существенных сдвигов сигналов по сравнению со значениями лигандов 3-Bphz и 4-Bphz не обнаружено.

В состав соединения I помимо положительно заря-

женной полимерной цепочки  $[Zn(3-Bphz)(H_2O)_4]_{\mu}^{2+}$ , фрагмент которой изображен на рис. 1, входят внешнесферные нитрат-анионы и сольватные молекулы 3-Bphz. Атом цинка и координированный лиганд 3-Bphz занимают позиции в центрах инверсии. Координационный полиэдр атома металла – искаженный октаэдр, образованный набором донорных атомов (N<sub>2</sub>O<sub>4</sub>), который формируют четыре молекулы воды, определяющие экваториальную плоскость, и два лиганда 3-Bphz, практически перпендикулярные к этой плоскости; двугранный угол между соответствующими плоскостями равен 87.46°. Расстояния Zn-N 2.208(2), Zn-O 2.036(2) и 2.097(2) Å (табл. 2). В полимерной цепочке расстояние между атомами цинка, разделенными бидентатно-мостиковым лигандом 3-Bphz, равно 14.44 Å.

В отличие от центросимметричного плоского лиганда, координированного к металлу, внешнесферная молекула 3-Bphz (в общем положении) характеризуется *твист*-конформацией с двугранным углом между пиридиновыми фрагментами, равным 38.81°. Причину этому следует искать в супрамолекулярной архитектуре кристалла, которая формируется за счет ВС ОН М с участием координированных молекул воды и внешнесферных лигандов. Лиганды 3-Врһz присоединены к катионной полимерной цепочке по хелатному типу посредством двух ВС, О(4)- $H(4A) \cdots N(3) (x + 1, y, z) (O \cdots N 2.713(3), H \cdots O 1.87(2) Å,$ угол OHN 172(3)°); O(4)-H(4B)···N(6) (x, y, z - 1) (О…N 2.733(3), Н…О 1.89(2) Å, угол ОНN 176(3)° (рис. 2а). В свою очередь, внешнесферные нитрат-анионы служат мостиками между соседними цепочками за счет ВС О–Н···O с координированными к металлу молекулами воды: O(5)– H(5*A*)···O(2) (O···O 2.840(3); H···O 2.01(2) Å, угол OHO 166(3)°); O(5)–H(5*A*)···O(3) (O···O 3.218(4); H···O 2.54(3) Å, угол OHO 138(3)°); O(5)– H(5*B*)···O(2) (1 – x, 2 – y, 1 – z) (O···O 3.102(4), H···O 2.47(3) Å, угол OHO 132(3)°), формируя таким образом супрамолекулярный 2D-слой (рис. 26).

Из ближайших композиционных и структурных аналогов соединения I можно отметить моноядерный комплекс  $[Zn(NO_3)_2(H_2O)_2(3-Bphz)_2]$ [48] и 1D-координационный полимер { $[Zn(NO_3)_2(H_2O)(3-Bphz)] \cdot H_2O$ }, [49]. В обоих случаях азиновый лиганд занимает два координационных места в октаэдрическом полиэдре металла, в то время как четыре другие позиции заняты молекулами воды и нитрат-анионами в соотношении 2 : 2 в первом случае и 1 : 2 во втором.

Изоморфные кристаллы соединений II и III различаются лишь катионом металла (рис. 3). Все компоненты занимают частные позиции: атом металла и иодид-анионы — на плоскости *m*, лиганд 3-Bphz — в центре инверсии. Тетраэдрическая конфигурация атома металла  $N_2I_2$  формируется двумя иодид-анионами и двумя 3-Bphz лигандами (Zn–I 2.544(2) и 2.557(3), Zn–N 2.086(9) Å, соответствующие валентные углы находятся в интервале 106.2(3)°–123.79(8)°). В комплексе III наблюдается незначительное увеличение соответствующих расстояний, диктуемое бо́льшим радиусом атома Cd в сравнении с Zn (табл. 2). Двугранный угол между плоскими координированными лигандами равен 72.09° в II и 76.26° в III.

Зигзагообразные координационные цепочки параллельны кристаллографической оси *b* кристаллов II, III (рис. 4), и расстояния между атомами металла, разделенными бидентатно-мостиковым лигандом 3-Bphz, равны 14.217 и 14.622 Å в II



**Рис. 2.** Фрагменты упаковки в соединении I: катионные координационные цепочки, окруженные внешнесферными лигандами 3-Bphz (a); объединение координационных цепочек в супрамолекулярный слой посредством внешнесферных нитрат-анионов; нефункциональные атомы водорода опущены (б).



Рис. 3. Координационное окружение атома цинка в соединении II с нумерацией базисных атомов.



Рис. 4. Фрагмент упаковки в соединениях II, III.

2019



Рис. 5. Координационное окружение атома кадмия в соединении IV с нумерацией базисных атомов.



Рис. 6. Упаковка координационных цепей в кристалле IV; нефункциональные атомы водорода опущены.

и III, соответственно. Антипараллельные цепочки пакуются вдоль кристаллографической оси *a* с существенным перекрыванием пиридиновых циклов лиганда, о чем свидетельствуют расстояния между центроидами этих циклов, равные 3.497 и 3.483 Å в II и III соответственно.

Кристаллы соединений II и III изоморфны ранее изученным соединениям Hg(II),  $[HgI_2(3-Bphz)_2]_n$  и  $[HgBr_2(3-Bphz)_2]_n$  [49, 50].

Структура соединения IV 1D-цепочечная. Атом кадмия и молекула воды занимают позиции на двойной оси, проходящей также через середину связи N–N лиганда 4-Bphz. Координационный полиэдр атома кадмия – пентагональная бипира-

КООРДИНАЦИОННАЯ ХИМИЯ том 45 № 1 2019

мида (рис. 5), в которой две аксиальные позиции занимают лиганды 4-Врhz, а в экваториальной плоскости располагаются молекула воды и два ацетат-аниона, координированные бидентатнохелатным образом. Расстояния Cd–N 2.413(2), Cd–O 2.332(3)–2.439(2) Å (табл. 2). Симметрия двойной оси лиганда 4-Врhz определяет его *твист*-форму с двугранным углом между пиридиновыми циклами, равным 71.64°.

В кристалле IV линейные координационные цепочки параллельны направлению [110] (рис. 6); расстояние между атомами металла, разделенными бидентатно-мостиковым лигандом 4-Bphz, равно 15.94 Å. Ассоциация цепочек



**Рис. 7.** ФЛ-спектры лигандов 3-Bphz, 4-Bphz (a), комплексов I–III (б) и IV, V (в).

в кристалле осуществляется посредством ВС О– H···O с участием молекул воды и ацетат-анионов: O(3)–H(3A)···O(2) (x + 1/2, y, 1 – z) (O···O 2.681(3), H···O 1.89 Å, угол OHO 150.9°), за счет чего формируется супрамолекулярный 2D-слой, параллельный кристаллографической плоскости ab. Между слоями в кристалле IV осуществляются только ван-дер-ваальсовые взаимодействия.

Ближайший композиционный аналог соединения IV — одномерный КП лестничного типа  $[Zn_2(4-Bphz)_2(CH_3COO)_4 \cdot 2(MeOH)_2]_n$ , в котором бипиридиновый и один из ацетатных лигандов выполняют бидентатно-мостиковую функцию [17].

Хотя оба основания Шиффа 3-Врһz и 4-Врһz, использованные в синтезе КП I-V, обладают расширенной сопряженной системой с включением ароматических фрагментов, что является необходимой предпосылкой для регистрации эмиссионных свойств [51], в литературе приведены ограниченные сведения лишь для соединений на основе лиганда 4-Bphz [17, 42, 43], что мотивировало наши исследования. Спектры фотолюминесценции (ФЛ) для исходных лигандов 3-Bphz и 4-Bphz (рис. 7а) и КП I–V (рис. 7б, 7в) регистрировали в твердом теле при комнатной температуре. Спектры ФЛ имеют сложную структуру, что указывает на суперпозицию нескольких излучательных процессов. Все КП демонстрируют свечение от умеренной (для I-III, рис. 76) до слабой (для IV, V, рис. 7в) интенсивности в сине-зеленой области спектра с максимумами излучения при 530 (I), 425 (II), 440 (III), 515 (IV) и 520 и 580 нм (V). Интенсивность излучения падает в ряду:  $III > I \gg II > IV > V$ . Одинаковые профили спектров для II и III коррелируют с идентичностью кристаллических структур этих соединений. В сравнении с соответствующими лигандами, спектры соединений I-IV демонстрируют нетривиальный для КП выраженный гипсохромный сдвиг максимумов излучения, что по аналогии с литературными данными [42] можно объяснить существенным вкладом дестабилизирующих  $\pi - \pi$ -стэкинг-взаимодействий между пиридиновыми кольцами соседних лигандов. Из-за закрытой d<sup>10</sup>-электронной конфигурации катионов Zn<sup>2+</sup> и Cd<sup>2+</sup>, наиболее вероятный механизм излучательных процессов базируется на внутрилигандных  $\pi^* - \pi$ -переходах.

## СПИСОК ЛИТЕРАТУРЫ

- 1. Janiak C. // Dalton Trans. 2003. P. 2781.
- RobinA.Y., Fromm K.M. // Coord. Chem. Rev. 2006. V. 250. P. 2127.
- Rowsell J.L.C., Yaghi O.M. // Microporous Mesoporous Mater. 2004. V. 73. P. 3.
- Croitor L., Coropceanu E., Masunov A. et al. // J. Phys. Chem. C. 2014. V. 118. P. 9217.
- Coropceanu E., Rija A., Lozan V. et al. // Cryst. Growth Des. 2016. V. 16. P. 814.
- 6. Croitor L., Coropceanu E., Chisca D. et al. // Cryst. Growth Des. 2014. V. 14. P. 3015.
- Coropceanu E.B., Croitor L., Wicher B. et al. // Inorg. Chim. Acta. 2009. V. 362. P. 2151.

- Croitor L., Coropceanu E., Petuhov O. et al. // Dalton Trans. 2015. V. 44. P. 7896.
- Chisca D., Croitor L., Coropceanu E. et al. // CrystEng-Comm. 2016. V. 18. P. 384.
- 10. Chen C.-L., Kang B.-S., Su C.-Y. // Aust. J. Chem. 2006.V. 59. P. 3.
- 11. *Robinson F., Zaworotko M.J.* // Chem. Commun.1995. P. 2413.
- Sailaja S., Rajasekharan M.V. // Inorg. Chem. 2000. V. 39. P. 4586.
- Du M., Bu X.-H., Huang Z. et al. // Inorg. Chem. 2003. V. 42. P. 552.
- Gao E.-Q., Cheng A.-L., Xu Y.-X. et al. // Cryst. Growth Des. 2005. V. 5. P. 1005.
- 15. MacGillivray L.R., Groeneman R.H., Atwood L. // J. Am. Chem. Soc. 1998. V. 120. P. 2676.
- Liu Y.-Y., Yi L., Ding B. et al. // Inorg. Chem. Commun. 2007. V. 10. P. 517.
- 17. Zhang G.-Q., Yang G.-Q., Ma J.-S. // Cryst. Growth Des. 2006. V. 6. P. 1897.
- Kumar D.K., Das A., Dastidar P. // Cryst. Growth Des. 2006. V. 6. P. 1903.
- 19. *Huang X.-C., Zhang J.-P., Chen X.-M.* // Cryst. Growth Des. 2006. V. 6. P. 1194.
- Oh M., Stern C.L., Mirkin C.A. // Inorg. Chem. 2005. V. 44. P. 2647.
- 21. Ciurtin D.M., Dong Y.-B., Smith M.D. et al. // Inorg. Chem. 2001. V. 40. P. 2825.
- 22. Diskin-Posner Y., Patra G.K., Goldberg I. // Dalton Trans. 2001. P. 2775.
- 23. *Gao E.-Q., Cheng A.-L., Xu Y.-X. et al.* // Inorg. Chem. 2005. V. 44. P. 8822.
- Withersby M.A., Blake A.J., Champness N.R. et al. // Inorg. Chem. 1999. V. 38. P. 2259.
- 25. Carlucci L., Ciani G., Proserpio D.M. // Dalton Trans. 1999. P. 1799.
- 26. Dong Y.-B., Smith M.D., Layland R.C., zur Loye H.-C. // Chem. Mater. 2000. V. 12. P. 1156.
- Yang W., Xiang Lin X. // Inorg. Chem. 2009. V. 48. № 23. P. 11067.
- Granifo J., Moreno Y., Garland M. T. et al. // J. Mol. Struct. 2010. V. 983. P. 76.
- 29. Jung O.-S., Park S.H., Kim K.M., Jang H.G. // Inorg. Chem. 1998.V. 37. P. 5781.
- Zaman M.B., Smith M.D., Ciurtin D.M., zur Loye H.-C. // Inorg. Chem. 2002. V. 41. P. 4895.

- 31. Chen C.-L., Goforth A.M., Smith M.D. et al. // Inorg. Chem. 2005.V. 44. P. 8762.
- 32. *Patra G.K., Glodberg I. //* Cryst. Growth Des. 2003.V. 3. P. 321.
- 33. Chen C.-L., Kang B.-S., Su C.-Y. // Aust. J. Chem. 2006.V. 59. P. 3.
- Dong Y.-B., Layland R.C., Smith M.D. et al. // Inorg. Chem. 1999. V. 38. P. 3056.
- Cui Y., Ngo H.L., Lin W. // Chem. Commun. 2003. P. 1388.
- Chen C.-T., Suslick K.S. // Coord. Chem. Rev. 1993. V. 128. P. 293.
- 37. Leong W.L., Vittal J.J. // Chem. Rev. 2011 V. 111. P. 688.
- Song Y., Yu L., Gao Y. et al. // Inorg. Chem. 2017. V. 56. P. 11603.
- Miyasaka H., Julve M., Yamashita M., Clérac R. // Inorg. Chem. 2009. V. 48. P. 3420.
- 40. Mahmoudi G., Gurbanov A.V., Rodríguez-Hermida S. et al. // Inorg. Chem. 2017. V. 56. P. 9698.
- 41. *Kennedy A.R., Waterson F.R.N.* // Acta Crystallogr. C. 2003. V. 59. P. o613.
- 42. Calahorro A.J., San Sebastian E., Salinas-Castillo A. et al. // CrystEngComm. 2015. V. 17. P. 3659.
- 43. *Manna B., Singh S., Ghosh S.K.* // J. Chem. Sci. 2014. V. 126. № 5. P. 1417.
- 44. Croitor L., Coropceanu E.B., Siminel A.V. et al. // Cryst. Growth Des. 2011. V. 11. P. 3536.
- 45. Croitor L., Coropceanu E.B., Masunov A.E. et al. // Cryst. Growth Des. 2014. V. 14. P. 3935.
- 46. Croitor L., Coropceanu E.B., Duca G. et al. // Polyhedron. 2017. V. 129. P. 9.
- 47. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112.
- Paulin S., Kelly P., Williams K.B. et al. // Acta Crystallogr. E. 2007. V.63. P. m420.
- Wang Q., Liang, B., Zhang J.-Y. et al. // Z. Anorg. Allg. Chem. 2007. V. 633. P. 2463.
- 50. Mahmoudi G., Morsali A., Hunter A.D., Zeller M. // CrystEngComm. 2007. V. 9. P. 704.
- Метелица А.В., Бурлов А.С., Безуглый С.О. и др. // Коорд. химия. 2006. Т. 32. № 12. С. 894 (Metelitsa A.V., Burlov A.S., Borodkina I.G., et al. // Russ. J. Coord. Chem. 2006. V. 32. № 12. Р. 858. doi 10.1134/ S1070328406120025).