УДК 541.67

КВАНТОВО-ХИМИЧЕСКОЕ ИЗУЧЕНИЕ МАГНИТНЫХ СВОЙСТВ ДИКАТИОННЫХ *о*-ХИНОНОВЫХ КОМПЛЕКСОВ ЖЕЛЕЗА С ПИРИДИНОФАНОВЫМИ ЛИГАНДАМИ

© 2019 г. А. Г. Стариков¹, М. Г. Чегерев¹, А. А. Старикова^{1, *}, В. И. Минкин¹

¹Научно-исследовательский институт физической и органической химии Южного федерального университета, Ростов-на-Дону, Россия *e-mail: alstar@ipoc.sfedu.ru Поступила в редакцию 28.03.2019 г. После доработки 04.04.2019 г. Принята к публикации 10.04.2019 г.

Проведено компьютерное моделирование дикатионных *о*-бензохиноновых комплексов железа с 2,11-диаза[3.3]-(2,6)пиридинофановыми лигандами. Основным состоянием изученных соединений являются низкоспиновые изомеры. Сильные антиферромагнитные обменные взаимодействия предсказаны между неспаренными электронами трехвалентного иона железа и анион-радикальной формы редокс-активного лиганда. Посредством варьирования заместителей в тетраазамакроциклическом основании выявлено соединение, способное претерпевать спин-кроссовер.

Ключевые слова: комплексы железа, тетраазамакроциклические лиганды, *о*-бензохинон, спин-кроссовер, магнитные свойства, квантово-химические расчеты, теория функционала плотности **DOI:** 10.1134/S0132344X19090081

Координационные соединения переходных металлов с радикальными лигандами благодаря их необычному магнитному поведению вызывают повышенный интерес специалистов в области координационной и металлоорганической химии [1, 2]. Рациональный дизайн таких структур открывает широкие перспективы при разработке линамических материалов. устройств хранения информации, записывающих элементов и квантовых компьютеров [3, 4]. Распространенным типом радикальных лигандов являются производные о-бензохинона, обладающие редокс-активными свойствами [5]. Комплексы переходных металлов с такими органическими молекулами способны демонстрировать перегруппировки по механизмам спин-кроссовера (СКО) [4] или валентной таутомерии (ВТ) [6-8], сопровождаюшиеся переключением спиновых состояний.

Существует несколько способов построения магнитно-активных координационных соединений с *о*-хинонами. Первый включает два редокслиганда и моно- или бидентатные основания с донорными атомами азота, достраивающими координационную сферу металла до октаэдра [9]. Такие комплексы представляют собой классические ВТ системы. Недавно был предложен другой структурный мотив, представляющий собой электронейтральный аддукт *бис*-хелата переходного металла с одним *о*-бензохиноновым лигандом, в котором реализуются термически инициированные спиновые перегруппировки [10, 11]. К третьему типу соединений, демонстрирующих магнитную бистабильность, относятся катионные комплексы, содержащие один редокс-активный лиганд и тетрадентатное макроциклическое азотсодержащее основание [12–14]. Сконструированные таким образом молекулы в зависимости от природы тетраазамакроцикла и металла могут проявлять как ВТ [12], так и СКО [13, 14].

Ранее был получен дикатионный ди-*трет*-бутил-*о*-бензохиноновый комплекс железа с N,N'-диметил-2,11-диаза[3.3]-(2,6)пиридинофаном, представляющий собой первый пример соединения, включающего низкоспиновый трехвалентный ион железа и семихиноновую (**SQ**) форму редокс-активного лиганда [15]. Интерес авторов статьи заключался в исследовании окисления, каталитической активности и способности к мимикрии под диоксигеназу этой системы. Данное соединение – структурный аналог монокатионного комплекса железа с N,N'-ди-*трет*-бутил-2,11-диаза[3.3]-(2,6)пиридинофаном, проявляющего СКО [14].

В настоящей работе с использованием методов квантовой химии изучены геометрические, энергетические и магнитные характеристики *о*-бензохиноновых комплексов железа I ($R_1 = CH_3$; $R_2 = H$), II ($R_1 = CH_3$; $R_2 = Cl$) и III ($R_1 = mpem$ -Bu; $R_2 = H$) с производными пиридинофана. Задача исследования состояла в выяснении влияния заместителей в редокс-активном и тетраазамакроциклическом лигандах на возможность протекания термически инициированного спинового перехода.

I–III ($R_1 = CH_3$, *mpem*-Bu; $R_2 = H$, Cl)

МЕТОДИКА РАСЧЕТОВ

Расчеты проволили с помошью программы Gaussian 09 [16] методом теории функционала плотности (DFT) с использованием функционала UTPSSh [17, 18] и расширенного базиса 6-311++G(d,p), сочетание которых корректно воспроизводит энергетические характеристики СКО в катионных комплексах [19–25]. Локализацию стационарных точек на поверхности потенциальной энергии (ППЭ) осуществляли путем полной оптимизации геометрии молекулярных структур с проверкой стабильности DFT волновой функции. Вычисление параметров обменного взаимодействия (*J*, см⁻¹) осуществляли в рамках формализма "нарушенной симметрии" (broken symmetry, BS) [26] с применением формулы, предложенной в [27]. Графические изображения молекулярных структур получали при помощи программы ChemCraft [28].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Согласно расчетам, основным состоянием соединения I ($R_1 = CH_3$; $R_2 = H$) является низкоспиновый изомер _{Ls}Fe^{III}SQ на дублетной ППЭ, включающий трехвалентный ион металла и SQ-форму редокс-активного лиганда (рис. 1, табл. 1). Вычисленные длины связей в координационном узле и бензохиноновом кольце хорошо коррелируют со значениями, установленными при помощи РСА [15]. В обсуждаемом электронном изомере (электромере [29]) предсказаны сильные обменные взаимодействия антиферромагнитного характера $(J = -1603 \text{ см}^{-1}, \text{ см. табл. 2}),$ что также находится в согласии с экспериментальными данными, указывающими на диамагнетизм комплекса [15]. Значительное перекрывание орбиталей атомов железа и кислорода (рис. 2) приводит к уменьшению

количества спиновой плотности на металле и редокс-активном лиганде в состоянии BS (табл. 1).

На секстетной ППЭ локализован изомер _{нs}Fe^{III}SQ, содержащий высокоспиновый трехвалентный ион железа и семихинон. Как следует из ланных, приведенных в табл. 1, количество спиновой плотности на атоме металла составляет 4.23, что меньше значения, ожидаемого для пяти неспаренных электронов. В то же время этот параметр на редокс-активном лиганде равен 1.38 (табл. 1). Следовательно, в высокоспиновом изомере _{ну}Fe^{III}SQ имеет место перенос спиновой плотности с иона металла на лонорные атомы о-бензохинона и N,N'-диметил-2,11-диаза[3.3]-(2,6)пиридинофана (рис. 1). Расчет состояния BS и последующий анализ обменных взаимодействий указывает на сильное антиферромагнитное связывание, приводящее, как и в низкоспиновом изомере _{LS}Fe^{III}SQ, к уменьшению q_s^M и q_s^L (табл. 1). Вычисленная разность энергий между электромерами комплекса I ($R_1 = CH_3$; $R_2 = H$) превыша-

мерами комплекса I ($R_1 = CH_3$; $R_2 = H$) превышает значения, характерные для СКО комплексов железа [1], и не позволяет ожидать протекания в нем термически инициированного спинового перехода (табл. 2).

Известно [13], что введение электроноакцепторных заместителей в редокс-активный фрагмент облегчает протекание термически индуцированного СКО в о-семихиноновых комплексах железа с тетраазамакроциклическими лигандами. С целью поиска соединения, способного претерпевать спиновые переходы на ионе Fe³⁺, изучено производное II ($R_1 = CH_3$; $R_2 = Cl$). Расчеты показали, что хлорные заместители в радикальном лиганде не оказывают существенного влияния на энергетические и магнитные характеристики электромеров данного комплекса (табл. 1, 2, рис. 1). Дестабилизация изомера _{HS}Fe^{III}SQ по отношению к низкоспиновой структуре LSFe^{III}SQ на 14.1 ккал/моль свидетельствует о термической недостижимости высокоспинового состояния. В электромере на дублетной ППЭ ожидаются сильные антиферромагнитные обменные взаимодействия ($J = -1630 \text{ см}^{-1}$), приводящие к диамагнетизму комплекса II ($R_1 =$ = CH₃; R₂ = Cl) в широком диапазоне температур.

Ранее экспериментально [14] и теоретически [21, 22] была показана способность объемистых заместителей при донорных атомах тетраазамакроциклических лигандов затруднять формирование низкоспинового изомера, характеризующегося более короткими координационными связями. Этот эффект приводит к сокращению разности энергий между электромерами до величин, благоприятствующих протеканию термически управляемого СКО. С учетом вышеизложенного, изучен комплекс III ($R_1 = mpem$ -Bu; $R_2 = H$). Расчеты показали, что замена метильных заместителей

_{HS}Fe^{III}SQ

_{HS}Fe^{III}SQ

Рис. 1. Геометрические характеристики и распределение спиновой плотности в изомерах дикатионных комплексов I– III ($R_1 = CH_3$, *mpem*-Bu; $R_2 = H$, Cl), рассчитанные методом DFT UTPSSh/6-311++G(d,p). Атомы водорода опущены для ясности, длины связей даны в ангстремах, все структуры имеют заряд +2, cutoff = 0.02.

СТАРИКОВ и др.

$R_2 = 11, C1$, pacequitathese metodom DFT CTT SSI/0-STT + $G(u,p)$						
Изомер	S	Е, ат. ед.	S^2	$q_{ m s}^{ m M}$	$q_{ m s}^{ m L}$	
$I(R_1 = CH_3; R_2 = H)$						
_{LS} Fe ^{III} SQ	2/2	-2485.93717	2.042	1.13	1.02	
BS	0	-2485.94721	0.667	0.72	-0.74	
_{HS} Fe ^{III} SQ	6/2	-2485.91384	12.014	4.23	1.38	
BS	4/2	-2485.92421	6.662	4.04	-0.47	
$II (R_1 = CH_3; R_2 = Cl)$						
_{LS} Fe ^{III} SQ	2/2	-4324.40185	2.043	1.07	1.05	
BS	0	-4324.41189	0.691	0.74	-0.75	
_{HS} Fe ^{III} SQ	6/2	-4324.38017	12.015	4.14	1.40	
BS	4/2	-4324.38940	6.679	4.03	-0.47	
III ($R_1 = mpem$ -Bu; $R_2 = H$)						
_{LS} Fe ^{III} SQ	2/2	-2721.88466	2.062	1.11	1.06	
BS	0	-2721.89029	0.752	0.78	-0.79	
_{HS} Fe ^{III} SQ	6/2	-2721.86755	12.014	4.03	1.49	
BS	4/2	-2721.87801	6.649	3.84	-0.43	

Таблица 1. Спин (*S*), полная энергия (*E*), значение оператора квадрата спина (*S*²), спиновая плотность на ионе железа (q_s^M) и редокс-активном лиганде (q_s^L) в изомерах дикатионных комплексов I–III ($R_1 = CH_3$, *mpem*-Bu; $R_2 = H$, Cl), рассчитанные методом DFT UTPSSh/6-311++G(d,p)

при атомах азота пиридинофанового лиганда на *трет*-бутильные группы сопровождается изменениями геометрических и энергетических характеристик электромеров (табл. 1, 2, рис. 1). Так, расстояния Fe—N увеличиваются на 0.1 Å по сравнению со значениями, вычисленными для изоме-

Таблица 2. Спин (*S*), относительная энергия с учетом обменных взаимодействий (ΔE) и величина параметра обменных взаимодействий (*J*) в изомерах дикатионных комплексов I–III ($R_1 = CH_3$, *mpem*-Bu; $R_2 = H$, Cl), рассчитанные методом DFT UTPSSh/6-311++G(d,p)

Изомер	S	$\Delta E^*,$ ккал/моль	J, cm ⁻¹			
$I(R_1 = CH_3; R_2 = H)$						
_{LS} Fe ^{III} SQ	2/2	0.0	-1603			
_{HS} Fe ^{III} SQ	6/2	14.4	-425			
$II (R_1 = CH_3; R_2 = Cl)$						
_{LS} Fe ^{III} SQ	2/2	0.0	-1630			
_{HS} Fe ^{III} SQ	6/2	14.1	-380			
III ($R_1 = mpem$ -Bu; $R_2 = H$)						
_{LS} Fe ^{III} SQ	2/2	0.0	-943			
_{HS} Fe ^{III} SQ	6/2	7.7	-428			

 * ΔE рассчитаны относительно низкоспинового изомера комплекса.

ров комплекса I ($R_1 = CH_3; R_2 = H$). Это приводит к понижению устойчивости низкоспиновой структуры и сужению энергетической щели между электромерами _{LS}Fe^{III}SQ и _{HS}Fe^{III}SQ до 7.7 ккал/моль, что делает возможным реализацию спинового перехода на ионе железа. Обменные взаимодействия в соединении III ($R_1 = mpem$ -Bu; $R_2 = H$), как и в рассмотренных выше системах, носят сильный антиферромагнитный характер. Следовательно, ожидаемая перегруппировка _{LS}Fe^{III}SQ \rightleftharpoons _{HS}Fe^{III}SQ будет сопровождаться переходом комплекса из диамагнитного (S = 0) в парамагнитное квинтетное (S == 4/2) состояние, что позволяет рассматривать комплекс III ($R_1 = mpem$ -Bu; $R_2 = H$) в качестве кандидата для дизайна молекулярных переключателей.

Таким образом, посредством квантово-химического моделирования дикатионных *о*-семихиноновых комплексов железа с производными пиридинофана установлено, что электроноакцепторные группы в радикальном лиганде не оказывают заметного влияния на свойства изученных координационных соединений, в то время как варьирование заместителей при атомах азота тетрадентатного основания сопровождается изменением геометрических и энергетических характеристик изомеров. Между спинами неспаренных электронов трехвалентного иона железа и анион-радикальной формы *о*-хинона предсказаны сильные

Рис. 2. Форма магнитной орбитали изомера _{LS}Fe^{III}SQ комплекса I ($R_1 = CH_3$; $R_2 = H$), согласно расчетам методом DFT UTPSSh/6-311++G(d,p). Атомы водорода опущены для ясности, cutoff = 0.036.

антиферромагнитные обменные взаимодействия, приводящие к диамагнетизму основного состояния. Предложен дикатионный *о*-бензохиноновый комплекс железа с N,N'-ди-*трет*-бутил-2,11-диаза[3.3]-(2,6)пиридинофаном, способный проявлять термически инициированный спин-кроссовер. Выполненный ранее синтез координационного соединения I ($R_1 = CH_3$; $R_2 = H$) [15] позволяет ожидать получения его аналога, включающего *трет*-бутильные группы при донорных атомах азота.

Авторы заявляют об отсутствии конфликта интересов.

ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке Минобрнауки России (гос. задание № 4.1774.2017/4.6).

СПИСОК ЛИТЕРАТУРЫ

- 1. Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds / Ed. Hicks R.G. Chichester: John Wiley & Sons, Ltd., 2010. 606 p.
- Demir S., Jeon I.-R., Long J.R., Harris T.D. // Coord. Chem. Rev. 2015. V. 289–290. P. 149.
- 3. Sato O. // Nature Chem. 2016. V. 8. № 7. P. 644.
- Spin-Crossover Materials: Properties and Applications / Ed. Halcrow M.A. Chichester: John Wiley & Sons, 2013. 564 p.
- Shultz D.A. // Magnetism: Molecules to Materials II / Eds. Miller J.S., Drillon M. N.Y.: Wiley, 2001. P. 281.
- Tezgerevska T., Alley K.G., Boskovic C. // Coord. Chem. Rev. 2014. V. 268. P. 23.
- Золотухин А.А., Бубнов М.П., Черкасов В.К., Абакумов Г.А. // Коорд. химия. 2018. Т. 44. № 2. С. 123 (Zolotukhin A.A., Bubnov M.P., Cherkasov V.K. et al. //

Russ. J. Coord. Chem. 2018. V. 44. № 4. P. 272). https://doi.org/10.1134/S1070328418040085

- 8. Protasenko N.A., Poddel'sky A.I., Bogomyakov A.S. et al. // Inorg. Chim. Acta. 2019. V. 489. P. 1.
- Buchanan R.M., Pierpont C.G. // J. Am. Chem. Soc. 1980. V. 102. P. 4951.
- Старикова А.А., Минкин В.И. // Успехи химии. 2018. Т. 87. № 11. С. 1049 (Starikova A.A., Minkin V.I. // Russ. Chem. Rev. 2018. V. 87. № 11. Р. 1049).
- Ивахненко Е.П., Кощиенко Ю.В., Князев П.А. и др. // Коорд. химия. 2016. Т. 42. № 4 С. 221 (Ivakhnenko E.P., Koshchienko Y.V., Knyazev P.A. et al. // Russ. J. Coord. Chem. 2016. V. 42. № 4. Р. 252). https://doi.org/10.1134/S1070328416040011
- 12. *Bencinia A., Caneschia A., Carbonera C. et al.* // J. Mol. Struct. 2003. V. 656. № 1–3. P. 141.
- 13. *Floquet S., Simaan A.J., Rivière E. et al.* // Dalton Trans. 2005. № 9. P. 1734.
- 14. *Graf M., Wolmershäuser G., Kelm H. et al.* // Angew. Chem. Int. Ed. 2010. V. 49. № 5. P. 950.
- 15. *Koch W.O., Schünemann V., Gerdan M. et al.* // Chem. Eur. J. 1998. V. 4. № 7. P. 1255.
- 16. *Frisch M.J., Trucks G.W., Schlegel H.B. et al.* Gaussian-09. Revision E. 01. Wallingford: Gaussian, 2013.
- 17. *Tao J.M., Perdew J.P., Staroverov V.N., Scuseria G.E.* // Phys. Rev. Lett. 2003. V. 91. № 14. P. 146401.
- Staroverov V.N., Scuseria G.E., Tao J., Perdew J.P. // J. Chem. Phys. 2003. V. 119. № 23. P. 12129.
- 19. Bannwarth A., Schmidt S.O., Peters G. et al. // Eur. J. Inorg. Chem. 2012. № 16. P. 2776.
- 20. *Cirera J., Paesani F. //* Inorg. Chem. 2012. V. 51. № 15. P. 8194.
- 21. Стариков А.Г., Старикова А.А., Минкин В.И. // Докл. РАН. 2016. Т. 467. № 3. С. 300. (Starikov A.G., Starikova A.A., Minkin V.I. // Dokl. Chem. 2016. V. 467. № 1. Р. 83).
- 22. Starikova A.A., Chegerev M.G., Starikov A.G., Minkin V.I. // Comp. Theor. Chem. 2018. V. 1124. P. 15.
- 23. Старикова А.А., Минкин В.И. // Коорд. химия. 2018. Т. 44. № 4. С. 229 (Starikova А.А., Minkin. V.I. // Russ. J. Coord. Chem. 2018. V. 44. № 8. Р. 483). https://doi.org/10.1134/S1070328418080079
- 24. Стариков А.Г., Старикова А.А., Чегерев М.Г., Минкин В.И. // Коорд. химия. 2019. Т. 45. № 2. С. 92 (Starikov A.G., Starikova А.А., Chegerev M.G., Minkin V.I. // Russ. J. Coord. Chem. 2019. V. 45. № 2. Р. 105). https://doi.org/10.1134/S1070328419020088
- Старикова А.А., Метелица Е.А., Минкин В.И. // Коорд. химия. 2019. Т. 45. № 6. 350. (Starikova А.А., Metelitsa E.A., Minkin V.I. // Russ. J. Coord. Chem. 2019. V. 45. № 6. Р. 411. https://doi.org/10.1134/S1070328419060095
- Noodleman L. // J. Chem. Phys. 1981. V. 74. № 10. P. 5737.
- 27. *Shoji M., Koizumi K., Kitagawa Y. et al.* // Chem. Phys. Lett. 2006. V. 432. № 1–3. P. 343.
- 28. Chemcraft. Version 1.7. 2013. http://www.chemcraftprog.com.
- 29. Bally T. // Nature Chem. 2010. V. 2. № 3. P. 165.