УДК 548.736+546.811

ОБРАЗОВАНИЕ НОВОГО НЕОБЫЧНОГО ПОЛИМЕРНОГО СОЕДИНЕНИЯ КАДМИЯ С МОСТИКОВЫМИ ТИОЦИАНАТ-ИОНАМИ

© 2019 г. Ю. В. Кокунов^{1, *}, В. В. Ковалев^{1, **}, М. А. Кискин¹, Г. А. Разгоняева¹, И. Л. Еременко¹

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия

*e-mail: kokunov@igic.ras.ru **e-mail: kovavlad@igic.ras.ru Поступила в редакцию 29.05.2019 г. После доработки 26.06.2019 г. Принята к публикации 08.07.2019 г.

При взаимодействии тиоцианата кадмия с 2-(метиламино)пиридином (2-Мар) в растворе этилового спирта получен новый необычный координационный полимер [Cd₂(NCS)₄(2-Map)₃]. Определена его структура (CIF file CCDC № 1917586). Кристаллы триклинные, пр. гр. *P*I. Соединение – координационный полимер. Элементарное звено полимера – биядерный фрагмент [Cd₂ (NCS)₄(2-Map)₃], в котором атомы Cd связаны µ-NCS -мостиками. Атом Cd(1) достраивает свое окружение (CdS₂N₄) до октаэдрического координацией по апикальным положениям двумя пиридиновыми атомами N молекул 2-Мар. Координационное окружение атома Cd(2) (CdS₂N₃) – тригональная бипирамида, дополненная пиридиновым атомом азота молекулы 2-Мар. Некоординированные атомы азота NH-групп участвуют во внутрицепочечных H-связях с атомами азота NCS -групп. Получен спектр люминесценции синтезированного соединения.

Ключевые слова: координационный полимер, кадмий тиоцианат, 2-метиламинопиридин, структура **DOI:** 10.1134/S0132344X19120041

Структурное разнообразие и потенциальное применение в оптике, электрохимии, магнитных материалах, катализе продолжают вызывать большой интерес к изучению строения и синтеза новых модифицированных органическими молекулами галогенидов и тиоцианатов металлов [1]. Одним из методов модификации является координация N-гетероциклов к иону металла [2]. Кадмий один из наиболее используемых металлов при получении полиядерных соединений различного типа. Его КЧ и стереохимия изменяются от 4 до 8 и, как правило, определяются природой лигандов.

Большое внимание в последние два десятилетия привлекают тиоцианатные соединения кадмия. Как известно, тиоцианат-ион является амбидентатным лигандом и может присоединяться к ионам металлов (например, Zn, Cd, Hg) атомом N или S или тем и другим одновременно, проявляя мостиковые свойства [3]. Многие из соединений кадмия находят применение для хранения газов, создания сенсоров, в получении материалов с нелинейными оптическими свойствами, в люминесценции. В последние годы исследования сфокусированы на создании галогенидных и тиоцианатных полиядерных соединений металлов с N-гетероциклическими молекулами. Пиридин и его некоторые производные обычно не люминесцируют, но координационные полимеры с их участием, особенно с кадмием, проявляют люминесцентные свойства. Ионы кадмия способны влиять на длину волны эмиссии координированных органических соединений, что делает их хорошими кандидатами для люминесцентных материалов [4–6].

Известно, что стерические и электронные эффекты монодентатных органических лигандов оказывают модифицирующее действие на полимерные структуры тиоцианатов и их свойства [7, 8]. В большинстве случаев в тиоцианатных комплексах кадмия проявляется тенденция к образованию двойных NCS -мостиков. Монодентатные лиганды занимают две транс-позиции в октаэдрическом окружении иона Cd^{2+} . В ряде работ были представлены получение и строение тиоцианатных комплексов Cd с N-гетероциклическими органическими молекулами. Их строение зависит от соотношения Cd(NCS)₂ : N-гетероцикл. При соотношении 1 : 4 реализуются молекулярные комплексы с октаэдрическим окружением иона металла Cd(NCS)₂(N-гетероцикл)₄ [9-12]. При соотношении 1 : 2 образуются полимерные цепочки с двойными NCS-мостиками и октаэдрическим окружением ионов Cd²⁺, состоящих из четырех мостиковых NCS-групп и два нейтральных N-донорных лигандов. При этом для комплексов Cd(NCS)₂(Py)₂ и Cd(NCS)₂(4-EtPy)₂ отмечено образование трех разных форм – стабильной и двух метастабильных. Их различие заключается в способе координации тиоцианат-иона: 1) атомы S и N находятся в *транс*-положении; 2) все эти же атомы находятся в иис-положении; 3) эти же атомы занимают цис-цис-транс-позиции. Первая и вторая формы – метастабильные [10-12]. При уменьшении соотношения $Cd(NCS)_2$: N-гетероцикл до 1:1 образуется соединение иного строения — $Cd(NCS)_2(Py)$. Октаэдрический ион Cd^{2+} координирован двумя N-атомами и тремя S группы NCS и одним N-гетероциклом.

Введение в пиридиновое кольцо в α-положение донорного заместителя NH₂ влияет на геометрические и электронные параметры лиганда, что может проявляться в изменении строения полиядерных соединений с его участием. Кроме того, появляется способность таких лигандов к образованию Н-связей [13, 14]. Примеры использования таких лигандов в координационных соединениях кадмия крайне редки. Известно лишь одно соединение тиоцианата кадмия с α-аминопиридином, в котором два органических лиганда монодентатно присоединены к иону Cd²⁺ [15]. Получено соединение нитрата кадмия с α-аминопиридином [16]. При взаимодействии пивалата кадмия с 2-амино-4-метилпиридином выделен моноядерный комплекс с двумя монодентатными производными пиридина [14]. Исследовано взаимодействие 2-амино-5-нитропиридина с хлоридом и бромидом кадмия. В обоих случаях получены координационные полимеры с мостиковыми галогенид-ионами и монодентатно присоединенными лигандами за счет пиридинового атома азота [14, 17].

Основной интерес к тиоцианатным координационным полимерам 3*d*-металлов, которые за счет мостиков NCS-групп образуют одно- и двухмерные сетки, связан с исследованием влияния химических и структурных особенностей на магнитные свойства этих соединений. Однако получение мостиковых структур для ряда 3*d*-металлов иногда труднодостижимо. Поэтому изучение систем с тиоцианатами Zn и Cd может помочь пониманию особенностей химического состава и строения тиоцианатных полимеров металлов.

Мы исследовали взаимодействие тиоцианата кадмия с 2-(метиламино)пиридином (**2-Мар**), в котором в положении 2 находится группа

NHCH₃. Получен координационный полимер $[Cd_2(NCS)_4(2-Map)_3]_n$ (I), определена его структура и изучены фотолюминесцентные свойства.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза нового соединения использовали $Cd(NO_3)_2 \cdot 4H_2O$ (>99%), 2-(метиламино)пиридин (99%), NH_4NCS ("х. ч.") и этанол (96%).

ИК-спектр твердого образца регистрировали на ИК спектрофотометре с Фурье-преобразованием Perkin-Elmer Spectrum 65 методом нарушенного полного внутреннего отражения (НПВО) в интервале частот 400–4000 см⁻¹.

Элементный анализ выполняли на автоматическом C,H,N,S-анализаторе Carlo Erba EA 1108.

Синтез І. Раствор $Cd(NO_3)_2 \cdot 4H_2O$ (0.95 г, 3.1 ммоль) в 6 мл этанола нагревали до 35-40°С и добавляли при перемешивании раствор 2-Мар (0.33 г, 3.1 ммоль) в 4 мл этанола. Выпавший в результате реакции осадок не исследовали, а полученную суспензию сразу использовали для синтеза тиоцианатного комплекса. Для этого раствор NH₄NCS (0.47 г, 6.2 ммоль) в 5 мл этанола нагревали до 35-40°C и постепенно добавляли при перемешивании к суспензии. Через 10 мин после полного растворения твердой фазы полученный прозрачный раствор выдерживали при комнатной температуре в течение 2 сут в условиях медленного испарения растворителя. Выделившиеся призматические кристаллы отделяли декантацией, промывали этанолом и высушивали на воздухе. По данным элементного анализа кристаллы отвечали комплексу кадмия состава [Cd₂(NCS)₄(2-Map)₃]. Выход 35%.

Найдено, %: N 17.33; C 33.64; H 2.75; S 15.31. Для C₂₂H₂₄N₁₀S₄Cd₂ вычислено, %: N 17.86; C 33.67; H 3.08; S 16.31.

ИК-спектр (v, см⁻¹): 3415 сл. (v_{as}(N–H(NH₂))), 3351 сл (v_s(N–H)), 2993 о.сл, 2927 о.сл, 2857 о.сл. и 2817 о.сл. (v_{sym}(С–H)), 2124 ср, 2095 с и 2072 с (v_{as}(NCS)), 1664 сл (δ (N–H)), 1611 с (v(С=N и С=С)), 1571 с и 1527 ср (v_{as}(N–H)), 1460 с, 1448 с (v(С=N и С=С)), 1419 с, 1335 ср, 1288 с (δ (С–H)), 1165 ср и 1073 сл (v(С=N)), 994 сл, 927 о.сл (δ (С–H)), 763 с, 738 ср, 637 сл, 508 ср.

РСА монокристалла соединения I выполнен на дифрактометре Bruker SMART APEX II (CD-детектор, Mo K_{α} , $\lambda = 0.71073$ Å, графитовый монохроматор) [18]. Введена полуэмпирическая поправка

Рис. 1. Фрагмент полимерной цепочки координационного соединения $[Cd_2(NCS)_4(2-Map)_3]$. Коды симметрии: (*A*) *x*, -1 + y, *z*: (*B*) *x*, 1 + y, *z*.

на поглощение [19]. Структура расшифрована прямыми методами и уточнена полноматричным МНК в анизотропном приближении для всех неводородных атомов. Атомы водорода при атомах углерода органических лигандов генерированы геометрически и уточнены в модели "наездника". Учтено разупорядочение одной из координированных молекул 2-Мар по двум позициям с заселенностями 0.715(3) и 0.285(3) с использованием функций ограничения DFIX и FLAT. Расчеты проведены по комплексу программ SHELX-2014 [20]. Кристаллографические параметры и детали уточнения структуры I: M = 781.55, размер бесцветного кристалла $0.20 \times 0.10 \times 0.07$ мм, T = 150(2) K, триклинная сингония, пр. гр. $P\overline{1}$, a = 8.87830(10), $b = 11.4684(2), c = 15.8755(3) \text{ Å}, \alpha = 105.7300(10)^{\circ},$ $\beta = 101.1300(10)^\circ$, $\gamma = 103.6360(10)^\circ$, V = 1453.88(4) Å³, Z = 2, ρ (выч.) = 1.785 г/см³, $\mu_{Mo} = 1.782$ мм⁻¹, $\theta =$ $= 1.93^{\circ} - 30.57^{\circ}, -11 \le h \le 12, -16 \le k \le 16, -22 \le l \le 22.$ Всего 18167 отражений, независимых 8834, отражений с $I \ge 2\sigma(I)$ 7613, $R_{int} = 0.023$, $T_{min}/T_{max} =$ $= 0.600/0.746, S = 0.957, R_1 = 0.0497, wR_2 = 0.0928$ (для всех данных), $R_1 = 0.0407$, $wR_2 = 0.0883$ (для $I \ge 2\sigma(I)$, $\Delta \rho_{\min} / \Delta \rho_{\max} = -1.210/2.101 \ e \ Å^{-3}$.

Полный набор рентгеноструктурного эксперимента для I депонирован в Кембриджском банке структурных данных (№ 1917586; deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk/ data_request/cif).

РФА мелкокристаллического образца I выполнен на дифрактометре Bruker D8 Advance (Cu K_{α} , Ni-фильтр, LYNXEYE детектор, геометрия на отражение. Спектры возбуждения и эмиссии твердых образцов $[Cd_2(NCS)_4(2-Map)_3]$ регистрировали при комнатной температуре в видимом диапазоне спектра с использованием спектрометра Perkin-Elmer LS-55.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Координационное соединение I представляет собой 1D-координационный полимер. Элементарное звено полимера – биядерный фрагмент [Cd₂(NCS)₄(2-Map)₃], в котором атомы Cd связа-NCS-мостиками (Cd…Cd 5.877, Cd-N ны 2.321(3), 2.326(3), Cd-S 2.5814(9), 2.7016(11) Å) (рис. 1). Фазовая чистота образца подтверждена методом РФА (рис. 2). Между собой биялерные фрагменты связаны в цепочку парами µ-NCS-мостиков (Cd···Cd 5.704, Cd-N 2.331(3), 2.366(3), Cd—S 2.5965(10), 2.7379(11) Å). Атом Cd(1) достраивает свое окружение (CdS₂N₄) до октаэдрического координацией по апикальным положениям двумя пиридиновыми атомами молекул 2-Мар (Cd-N 2.366(3), 2.375(3) Å). Координационное окружение атома Cd(2) (CdS_2N_3) – тригональная бипирамида ($\tau = 0.79$) [20] и дополнено пиридиновым атомом азота молекулы 2-Мар (Cd-N 2.266(3) Å). Некоординированные атомы азота NH-групп участвуют во внутрицепочечных Hсвязях с атомами азота NCS-групп (NH…N) 3.071-3.173 Å, углы N-H…N 131°-150°) (рис. 1). Эти данные сравнимы с результатами для комплекса Cd(HPz)₂(NCS)₂, в котором NH-группа также находится в положении 2 к координированному атому N (NH…N 3.150 Å, углы NHN 131°)

Рис. 2. Порошковая рентгенограмма $[Cd_2(NCS)_4(2-Map)_3]$ (1 – эксперимент, 2 – расчетная диффрактограмма, $\lambda = 1.541$ Å).

[21]. Основные длины связей и углов в соединении I приведены в табл. 1.

Полученный координационный полимер I имеет необычную структуру, включающую одновременно 5- и 6-кординационные ионы кадмия. Как видно, уменьшение соотношения Cd : L c 1 : 2 до1 : 1.5 приводит к заметной структурной перестройке. У 6-координационного иона кадмия имеется четыре мостиковых NCS-группы, координирующие ион кадмия атомами N и S с *транс*-расположением одноименных атомов. Две *транс*-позиции в октаэдре занимают пиридиновые атомы азота. В 5-координационном фрагменте ион кад-

Рис. 3. Спектры возбуждения ($\lambda_{BO36} = 380$ нм (1)) и эмиссии ($\lambda_{9M} = 290$ (2)) твердых образцов [Cd₂(NCS)₄(2-Map)₃] при комнатной температуре.

мия также имеет четыре мостиковые NCS-группы, однако только атомы азота находятся в *транс*-позиции, а угол SCdS имеет величину 126°. Расстояния Cd–N(NCS) в октаэдре 2.326–2.366 Å, а в 5-координационном фрагменте эти значения имеют близкие величины 2.32-2.331 Å. В тригональной бипирамиде экваториальную плоскость занимают два мостиковых атома S(NCS) и атом N(2-Map), в апикальных позициях находятся атомы N мостиковых NCS-групп. Расстояния Cd-S в октаэдрическом фрагменте равны 2.7016 и 2.7379 Å, а в тригональной бипирамиде они значительно короче (Cd-S 2.581 и 2.596 Å). В [11] при анализе строения изомеров [Cd(NCS)₂(Py)₂] было отмечено, что в одном из них наблюдается разворот пиридиновых колец относительно друг друга. В нашем соединении такого эффекта не обнаружено, что, по-видимому, связано с образованием H-связей N−H…N, стабилизирующих структуру.

Исследования люминесцентных свойств твердого $[Cd_2(NCS)_4(2-Map)_3]$ при комнатной температуре показали, что спектр возбуждения при длине волны 380 нм имеет полосы 237, 253, 279, 290 и 345 нм (рис. 3). В спектре эмиссии при длине волны возбуждения 290 нм наблюдается широкая полоса с максимумом при 380 нм и плечами при 398, 420 и 444 нм и полосы меньшей интенсивности при 487, 530 и 546 нм. Согласно данным [5], координационные соединения кадмия с пиридиновыми лигандами показывают интенсивную флуоресценцию, обычно связываемую с $n-\pi$ -переходами ароматического кольца органического лиганда при его координации к иону кадмия.

Таблица 1. Основные длины связей (Å) и валентные углы (град) в І

Связь	d, Å	Угол	ω, град
Cd(1)-N(8)	2.326(3)	N(8)Cd(1)N(9)	178.45(14)
Cd(1)-N(9)	2.366(3)	N(8)Cd(1)N(3)	84.06(14)
Cd(1)-N(3)	2.366(3)	N(9)Cd(1)N(3)	94.74(14)
Cd(1)–N(1)	2.375(3)	N(8)Cd(1)N(1)	88.46(14)
$Cd(1) - N(3X)^*$	2.403(7)	N(9)Cd(1)N(1)	92.91(13)
Cd(1) - S(1)	2.7016(11)	N(3)Cd(1)N(1)	165.95(11)
Cd(1)–S(4)	2.7379(11)	N(8)Cd(1)N(3)	105.4(2)
Cd(2)–N(5)	2.266(3)	N(9)Cd(1)N(3X)	73.1(2)
Cd(2)–N(7)	2.321(3)	N(1)Cd(1)N(3X)	164.3(2)
Cd(2)-N(10)	2.331(3)	N(8)Cd(1)S(1)	92.46(8)
Cd(2)–S(2)	2.5814(9)	N(9)Cd(1)S(1)	86.77(9)
Cd(2)–S(3)	2.5965(10)	N(3)Cd(1)S(1)	99.38(9)
N(1)–C(1)	1.341(5)	N(1)Cd(1)S(1)	92.79(8)
N(1)-C(5)	1.349(5)	N(3A)Cd(1)S(1)	79.7(2)
N(2)–C(1)	1.362(6)	N(8)Cd(1)S(4A)**	90.91(8)
N(2)-C(6)	1.447(6)	N(9)Cd(1)S(4A)	89.89(9)
N(3)–C(11)	1.370(5)	N(3)Cd(1)S(4A)	82.16(8)
N(3)–C(7)	1.371(5)	N(1)Cd(1)S(4A)	86.09(8)
N(4)-C(7)	1.348(5)	N(3A)Cd(1)S(4A)	100.6(2)
N(4)–C(11)	1.424(7)	S(1)Cd(1)S(4)	176.42(3)
N(3A)–C(11X)	1.386(7)	N(5)Cd(2)N(7)	90.66(11)
N(3A)-C(7X)	1.384(7)	N(5)Cd(2)N(10)	95.52(11)
N(4A)-C(7X)	1.350(8)	N(7)Cd(2)N(10)	173.80(12)
N(4 <i>A</i>)–C(12 <i>X</i>)	1.34(3)	N(5)Cd(2)S(2)	124.34(7)
N(5)-C(17)	1.353(4)	N(7)Cd(2)S(2)	92.55(8)
N(5)-C(13)	1.361(4)	N(10)Cd(2)S(2)	84.40(8)
N(6)-C(13)	1.350(5)	N(5)Cd(2)S(3 <i>B</i>)***	108.93(7)
N(6)-C(18)	1.453(5)	N(7)Cd(2)S(3 <i>B</i>)	82.39(9)
N(7)-C(19)	1.150(4)	N(10)Cd(2)S(3 <i>B</i>)	95.08(8)
N(8)-C(20)	1.159(5)	S(2)Cd(2)(3 <i>B</i>)	126.57(4)
N(9)-C(21)	1.151(5)	C(19)S(1)Cd(1)	98.83(13)
N(10)-C(22)	1.153(4)	C(20)S(2)Cd(2)	100.34(13)
C(19)–S(1)	1.641(3)	C(21)S(3)Cd(2 <i>B</i>)	100.05(12)
C(20)-S(2)	1.644(4)	C(22)S(4)Cd(1A)	94.96(12)
C(21)–S(3)	1.643(3)	N(7)C(19)S(1)	178.8(4)
C(22)-S(4)	1.635(4)	N(8)C(20)S(2)	177.8(4)
		N(9)C(21)S(3)	178.6(3)
		N(10)C(22)S(4)	179.5(3)

* Индекс *X* обозначает атомы разупорядоченной формы молекулы 2-Мар. ** Индекс *A* обозначает атомы с симметрией *x*, *y* – 1, *z*. *** Индекс *B* обозначает атомы с симметрией *x*, *y* + 1, *z*.

Авторы заявляют, что у них нет конфликта интересов.

БЛАГОДАРНОСТИ

РСА, элементный и спектральный анализы выполнены на оборудовании ЦКП ИОНХ РАН.

ФИНАНСИРОВАНИЕ

Работа по исследованию комплексных соединений выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

СПИСОК ЛИТЕРАТУРЫ

- Xu X., Chen R., Sun Q. et al. // Chem. Soc. Rev. 2014. V. 43. P. 3259.
- Wang T.-G., Li S., Yu J.-H., Xu J.-Q. // Solid State Sciences. 2015. V. 41. P. 25.
- Zhang H., Wang X., Zhang K., Teo B.K. // Coord. Chem. Rev. 1999. V. 183. P. 157.
- 4. Palion-Gazda J., Gryca I., Maron A., Machura B. // Polyhedron. 2017. V. 135. P. 109.
- Chattopadhyay T., Banerjee S., Bana K.S. et al. // Polyhedron. 2008. V. 27. P. 2452.
- Wavg R.-J., Hu Q.-S., Yu J.-H., Xu J.Q. // Polyhedron. 2017. V. 128. P. 160.

- Banerjee S., Wu B., Sascahn P.-G. et al. // Inorg. Chim. Acta. 2005. V. 358. P. 535.
- Saber M.R., Abu-Youssef M.A.M., Goher M.A.S. et al. // J. Mol. Struct. 2012. V. 1008. P. 17.
- 9. Wohlert S., Jess I., Nather C. // Inorg. Chim. Acta. 2013. V. 407. P. 243.
- Wohlert S., Jess I., Nather C. // Z. Anorg. Allg. Chem. 2013. V. 639. P. 385.
- Newmann T., Jess I., Nather C. // Z. Anorg. Allg. Chem. 2015. V. 641. P. 622.
- 12. Wohlert S., Boeckmann J., Jess I., Nather C. // Cryst. Eng. Commun. 2012. V. 14. № 17. P. 5412.
- Zhou W.-W., Zhao W., Wei B. et al. // Inorg. Chim. Acta. 2012. V. 386. P. 17.
- 14. Гоголева Н.В., Шмелев М.А., Кискин М.А. и др. // Изв. АН. Сер. хим. 2016. № 5. С. 1198.
- Jin Q.-H., Sun J.-J., Wu J.-Q. et al. // J. Chem. Crystallogr. 2010. V. 40. P. 310.
- Tai X.S., Feng Y.-M. // Z. Kristallogr. NCS. 2008. V. 223. P. 39.
- 17. Seth S.K. // CrystEngCommun. 2013. V. 15. P. 1772.
- SMART (Control) and SAINT (Integration) Software. Version 5.0. Madison (WI, USA): Bruker AXS Inc., 1997.
- Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 3.
- 20. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112.
- 21. *da Silva P.B., Frem R.C.G., Netto A.V.G. et al.* // Inorg. Chem. Commun. 2006. V. 9. P. 235.