УДК 546.302

МОЛЕКУЛЯРНАЯ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА 1-(2-МЕТОКСИФЕНИЛ)-1,4-ДЕГИДРО-5Н-ТЕТРАЗОЛ-5-ТИОНА И ЕГО КОМПЛЕКСА С Cd(II)

© 2019 г. Р. К. Аскеров^{1,} *, А. М. Магеррамов¹, В. К. Османов², Е. В. Баранов^{3, 4}, Г. Н. Борисова², А. Д. Самсонова², А. В. Борисов²

¹Бакинский государственный университет, Азербайджанская Республика ²Нижегородский государственный технический университет им. Р.Е. Алексеева, Россия ³Институт металлоорганической химии им. Г.А. Разуваева РАН, Нижний Новгород, Россия ⁴Нижегородский государственный университет им. Н.И. Лобачевского, Россия *e-mail: rizvankam@bk.ru Поступила в релакцию 29.05.2018 г.

Поступила в редакцию 29.05.2018 г. После доработки 21.08.2018 г. Принята к публикации 24.08.2018 г.

Методом РСА изучена молекулярная и кристаллическая структура 1-(2-метоксифенил)-1,4-дегидро-5Н-тетразол-5-тион (L) и его комплекса с кадмием(II) (II), CIF files CCDC № 1567109 (L), 1547252 (II). Свободный лиганд L, являющийся тионом, неплоский. Двугранный угол между тетразольным и бензольным циклами равен 85.21(7)°. Эти циклы образуют в кристалле центросимметричные димеры посредством двух водородных связей N–H···S. Димеры включают центральный плоский восьмичленный цикл {S=C-N-H···S=C-N-H····}. Комплекс II имеет цепочечное строение состава [(C₈H₇N₄OS)₂Cd]_n. Координация атома Cd(II) искаженная тетраэдрическая из двух атомов азота и двух атомов серы четырех лигандов L. Одномерные цепочки содержат восьмичленные циклы {-S=C-N-Cd - S=C-N-Cd} в конформации ванны. В кристалле между соседними одномерными цепочками вдоль оси *с* существуют слабые межмолекулярные водородные связи C–H···N.

Ключевые слова: 1-(2-метоксифенил)-1,4-дегидро-5Н-тетразол-5-тион, кристаллическая структура, полимерный комплекс

DOI: 10.1134/S0132344X19020038

В данной статье изучено строение 1-(2-метоксифенил)-1,4-дегидро-5Н-тетразол-5-тиона (L) и его комплекса с кадмием(II) (II).

N-замещенные меркаптотетразолы с несколькими электронодонорными центрами можно использовать как лиганды для получения различных координационных соединений [1–6].

Из литературных данных известно, что подобные гетероциклические соединения могут существовать как в тионной (а), так и в тиольной форме (б) (схема 1).

Схема 1.

Считается, что более устойчива для меркаптотетразолов тионая форма [7]. Для замещения таких соединений по атому серы их необходимо переводить в тиоляты щелочных металлов. Мы синтезировали лиганд L. Действием этилата натрия L переводили в соответствующий тиолят (I), который без выделения использовали в реакции с хлоридом кадмия с образованием комплекса II (схема 2).

Строение полученных соединений L и II установлено методом РСА.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходные реагенты NaN₃, CdCl₂ (квалификации не ниже "х. ч.") и *о*-метоксифенилизотиоцианат (Acros Organics, Бельгия) использовали без дополнительной очистки.

Синтез тиона L. К раствору 2.53 г (39 ммоль) NaN₃ в 50 мл H₂O при 20°C прибавляли 6.431г (39 ммоль) *о*-метоксифенилизотиоцианата. Реакционную смесь кипятили 2 ч, охлаждали до 20°C и отфильтровывали от нерастворившихся примесей. Далее при перемешивании к раствору добавляли 10%-ный водный раствор HCl до pH 2. Выпавший осадок отфильтровывали, промывали 200 мл воды и сушили при 353 К. Продукт для PCA перекристаллизовывали из этанола. Выход HL 7.036 г (33.82%). Белые кристаллы. $T_{пл} = 162-164^{\circ}$ C (с разл.).

Найдено, %:	C 46.28;	H 3.97;	N 26.43.
Для C ₈ H ₈ N ₄ OS (L)		
Вычислено, %:	C 46.15;	H 3.85;	N 26.92.

Синтез II. К раствору 0.416 г (2 ммоль) тиона L в 25 мл абсолютного C_2H_5OH прибавляли раствор 0.136 г (2 ммоль) этилата натрия в 15 мл абсолютного C_2H_5OH . Затем добавляли раствор 0.184 г (1 ммоль) CdCl₂ в 15 мл абсолютного C_2H_5OH . Реакционную смесь кипятили 5 ч и охлаждали до 20°С. Выпавший осадок отфильтровывали, промывали 50 мл C₂H₅OH и сушили при 353 К. Продукт для PCA перекристаллизовывали из этанола. Выход II 0.093 г (18.06%). Белые кристаллы. $T_{пл} = 202-204$ °C (с разл.).

Найдено, %:	C 36.03;	H 2.48;	N 21.57.
Для C ₁₆ H ₁₄ N ₈ O ₂ S	S ₂ Cd		
Вычислено, %:	C 36.50;	H 2.66;	N 21.29.

РСА соединений L и II проведен на дифрактометре Bruker Smart Арех (ω -сканирование, Мо*К* α -излучение, $\lambda = 0.71073$ Å, T = 296 K). Экспериментальные наборы интенсивностей отражений собраны и интегрированы по программе SMART [8] и SAINT [9] соответственно. Структуры решены прямым методом и уточнены полноматричным МНК по F_{hkl}^2 в анизотропном приближении для неводородных атомов. Атом водорода, участвующий в межмолекулярной водородной связи (BC) N-H···S в L, локализован из разностного синтеза электронной плотности и уточнен в изотропном приближении. Остальные водородные атомы в L и II помещены в геометрически рассчитанные положения и уточнены изотропно с фиксированными тепловыми параметрами $U_{iso}(H) = 1.2U_{iso}(C)$. Уточнение структуры и учет поглощения проведены с использованием программных пакетов SHELXTL [10] и SADABS [11]. Кристаллографические данные и параметры рентгеноструктурных экспериментов приведены в табл. 1.

КООРДИНАЦИОННАЯ ХИМИЯ том 45 № 2 2019

-	Значение	II	
Параметр	L		
Эмпирическая формула	C ₈ H ₈ N ₄ OS	$C_{16}H_{14}N_8O_2S_2Cd$	
Μ	208.24	526.87	
Размеры кристалла, мм	$0.21\times0.17\times0.10$	$0.65 \times 0.074 \times 0.06$	
Сингония	Моноклинная	Орторомбическая	
Пр. гр.	$P2_1/c$	Pccn	
<i>a</i> , Å	5.0808(7)	12.8945(8)	
b, Å	19.402(3)	18.9350(12)	
<i>c</i> , Å	9.9024(14)	8.5599(6)	
β, град	90.967(3)	90	
V, Å ³	976.0(2)	2090(6)	
Ζ	4	4	
ρ(выч.), г/см ³	1.417	1.674	
μ, мм ⁻¹	0.303	1.274	
<i>F</i> (000)	432	1048	
Область сбора данных по θ, град	25	25	
Измерено отражений	10754	19754	
Независимых отражений	2793	2517	

131

0.0471

0.0943

1.007

0.6474; 0.7461

-0.318/0.378

. Таблица 1

Структуры зарегистрированы в Кембриджском банке структурных данных (№ 1567109 (L), 1547252 (II); ccdc.cam.ac.uk/getstructures).

Остаточная электронная плотность (ρ_{min}/ρ_{max}), $e \text{ Å}^{-3}$

GOOF

 $T_{\min}; T_{\max}$

 $R_1 (I \ge 2\sigma(I))$

 wR_2 (все данные)

Число уточняемых параметров

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Молекулярная структура L показана на рис. 1. Избранные длины связей, значения валентных и торсионных углов в L представлены в табл. 2.

Соединение L состоит из двух плоских фрагментов – о-метоксифенильного и меркаптотетразольного циклов. Двугранный угол между их плоскостями равен 85.21(7)°, торсионный угол C(7)-C(6)-N(1)-C(5) 93.3(2)°. Метильная группа в метоксифенильном фрагменте находится в плоскости цикла. Торсионный угол С(8)-С(7)составляет 0.4(2)°. Расстояния O(1) - C(12)N(1)-N(2) 1.3675(19), N(1)-C(5) 1.351(2), N(3)-N(4) 1.354(2) и N(4)-C(5) (1.346(2) Å в меркаптотетразольном фрагменте соответствуют одинарным связям, в то время как N(2)=N(3) 1.2773(19) и C(5)=S(1) 1.6680(18) – двойным, что подтверждает существование соединения L в тионной форме в свободном состоянии. Все связи в структуре L соответствуют среднестатистическим значениям [12].

133

0.0216

0.0565

1.007

0.384; 0.746

-0.156/0.781

Молекулы L в кристалле образуют центросимметричные димеры посредством двух BC N(4)-H(4)···S(1) (1 – x, 1 – y, 1 – z) (N–H 0.93(2), H···S 2.30(2) Å, угол N–H–S 178(3)°) (рис. 2). Димеры включают центральный плоский (+0.0169 Å) восьмичленный цикл {S=C-N-H…S=C-N-H}.

Димеры соединения L соединяются в зигзагообразные слои вдоль оси *b*. Слои соединены слабыми межмолекулярными BC C(11)-H(11A)···S(1) (x - 1, у, z) (C-H 0.930(2), H…S 2.915(2) Å, угол C-H…S 156(2)°) [13] вдоль оси *а* (рис. 3)

Комплекс II имеет 1D-цепочечное строение состава $[(C_8H_7N_4OS)_2Cd]_n$. Координационный полиэдр катиона кадмия(II) – искаженный тетраэдр, включающий два атома азота и два атома серы четырех лигандов L [6]. Расстояния Cd-S и Cd-N 2.5035(4) и 2.2300(14) Å, а также углы NCdN и SCdS 119.80(7)° и 129.12(2)° равны соот-

Рис. 1. Молекулярное строение L. Тепловые эллипсоиды приведены с 30%-ной вероятностью.

			L		
Связь	$d, \mathrm{\AA}$	Связь	$d, \mathrm{\AA}$	Связь	<i>d</i> , Å
S(1)–C(5)	1.6680(18)	N(3)–N(4)	1.354(2)	O(1)-C(12)	1.427(2)
N(1)–C(5)	1.351(2)	N(4)–C(5)	1.346(2)	C(6)–C(11)	1.374(2)
N(1)–N(2)	1.3675(19)	N(1)–C(6)	1.437(2)		
N(2)–N(3)	1.2773(19)	O(1)–C(7)	1.356(2)		
Угол	ω, град	Угол	ω, град	Угол	ү, град
N(1)C(5)N(4)	102.11(15)	N(4)C(5)S(1)	129.35(14)	C(5)N(1)C(6)C(11)	87.3(2)
C(5)N(1)N(2)	111.00(14)	N(1)C(5)S(1)	128.53(13)	C(5)N(1)C(6)C(7)	93.3(2)
C(5)N(4)N(3)	111.79(16)	C(11)C(6)N(1)	118.52(15)	C(12)O(1)C(7)C(8)	0.4(3)
N(3)N(2)N(1)	107.48(15)	C(7)C(6)N(1)	117.65(14)	C(6)N(1)C(5)S(1)	3.0(3)
N(2)N(3)N(4)	107.62(15)	C(7)O(1)C(12)			
			II		
Связь	d, Å	Связь	<i>d</i> , Å	Связь	d,Å
Cd(1)–N(4)	2.228(4)	N(2)–N(3)	1.280(2)	C(6)–C(7)	1.392(3)
Cd(1) - S(1)	2.4972(11)	N(3)–N(4)	1.357(2)	C(6)–C(11)	1.374(2)
S(1) - C(5)	1.7155(16)	N(4)–C(5)	1.326(2)	O(1)–C(7)	1.354(2)
N(1) - C(5)	1.349(2)	N(1)–C(6)	1.434(2)	O(1)–C(12)	1.427(3)
N(1)–N(2)	1.3616(19)				
Угол	ω, град	Угол	ω, град	Угол	ү, град
N(4)Cd(1)N(4A)	119.80(7)	C(11)C(6)N(1)	119.17(16)	C(7)C(6)N(1)C(5)	69.6(2)
S(1)Cd(1)S(1E)	129.12(2)	N(1)C(5)S(1)	127.52(12)	C(8)C(7)O(1)C(12)	4.5(3)
C(5)N(1)C(6)	131.99(14)	C(7)C(6)N(1)	119.16(15)		
N(2)N(1)C(6)	118.97(14)	N(4)C(5)S(1)	126.35(12)		

Таблица 2. Избранные длины связей (*d*), валентные (ω) и торсионные (γ) углы в соединениях L и II

Рис. 2. Строение Н-связанных димеров в кристалле соединения L. Тепловые эллипсоиды приведены с 30%-ной вероятностью.

ветственно. Следует заметить, что характер связей в тетразольном фрагменте лиганда L меняется при образовании комплекса II. Так, связь C(5)– S(1) (1.716(2) Å) становится одинарной, а N(4)=C(5) (1.326(2) Å) – двойной (табл. 2), что определяется большим химическим сродством

Рис. 3. Фрагмент кристаллической упаковки зигзагообразных слоев соединения L вдоль оси *b*. Пунктирными линиями указаны слабые водородные связи C–H^{...}S.

КООРДИНАЦИОННАЯ ХИМИЯ том 45 № 2 2019

Рис. 4. Кристаллическое строение одномерных полимерных цепочек соединения II вдоль оси с.

Рис. 5. Фрагмент кристаллической упаковки II в проекции на плоскость *a*0*c*. Пунктирными линиями указаны слабые водородные связи С–Н[…]N между соседними полимерными цепочками вдоль оси *c*.

катиона кадмия к атому серы, чем к атому азота. Следовательно, в отличие от свободного состояния, в комплексе II тетразольный лиганд L принимает тиольную форму. Двугранный угол между плоскостями фенильного и меркаптотетразольного фрагментов составляет $66.34(7)^\circ$, торсионные углы C(7)-C(6)-N(1)-C(5) и C(8)-C(7)-O(1)-C(12) равны $69.6(2)^\circ$ и $4.5(3)^\circ$ соответственно. Одномерные цепочки кристала II содержат восьмичленные циклы { \leftarrow N=C-S-Cd-S-C=N \rightarrow Cd} в конформации ванны. Расстояние Cd···Cd равно 4.280 Å. Цепочки комплекса II в кристалле расположены вдоль оси *с* (рис. 4).

В кристаллической упаковке комплекса II между соседними одномерными цепочками вдоль оси *с* существуют слабые межмолекулярные BC C(10)-H(10*A*)…N(2) (-x + 3/2, y, -1/2 + z) (C-H 0.930(2), H…S 2.706(2) Å, угол C-H…N 148(2)° [13] (рис. 5))

СПИСОК ЛИТЕРАТУРЫ

 Ma C.L., Zhang Q., Sun J.F., Zhang R.F. // J. Organomet. Chem. 2006. V. 691. P. 2567.

- Ilie A., Rat C.I., Scheutzow S., Kiske C. et al. // Inorg. Chem. 2011. V. 50. P. 2675.
- 3. *Li Y., Wang C.Q., Bian H.D. et al.* // J. Coord. Chem. 2012. V. 65. № 20. P. 3665.
- Sanina N.A., Kozub G.I., Kondrat T.A. // J. Mol. Struc. 2013. V. 1041. P. 183.
- Bharty M.K., Dani R.K., Kushawaha S.K. // Polyhedron. 2015. V. 88. P. 208.
- Song J.F., Wang J., Li S.Z. // J. Mol. Struc. 2017. V. 1129. P. 1.
- 7. Штефан Е.Д., Введенский В.Ю. // Успехи химии. 1995. Т. 65. № 4. С. 326-333.
- 8. SMART. Bruker Molecular Analysis Research Tool. Version 5.632. Madison (WI, USA): Bruker AXS, 2005.
- 9. SAINT. Data Reduction and Correction Program. Version 8.34A. Madison (WI, USA): Bruker AXS, 2014.
- Sheldrick G.M. SADABS. Program for Absorption Correction. Göttingen (Germany): Univ. of Göttingen, 1996.
- 11. Sheldrick G.M. Acta Crystallogr. C. 2015. V. 71. P. 3.
- 12. *Allen F.H., Watson D.G., Brammer L. et al.* International Tables for Crystallography. 2006. Ch. 9.5. P. 790.
- 13. Зефиров Ю.В., Зоркий П.М. // Успехи химии. 1995. Т. 64. № 4. С. 446.