УДК 54-386:547.234

СИНТЕЗ И ХАРАКТЕРИСТИКА КООРДИНАЦИОННЫХ СОЕДИНЕНИЙ МАЛОНАТОВ 3*d*-МЕТАЛЛОВ С ФЕНИЛАЦЕТИЛГИДРАЗИДОМ. КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА [Cu(L)₂][Cu(Mal)₂] · 4.5H₂O (L = ФЕНИЛАЦЕТИЛГИДРАЗИД, Mal²⁻ = АНИОН МАЛОНОВОЙ КИСЛОТЫ)

© 2019 г. В. С. Сергиенко^{1, 2}, Т. В. Кокшарова³, М. Д. Суражская¹, Т. В. Мандзий³

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия ²Всероссийский институт научной и технической информации РАН, Москва, Россия ³Одесский национальный университет им. И.И. Мечникова, Украина

*e-mail: sergienko@igic.ras.ru Поступила в редакцию 22.05.2018 г. После доработки 13.06.2018 г. Принята к публикации 15.06.2018 г.

Синтезированы три комплекса [M(L₃)](Mal) фенилацетилгидразид малонатов кобальта(II) (I), никеля(II) (II), цинка(II) (III), а также [Cu(L)₂][Cu(Mal)₂] · 4.5H₂O(IV). Полученные соединения охарактеризованы методами химического анализа, спектроскопии ИК, диффузного отражения и термогравиметрии. Проведен РСА соединения IV, где L – фенилацетилгидразид, Mal^{2–} – анион малоновой кислоты (CIF file CCDC № 1844502).

Ключевые слова: синтез, спектроскопия ИК, диффузного отражения, термогравиметрия, РСА, фенилацетгидразид, малонаты 3*d*-металлов

DOI: 10.1134/S0132344X19020075

Малонат-анион (дианион малоновой кислоты) по своему поведению отличается от других дикарбоксилатных лигандов. Авторы [1] обнаружили, что с ионами 3d-металлов он может проявлять различные способы координации: биденбидентатный +татный, монодентатный, бидентатный + *бис*(монодентатный), бидентатный + бис(монодентатный) + µ-оксо. В последнем случае в дополнение к бидентатной и бис(монодентатной) координации один из атомов кислорода действует как и-оксомостик между двумя металлическими центрами. Ранее мы синтезировали и структурно охарактеризовали $[Co(R)(Mal)(H_2O)_2]H_2O$ [2] (R = бензгидразид, малонат-анион входит в состав внутрикомплексного соединения с образованием хелатного шестичленного цикла [2]) и [Ni(Z)₂][Ni(Mal)₂ $(H_2O)_2]_2 \cdot 3.51H_2O$ (Z = тиосемикарбазид, малонат-ион также образует шестичленные циклы, однако в составе комплексного аниона [3]). Для фенилацетгидразида описано мало комплексов; мы определили структуру гидратированных комплексов никеля состава 1 : 3 на основе бензоата [4] и 5-сульфосалицилата [5].

В настоящей статье описаны синтез, спектры ИК и диффузного отражения, термогравиграммы комплексов малонатов с фенилацетилгидразидом $[M(L)_3]Mal (M = Co (I), Ni (II), Zn (III); L = фенилацетил гидразид, Mal^{2–} = анион малоновой кислоты), <math>[Cu(L)_2][Cu(Mal)_2] \cdot 4.5H_2O (IV)$. Методом РСА определена кристаллическая и молекулярная структура IV.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез комплексов I–IV. 4.5 г фенилацетгидразида (0.03 моль) растворяли в 50 мл метанола, прибавляли 0.01 моль сухого измельченного малоната соответствующего металла и перемешивали до полного растворения. Смесь оставляли на неделю для самопроизвольного испарения растворителя. Выпавший осадок отделяли, промывали смесью воды с метанолом (1 : 1) и сушили на воздухе до постоянной массы. В случае меди(II) выпавшие кристаллы оказались пригодными для PCA. Исходные малонаты получали взаимодействием малоната натрия с нитратом соответствующего 3*d*-металла.

Найдено, %: C 53.05; H 5.03; N13.46; Co 9.79. Для С₂₇Н₃₂N₆O₇Co (I) вычислено, %: C 53.02; H 5.24; N 13.75; Co 9.66. С 53.01; Н 5.37; N13.43: Найдено, %: Ni 9.63. Для C₂₇H₃₂N₆O₇Ni (II) вычислено, %: C 53.02; H 5.24; N 13.75; Ni 9.66. C 52.30; H 5.50; N13.77; Найдено, %: Zn 10.95. Для C₂₇H₃₂N₆O₇Zn (III) вычислено, %: C 52.51; H 5.19; N 13.61; Zn 10.53. C 37.05; H 4.37; N7.46; Cu 17.79. Найдено, %: Для C₂₂H₃₃N₄O_{14.5}Cu₂ (IV) вычислено, %: С 37.03; H 4.63; N 7.85; Cu 17.95.

Элементный анализ на металл проводили методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой на приборе Perkin-Elmer Optima 8000, на углерод, водород и азот – с помощью CHN анализатора.

ИК-спектры снимали на приборе Perkin-Elmer Spectrum BX II FT-IR System, образцы готовили в виде таблеток с KBr. Спектры диффузного отражения (СДО) регистрировали на спектрофотометре Lambda-9 (Perkin-Elmer), стандарт – MgO ($\beta_{MgO} = 100\%$).

Термогравиграммы снимали на дериватографе системы Paulik—Paulik—Erdey на воздухе, скорость нагрева 10 град/мин.

РСА IV. Структура расшифрована прямым методом и уточнена методом наименьших квадратов в полноматричном анизотропном приближении для всех неводородных атомов. Позиции всех атомов водорода (включая атомы Н молекул воды) рассчитаны геометрически и включены в уточнение по модели "наездника". Кристаллографические данные и характеристики эксперимента для кристаллов IV приведены в табл. 1, основные межатомные расстояния и валентные углы — в табл. 2, геометрические параметры водородных связей — в табл. 3.

Координаты атомов и другие параметры структуры IV депонированы в Кембриджском банке структурных данных (КБСД № 1844502; deposit@ ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk/ data_request/cif).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Из результатов химического анализа следует, что соотношение металл : фенилацетил гидразид составляет 1 : 1 для Cu(II) в комплексе IV и 1 : 3 для Co(II), Ni(II), Zn(II) в соединениях I–III. По

данным РСА, структурные единицы соединения IV – комплексные катионы $[Cu(1)(L_2)]^{2+}$ (рис. 1), комплексные анионы $[Cu(2)(Mal)_2]^{2-}$ (рис. 2) и кристаллизационные молекулы воды. Оба центросимметричных комплексных иона имеют искаженную квадратную координацию: атом Cu(1) катиона – четырьмя атомами кислорода двух билентатно-хелатных малонат-ионов (средн. Cu(1)-O 1.900(4) \pm 0.013 Å, атом Cu(2) аниона – двумя атомами кислорода и двумя атомами азота двух бидентатно-хелатных молекул фенилацетилгидразида (Cu(2)-O(5) 1.958(4), Cu(2)-N(1) 1.983(5) Å, хелатный угол O(5)Cu(2)N(1) 83.8(2)°). При координации с атомами меди ионов Mal²⁻ и молекул L замыкаются по два эквивалентных металлоцикла – шестичленные Cu(1)OC₃O (А) и пятичленные Cu(2)N₂CO (Б) соответственно. Хелатный шикл А практически плоский (±0.004-0.014 Å), металлоцикл Б несколько гофрирован $(\pm 0.027 - 0.065 \text{ Å}, \text{ среднее отклонение атомов от})$ усредненной плоскости 0.040 Å).

В КБСД (6, версия 5.38, ноябрь, 2017) нет результатов о строении комплексных ионов $[Cu(L)_2]^{2+}$ и $[Cu(Mal)_2]^{2-}$, но есть сведения о кристаллической структуре четырех соединений, содержащих дианион диаквадималонат меди(II), $[Cu(Mal)_{2}(H_{2}O)_{2}]^{2-}$ (Ан) и одного нейтрального комплекса с монопротонированными однозарядными малонат-ионами HMal⁻ – все с вытянутой вследствие эффекта Яна-Теллера тетрагональнобипирамидальной координацией атома металла. Известны три оригинальных варианта структуры $[Cu(H_2O)_6]$ · Ан (V) [7–9], результаты РСА при двух температурах – 120 и 294 К – комплекса [Cu(HMal)₂(H₂O)₂] (VI) [10]. Кроме того, в КБСД есть данные о кристаллической структуре трех соединений более сложного состава с общей формулой {Cu(H₂O)_n(µ-Mal)₂{Cu(H₂O)₄}₂]²⁺[Cu(Mal)₂ $(H_2O)_2^{2-} \cdot [{Cu(H_2O)_2(Mal)(\mu-Mal)}{Cu(H_2O)_4}],$ содержащих, кроме трехъядерных комплексных анионов и моноядерного анионного комплекса, нейтральные биядерные молекулы. Для соединений с n = 2 (определена структура двух моноклинных модификаций: пр. гр. C_2/c , Z = 8 (VII) [11] и пр. гр. $P2_1/c$, Z = (VIII) [12]). Для комплекса с n == 1 (IX) [13] центральный атом меди в трехъядерном комплексном катионе имеет удлиненную тетрагонально-пирамидальную координацию, а для аналогичного атома Cu в структуре VII, VIII вытянутую тетрагонально-бипирамидальную.

Связи Cu–O(Mal) в комплексе $[Cu(Mal)_2]^2$ исследованной нами структуре IV в среднем заметно короче, чем в комплексных анионах структуры V– IX (соответственно 1.900 и 1.936–1.994 Å). Интервалы длин аксиальных связей Cu–O(H₂O)_{акс} и хелатных углов O(Mal)CuO(Mal) в структуре V–IX составляют соответственно 2.409–2.480 Å и 91.0°–

Таблица 1. Кристаллографические характеристики, данные эксперимента и уточнения структуры соединения IV

Параметр	Значение
M	712.60
Температура, К	293(2)
Сингония; пр. гр.	Триклинная; <i>Р</i> І
Параметры ячейки:	
a, Å	7.904(2)
b, Å	10.191(3)
c, Å	11.143(3)
α, град	110.12(2)
β, град	97.254(10)
ү, град	111.98(2)
<i>V</i> , Å ³	747.3(4)
<i>Z</i> ; р(выч.), г/см ³	1; 1.584
<i>F</i> (000)	367
μ, мм ⁻¹	2.414
Размер кристалла, мм	0.18 imes 0.08 imes 0.03
Дифрактометр	Enraf-Nonius CAD4
Тип сканирования	ω
Излучение; λ, Å	CuK_{α} ; 1.5418
$\theta_{\min} - \theta_{\max}$, град	4.42-62.47
Интервалы индексов	$-9 \le h \le 9, -11 \le k \le 11, -20 \le l \le 20$
Число отражений:	
Измеренных/независимых	3380/1880
<i>R</i> _{int}	0.0231
Комплектность по θ , %	79.3
Учет поглощения	ψ-scan
T_{\min}, T_{\max}	0.6705, 0.9311
Метод уточнения	Полноматричный МНК по <i>F</i> ²
Число уточняемых параметров	203
GOOF (F^2)	1.03
$R_{hkl}(I \ge 2\sigma(I))$	$R_1 = 0.0552, wR_2 = 0.1471$
<i>R</i> _{<i>hkl</i>} (по всем отражениям)	$R_1 = 0.0654, wR_2 = 0.1576$
$\Delta_{\rm max}/\Delta_{\rm min} e/{\rm \AA}^3$	1.286/-0.590

93.5°. Угол O(Mal)CuO(Mal) в структуре IV составляет 93.8(2)°.

На рис. 3 показана упаковка структурных единиц в кристалле IV. Комплексные катионы и анионы, а также кристаллизационные молекулы воды соединены разветвленной сеткой водородных связей (**BC**) – акцепторных (с участием атомов азота лиганда L и молекул воды) и донорных (при участии атомов кислорода лигандов Mal^{2–}, L и молекул H₂O). Отметим весьма прочную BC O(7)–H(71)···O(8) между молекулами воды (H···O 1.55, O···O 2.40 Å, угол OHO 180°). Сравнение ИК-спектров фенилацетгидразида и синтезированных комплексов с малонатами 3*d*металлов (табл. 4), проведенное с учетом литературных данных [14–17], показывает, что частота поглощения v(C=O) увеличивается. Обычно при координации через атом кислорода происходит ее понижение [18–24]. Необычное поведение v(C=O) для полученных нами комплексов связано с тем, что эта полоса в спектре исходного фенилацетгидразида понижена из-за присутствия внутри- и межмолекулярных ВС. Еще в 1956 г. Йенсен [15] подтвердил наличие у фенилацетилгидразида ВС и в твердом состоянии, и даже в

86

Связь	<i>d</i> , Å	Связь	<i>d</i> , Å
Cu(1)–O(1)	1.912(4)	N(2)-N(1)	1.422(6)
Cu(1)–O(2)	1.887(4)	N(2)-C(4)	1.310(8)
O(1)–C(1)	1.275(7)	C(4)–C(5)	1.509(8)
O(2)–C(2)	1.272(7)	C(5)-C(6)	1.518(8)
O(3)–C(2)	1.239(7)	C(6)–C(7)	1.375(9)
O(4)–C(1)	1.234(7)	C(7)–C(8)	1.374(10)
C(1)–C(3)	1.484(8)	C(8)–C(9)	1.334(11)
C(2)–C(3)	1.492(8)	C(9)–C(10)	1.374(12)
Cu(2)–O(5)	1.958(4)	C(6)–C(11)	1.366(9)
Cu(2)–N(1)	1.983(5)	C(11)–C(10)	1.378(11)
O(5)–C(4)	1.255(7)		
Угол	ω, град	Угол	ω, град
O(2)Cu(1)O(1)	93.76(16)	N(2)N(1)Cu(2)	105.9(3)
C(1)O(1)Cu(1)	128.4(4)	O(5)C(4)N(2)	121.4(6)
C(2)O(2)Cu(1)	129.7(3)	O(5)C(4)C(5)	120.6(6)
O(4)C(1)O(1)	122.0(5)	N(2)C(4)C(5)	118.0(6)
O(4)C(1)C(3)	116.1(5)	C(4)-C(5)-C(6)	111.4(5)
O(1)C(1)C(3)	121.8(5)	C(11)C(6)C(7)	119.2(6)
O(3)C(2)O(2)	121.6(5)	C(11)C(6)C(5)	120.2(6)
O(3)C(2)C(3)	117.8(5)	C(7)C(6)C(5)	120.5(6)
O(2)C(2)C(3)	120.6(5)	C(6)C(11)C(10)	119.0(8)
C(1)C(3)C(2)	123.4(5)	C(6)C(7)C(8)	120.5(7)
O(5)Cu(2)N(1)	83.79(18)	C(9)C(8)C(7)	120.7(8)
C(4)O(5)Cu(2)	111.2(4)	C(8)C(9)C(10)	119.2(7)
C(4)N(2)N(1)	117.7(5)	C(9)C(10)C(11)	121.2(8)

Таблица 2. Основные длины связей (Å) и валентные углы (град) в структуре IV

концентрированных растворах в хлороформе. Он установил, что при отсутствии ВС поглощение v(C=O) должно проявляться около 1710 см⁻¹. Таким образом, можно утверждать, что в результате комплексообразования частота v(C=O) понижается, но, очевидно, величина сдвига, вызванного комплексообразованием, уступает величине ее понижения, обусловленного ВС. Повышение v(C=O) в результате комплексообразования составляет 13-15 см⁻¹ для комплексов I-III состава 1: 3 и 25 см⁻¹ для IV. Еще одно отличие в спектре последнего – отсутствие полос $v_{as}(C-H)$, $\delta(NH_2)$ и v(C-C) ароматического кольца, которые в спектрах комплексов I-III наблюдаются, соответственно, практически при одинаковых частотах. Полосы $\delta(CH_2)$ в спектрах комплексов I–III (1:3) почти совпадают с соответствующей полосой в спектре органической молекулы L, а для комплекса меди IV частота этой полосы понижается. В ИК-спектрах всех четырех синтезированных нами комплексов для валентных колебаний v(NH) исчезает дублет, что соответствует участию азота в координации и разрушению ВС. Уменьшается число полос и в области 1100-1200 см⁻¹, где также проявляются полосы связей с участием азота, при этом положение полос почти одинаково для всех комплексов I-IV. Для дублета в области 1000–1100 см⁻¹, в который также вносят вклад связи с участием азота, уменьшение разности частот между двумя полосами, примерно одно и то же для всех комплексов I-IV. Для комплекса меди IV частота $\delta(CNH) + \delta(CCC)$ чуть выше, а $\delta(CCN) + (\delta(NCO)$ чуть ниже, чем для I–III.

Таким образом, изменения полос в ИК-спектрах согласуются с данными РСА для IV об уча-

D. HA		VERT DUA PROF		
D-n A	D-H	Н…А	D…A	уюл DHA, град
N(1)–H(1 <i>B</i>)····O(8)	0.90	2.12	2.80(2)	132
$N(1)-H(1A)\cdots O(2)$	0.90	2.08	2.862(6)	144
N(2)-H(2A)····O(6)	0.86	1.84	2.688(8)	169
O(7)-H(71)····O(8) ^{#1}	0.85	1.55	2.40(2)	179
$N(1)-(1A)\cdots O(1)^{\#2}$	0.90	2.53	3.311(6)	146
O(6)-H(6)····O(4) ^{#2}	0.86	1.90	2.761(7)	179
$N(1)-H(1B)\cdots O(7)^{\#3}$	0.90	2.20	3.056(8)	160
O(6)-H(61)····O(7) ^{#4}	0.85	2.02	2.866(9)	179
O(7)-H(7)····O(3) ^{#5}	0.85	1.86	2.712(7)	179

Таблица 3. Геометрические параметры водородных связей в соединении IV*

* Симметрические преобразования эквивалентных атомов: ${}^{\#1}x, y, z-1; {}^{\#2}-x+1, -y, -z; {}^{\#3}x, y, z+1; {}^{\#4}x+1, y, z+1; {}^{\#5}-x, -y-1, -z-1.$

стии кислорода и азота в образовании хелатного цикла в комплексных катионах.

Ранее при сопоставлении данных ИК-спектроскопии и РСА [25–27] мы показали, что величина $\Delta\Delta\nu(COO^-)$ – разность $\Delta\nu(COO^-)$ между смешанолигандным комплексом и исходным карбоксилатом металла (где $\Delta\nu(COO^-) = \nu_{as}(COO^-) - \nu_s(COO^-))$ – может характеризовать тип связывания карбоксилат-ионов в координационных соединениях. Большие величины $\Delta\Delta\nu(COO^-)$ характерны для монодентатной координации карбоксилата, гораздо меньшие – при бидентатной координации и для внешнесферных анионов. Для полученных соединений I–III состава 1 : 3 величина $\Delta\Delta\nu(COO^-)$ сравнительно невелика, что соответствует внешнесферному характеру малонатионов, а для IV она отрицательна, поскольку уже в исходном малонате меди присутствует идентичный комплексный анион (табл. 5).

Данные СДО (табл. 6) для комплексов I и II согласуются с их октаэдрическим строением. Широкая полоса с максимумом при 15400 см⁻¹ в спектре IV характерна для квадратных комплексов меди(II) [28].

Термогравиграммы (табл. 7) соединений I–III состава 1 : 3 довольно похожи: сначала наблюдается эндоэффект с небольшой потерей массы при 120–140°С, затем экзоэффект при ~200°С с потерей массы несколько больше 20% и экзоэффект при ~400°С, на который приходится более половины всей потери массы. Очевидно, эндоэффекты соответствуют деструкции комплексов, экзо-

Рис. 1. Строение комплексного аниона $[Cu(1)(Mal)_2]^{2-}$.

Рис. 2. Строение комплексного катиона $[Cu(2)(L)_2]^{2+}$.

Отнесение	L	[Co(L) ₃]Mal	[Ni(L) ₃]Mal	[Zn(L) ₃]Mal	$[Cu(L)_2][Cu(Mal)_2] \cdot 4.5H_2O$
$v(NH), v(NH_2)$	3294, 3200	3221	3214	3224	3205
v _{as} (C–H) (CH ₂)	3030	3062, 3031	3062, 3030	3062, 3031	
$v_s(C-H)$ (CH ₂)	2917			2951	2896
v(C=O)	1644	1659	1657	1659	1669
$\delta(NH_2)$		1607	1609	1610	
v(C-C) _{аром. кольца}	1529	1545	1543	1542	
δ(CH ₂)	1455	1454	1454	1454	1433
$\omega(\mathrm{NH}_2)$	1352, 1265	1358	1360, 1277	1354, 1277	1369, 1275
$v(CN) + v(N-N) + \tau(NH_2) + \delta(CCH)$	1205, 1156, 1137	1195, 1165	1196, 1171	1190, 1162	1195, 1163
$v_{\text{пульс. кольца}} + \rho(NH_2) + $ + $\tau(NH_2)$	1074, 1007	1060, 1032	1062, 1033	1064, 1033	1063, 1033
$\rho(CCH) + \delta(CCH)$	773			780	784
$\delta(CNH) + \delta(CCC)$	705, 623	696	696	696	702
$\delta(\text{CCN}) + \delta(\text{NCO})$		539	542	547	530

Таблица 4. Отнесение полос поглощения (см⁻¹) в ИК-спектрах фенилацетгидразида и его комплексов с малонатами 3*d*-металлов

Рис. 3. Упаковка структурных единиц в кристалле IV.

Таблица 5. Полосы поглощения (см-	¹) карбоксилат-ионов в ИК-спектрах малонато	ов 3 <i>d</i> -металлов и их комплек-
сов с фенилацетгидразидом		

Соединение	v _{as} (COO ⁻)	v _s (COO ⁻)	$\Delta v(COO^{-})$	$\Delta\Delta\nu(COO^{-})$
$Co(Mal) \cdot 2H_2O$	1567	1374	193	
[Co(L) ₃]Mal	1594	1358	236	43
Ni(Mal) \cdot 2H ₂ O	1567	1380	187	
[Ni(L) ₃]Mal	1595	1360	235	48
$Zn(Mal) \cdot 2H_2O$	1566	1378	188	
$[Zn(L)_3]$ Mal	1596	1354	242	54
$Na_2[Cu(Mal)_2] \cdot 2H_2O$	1592	1366	226	
$[Cu(L)_2][Cu(Mal)_2] \cdot 4.5H_2O$	1584	1369	215	-11

Таблица 6.	Спектры диффузного	отражения комплексов	фенилацетгидразида с	малонатами 3 <i>d</i> -металлов
------------	--------------------	----------------------	----------------------	---------------------------------

Соединение	v, cm^{-1}	Отнесение
[Co(L) ₃]Mal	19850	${}^{4}T_{lg}(F) \to {}^{4}T_{lg}(P)$
	8750	${}^4T_{1g}(F) \to {}^4T_{2g}$
[Ni(L) ₃]Mal	16300	${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}$
	9600	${}^{3}A_{2g} \rightarrow {}^{3}T_{2g}$
$[Cu(L)_2][Cu(Mal)_2] \cdot 4.5H_2O$	15400 ш	

Соединение	Эндоэффект		Экзоэффект		Общая убыль
Сосдинение	<i>T</i> , °C*	$\Delta m, \%$	<i>T</i> , °C*	$\Delta m, \%$	массы, %
[Co(L) ₃]Mal	120-140(130)	4.4	190-260(240)	22.2	78.8
			400-570(540)	42.8	
[Ni(L) ₃]Mal	140-160(150)	3.5	210-260(230)	3.5	80.0
			260-270(265)	28.2	
			400-530(500)	40.5	
[Zn(L) ₃]Mal	120-140(130)	2.4	190-250(220)	20.4	78.8
			330-360(350)	4.9	
			420-570(560)	42.3	
$[Cu(L)_2][Cu(Mal)_2] \cdot 4.5H_2O$	110-140(130)	12.3	200-270(250)	5.4	73.8
	140-200(190)	35.7	330-400(360)	11.3	
			400-510(450)	7.4	

Таблица 7. Данные термогравиметрии для комплексов фенилацетгидразида с малонатами 3d-металлов

* В скобках приведена температура максимума эффекта.

эффекты — выгоранию органической части. Для комплекса IV эффектов на термогравиграмме больше, что, вероятно, связано с более сложным строением (две координационные сферы). В зависимости от комплексообразователя термостабильность падает в ряду: $Ni^{2+} > Co^{2+} \approx Zn^{2+} > Cu^{2+}$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Rodriguez-Martin Y., Hernandez-Molina M., Delgado F.S. et al. // CrystEngComm. 2002. V. 4. № 87. P. 522.
- Анцышкина А.С., Кокшарова Т.В., Садиков Г.Г. и др. // Журн. неорган. химии. 2016. Т. 61. № 4. С. 455. (Antsyshkina A.S., Koksharova T.V., Sadikov G.G. et al. // Russ. J. Inorg. Chem. 2016. V. 61. № 4. Р. 434).
- Анцышкина А.С., Садиков Г.Г., Кокшарова Т.В. и др. // Журн. неорган. химии. 2014. Т. 59. № 2. С. 176. (Antsyshkina A.S., Sadikov G.G., Koksharova T.V. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 2. Р. 50).
- Кокшарова Т.В., Сергиенко В.С., Суражская М.Д. и др. // Журн. неорган. химии. 2017. Т. 62. № 12. С. 1576. (Koksharova T.V., Sergienko V. S., Surazhskaya M.D. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 12. P. 1568).
- Koksharova T.V., Sergienko V.S., Surazhskaya M.D. et al. // Russ. J. Coord. Chem. 2018. V. 44. № 11. P. 678. doi 10.1134/S1070328418110040
- 6. Allen F.H. // Acta Crystallogr. B. 20012. V. 58. P. 380.
- 7. Димитрова Г.И., Аблов А.В., Киосе Г.А. и др. // Докл. АН СССР. 1974. Т. 216. № 5. С. 1055.
- Филиппова И.Г. // Коорд. химия. 2000. Т. 26. № 4. С. 295.
- 9. Rodrigues-Marin Y., Sanchiz J., Ruiz-Perez C. et al. // CrystEngComm. 2002. V. 4. P. 631.
- Lenstra A.T.H., Kataeva O.N. // Acta Crystallogr. B. 2001. V. 57. P. 497.
- 11. Филиппова И.Г., Кравцов В.Х., Гданец М. // Коорд. химия. 2000. Т. 26. № 11. С. 860.
- 12. *Naumov P., Ristova M., Soptrajanov B. et al.* // Croat. Chem. Acta. 2002. V. 75. № 3. P. 701.

- Ruiz-Perez C., Sanchiz J., Hernandez Molina M. et al. // Inorg. Chem. 2000. V. 39. P. 1363.
- Odunola O.A., Adeoye I.O., Woods J.A.O. // Synth. React. Inorg. Metal-Org. Chem. 2002. V. 32. № 4. P. 801.
- 15. Jensen J.B. // Acta Chem. Scand. 1956. V. 10. № 4. P. 667.
- Гордон А., Форд Р. Спутник химика. М.: Мир, 1976. 541 с.
- 17. Ul Ain Q., Ashiq U., Ara J.R. et al. // Arab. J. Chem. 2017. V. 1. № 4. P. 488.
- Odunola O.A., Adeoye I.O., Woods J.A.O. et al. // Synth. React. Inorg Metal-Org. Chem. 2003. V. 33. № 2. P. 205.
- Issa R.M., El-Shazly M.F., Iskander M.F. // Z. Anorg. Allg. Chem. 1967. V. 354. № 1–2. P. 90.
- 20. Zidan A.S.A. // Synth. React. Inorg. Metal-Org. Chem. 2004. V. 34. №. 4. P. 743.
- Гогоришвили П.В., Каркарашвили М.В., Каландаришвили Д.З. // Журн. неорган. химии. 1969. Т. 14. № 6. С. 1516.
- 22. *Dutta A.A., Chaudhuri N.R.* // J. Inorg. Nucl. Chem. 1971. V. 33. № 1. P. 189.
- 23. *Narang K.K., Singh M.* // Synth. React. Inorg. Metal-Org. Chem. 1985. V. 15. № 6. P. 821.
- 24. *Narang K.K., Pandey J.P., Singh K.P. et al.* // Synth. React. Inorg. Metal-Org. Chem. 1990. V. 20. № 10. P. 1301.
- 25. Кокшарова Т.В., Садиков Г.Г., Анцышкина А.С. и др. // Журн. неорган. химии. 2006. Т. 51. № 6. С. 966. (Koksharova T.V., Sadikov G.G., Antsyshkina A.S. et al. // Russ. J. Inorg. Chem. 2006. V. 51. № 6. Р. 895).
- Анцышкина А.С., Кокшарова Т.В., Садиков Г.Г. и др. // Журн. неорган. химии. 2006. Т. 51. № 6. С. 972. (Antsyshkina A.S., Koksharova T.V., Sadikov G.G. et al. // Russ. J. Inorg. Chem. 2006. V. 51. № 6. Р. 901).
- Анцышкина А.С., Садиков Г.Г., Кокшарова Т.В. и др. // Журн. неорган. химии. 2006. Т. 51. № 10. С. 1671. (Antsyshkina A.S., Sadikov G.G., Koksharova T.V. et al. // Russ. J. Inorg. Chem. 2006. V. 51. № 10. Р. 1571).
- 28. Ливер Э. Электронная спектроскопия неорганических соединений. Т. 2. М.: Мир, 1987.