УДК 541.49+539.27

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА МОНО- И ТРЕХЪЯДЕРНОГО КОМПЛЕКСОВ Ni(II) С *БИС*-АЗОМЕТИНОМ НА ОСНОВЕ 2-АМИНО-3-ФОРМИЛПИРИДИНА

© 2019 г. Ю. П. Туполова^{1, *}, С. И. Левченков^{1, 2}, Л. Д. Попов¹, С. В. Посохова³, А. А. Александров⁴

¹Южный федеральный университет, Ростов-на-Дону, Россия ²Южный научный центр РАН, Ростов-на-Дону, Россия ³Азово-Черноморский инженерный институт Донского государственного аграрного университета, Зерноград, Ростовская обл., Россия ⁴Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия ^{*}e-mail: yptupolova@sfedu.ru Поступила в редакцию 10.05.2018 г. После доработки 27.06.2018 г. Принята к публикации 24.08.2018 г.

Методом РСА установлено строение нового моноядерного комплекса никеля(II) с бис-азометином – продуктом конденсации 1,3-диаминопропанола-2 с 2-амино-3-формилпиридином (H₃L) состава $[Ni(H_2L)]^+ \cdot CH_3COO^- \cdot H_2O$ (CIF files CCDC CCDC № 1562927, 1562928). Совместно с моноядерным комплексом образуется небольшое количество трехъядерного металлохелата состава $[Ni_3L'(H_2O)_2]^+ \cdot (CH_3COO)^- \cdot CH_3OH \cdot H_2O$, где $L' - N_5O_2$ -донорный лиганд, содержащий два 3-(((2-аминопиридин-2-ил)метилен)амино)-1-аминопропан-2-ольных фрагмента, связанных 2-аминопиридин-3-метиленовым радикалом.

Ключевые слова: бис-азометины, комплексные соединения Ni(II), рентгеноструктурный анализ **DOI:** 10.1134/S0132344X19020099

Бис-азометины 1,3-диаминопропанола-2 относятся к одной из групп, интенсивно изучаемых лигандных систем [1]. Интерес исследователей к этим соединениям прежде всего обусловлен возможностью получения на их основе биядерных комплексов с несимметричным обменным фрагментом, содержащим как моно-, так и билентатные экзогенные мостиковые лиганды. Целенаправленное варьирование природы мостиковой группы позволяет исследовать взаимное влияние двух каналов обменного взаимодействия, связывающих парамагнитные центры в металлохелатах, что важно для получения магнето-структурных корреляций и, в конечном счете, для направленного синтеза комплексов с заданными магнитными свойствами. В [2-12] проведено широкое экспериментально-теоретическое исследование влияния электронной и геометрической природы мостиковых фрагментов и установлены основные факторы, определяющие силу и характер

обменного взаимодействия в комплексных соединениях меди(II) на основе бис-азометинов 1,3-диаминопропанола-2. Кроме того, было показано, что строение и магнитные свойства металлохелатов также зависят от строения альдегидного фрагмента молекулы лиганда [13, 14]. Поэтому синтез новых бис-азометинов и изучение влияния деталей их строения на структуру и свойства комплексов – актуальная задача. С целью получения новой лигандной системы на основе 1,3-диаминопропанола-2 в качестве карбонильной составляющей мы выбрали 2амино-3-формилпиридин, литературные данные по гидразонам и азометинам которого весьма немногочисленны [15–17].

В настоящей работе представлены нетривиальные результаты РСА моноядерного никелевого комплекса (I), полученного взаимодействием ацетата никеля(II) с *бис*-азометином (**H**₃**L**) – продуктом конденсации 2-амино-3-формилпиридина и 1,3-диаминопропанола-2.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных соединений использовали коммерчески доступные реагенты. Растворители очищали и сушили по стандартным методикам. ИК-спектры регистрировали на приборе Varian Scimitar 1000 FT-IR в области 400–4000 см⁻¹; образцы готовили в виде суспензии в вазелиновом масле. Спектры ПМР регистрировали в ДМСО-d₆ на спектрометре Varian Unity 300 (300 МГц). Элементный анализ выполняли на приборе Carlo Erba Instruments TCM 480. Масс-спектр *бис*-азометина H₃L регистрировали на спектрометре Finnigan MAT INCOS 50 (электронный удар, 70 эВ).

Синтез 1,3-бис(((2-аминопиридин-3-ил)метилен)амино)пропанола-2 (H₃L). К кипящему раствору 2-амино-3-формилпиридина (2 ммоль) в 10 мл метанола добавляли раствор 1 ммоль 1,3-диаминопропанола-2 в 15 мл метанола. Смесь кипятили с обратным холодильником 4 ч, затем упаривали до объема 12 мл и добавляли 15 мл ацетонитрила. Выпавший белый осадок отфильтровывали, промывали ацетонитрилом и сушили в вакууме при комнатной температуре. Перекристаллизовывали из смеси ацетонитрил–этанол (1 : 1). Выход 0.42 г (70%). $T_{пл} = 145-146^{\circ}$.

Найдено, %:	C 59.7;	H 6.61;	N 27.6.
Для C ₁₅ H ₁₉ N ₆ O			
вычислено, %:	C 60.18;	H 6.40;	N 28.07.

ИК-спектр (v, см⁻¹): 3304 v(OH), 3220 v(NH), 1637, 1610, 1596 v(C=N). Спектр ПМР (ДМСО-d₆; δ , м. д.): 8.322 с. (2H, CH=N), 7.99 м. (2H, CH_{аром}), 7.745 уш. с. (4H, NH₂), 7.626 м. (2H, CH_{аром}), 6.598 м. (2H, CH_{аром}), 4.986 д. (1H, J = 5.1 Гц, OH), 3.97 м. (1H, CH), 3.70 м. (2H, CH₂), 3.58 м. (2H, CH₂). Масс-спектр: m/z 299, 298, 164, 135, 107.

Синтез І. К горячему раствору 1 ммоль H₃L в 10 мл метанола приливали горячий раствор

1 ммоль ацетата никеля(II) в 10 мл метанола. Реакционную смесь кипятили с обратным холодильником 1 ч. Осадок отфильтровывали и перекристаллизовывали из ДМСО. Выход 0.26 г (60%).

Найдено, %:	C 47.9;	H 5.01;	N 19.7.
Для C ₁₇ H ₂₂ N ₆ Ni	O ₄		
вычислено, %:	C 47.15;	H 5.12;	N 19.40.

ИК-спектр (v, см⁻¹): 3302 v(OH), 3190 v(NH), 1623, 1595 v(C=N). Спектр ПМР (ДМСО-d₆; δ , м. д.): 7.906 м. (2H, CH_{аром}), 7.755 с. (2H, CH=N), 7.390 д. д. (2H, $J_1 = 7.8 \ \Gamma \text{II}, J_2 = 1.8 \ \Gamma \text{II}, \text{CH}_{аром}$), 6.153 м. (2H, CH_{аром}), 5.262 д. (2H, $J = 4.8 \ \Gamma \text{II}, \text{OH}$), 4.481c. (2H, NH), 4.08 м. (1H, CH), 3.79 м. (4H, CH₂).

РСА I, II выполнен на дифрактометре Bruker SMART APEX2 ССD (MoK_{α} , $\lambda = 0.71073$ Å, графитовый монохроматор, ω -сканирование). Исходный массив измеренных интенсивностей обработан по программам SAINT и SADABS, включенных в программный пакет APEX2 [18, 19]. Структура расшифрована прямым методом и уточнена полноматричным МНК в анизотропном приближении для неводородных атомов по F_{hkl}^2 . Атомы водорода помещали в геометрически рассчитанные положения. Структуры расшифрованы и уточнены по программе SHELXTL [20]. Для анализа струк-

туры использована программа PLATON [21]. Характеристики эксперимента и кристаллографические данные приведены в табл. 1, избранные межатомные расстояния и валентные углы в табл. 2, геометрические характеристики водородных связей — в табл. 3

Координаты атомов и температурные факторы структур I, II депонированы в Кембриджском банке структурных данных (ССDС № 1562927,

Таблица 1. Кристаллографические данные, характеристики эксперимента и уточнения для соединений I и II

Парацият	Значение			
параметр	Ι	II		
Брутто-формула	C ₁₇ H ₂₂ N ₆ O ₄ Ni	C ₂₇ H ₃₇ N ₁₀ O ₈ Ni ₃		
М	433.12	805.80		
Размер кристалла, мм	$0.33 \times 0.12 \times 0.10$	0.19 imes 0.17 imes 0.06		
Температура съемки, К	296(2)	296(2)		
Сингония	Триклинная	Моноклинная		
Пр. гр.	$P\overline{1}$	$P2_1/c$		
<i>a</i> , Å	9.6222(5)	14.919(2)		
<i>b</i> , Å	9.9041(6)	16.871(2)		
<i>c</i> , Å	10.5877(6)	14.2178(19)		
α, град	92.0910(8)	90		
β, град	97.7556(8)	114.971(2)		
ү, град	110.8292(7)	90		
<i>V</i> , Å ³	930.53(9)	3244.1(8)		
Ζ	2	4		
ρ(выч.), г/см ³	1.546	1.650		
μ, мм ⁻¹	1.080	1.788		
<i>F</i> (000)	452	1668		
20 _{max} , град	60.4	60.4		
Интервалы индексов отражений	-13 < h < 13, -13 < k < 13, -14 < l < 14	$-18 < h < 21, \\ -21 < k < 23, \\ -20 < l < 20$		
Число измеренных отражений	10726	29383		
Число независимых отражений	5397	9584		
Количество отражений с <i>I</i> > 2 <i>σ</i> (<i>I</i>)	4596	4303		
Количество уточняемых параметров	297	448		
GOOF (все отражения)	0.999	1.000		
$R_1 (I \ge 2\sigma(I))$	0.0316	0.0675		
<i>wR</i> ₂ (все отражения)	0.1072	0.2064		
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}, e \text{ Å}^{-3}$	0.361/-0.374	1.180/-0.812		

1562928 соответственно; deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk/data_request/cif).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Коричневые призматические кристаллы комплекса I, пригодные для PCA, получены непосредственно из реакционной смеси. Молекулярная структура комплекса I состава $[Ni(H_2L)]^+ \cdot$ CH₃COO⁻ · H₂O показана на рис. 1. Азометиновый лиганд тетрадентатно координирован в монодепротонированной форме. В координированном остатке *бис*-азометина депротонированы обе аминогруппы, но протонирован пиридиновый фрагмент по атому N(2). Спиртовая группа в координации не участвует. Атом O(1) и метиновый атом C(14) разупорядочены каждый по двум кристаллографическим положениям с равной заселенностью.

Координационный полиэдр атома никеля в комплексе I – тетраэдрически искаженный квадрат; угол между плоскостями N(4)Ni(1)N(6) и N(1)Ni(1)N(3) составляет 18.51°. Шестичленный хелатный цикл Ni(1)N(1)C(1)C(5)C(6)N(3) имеет ассиметричную конформацию софы: атомы Ni(1) и N(3) смещены из плоскости N(1), C(1), C(5) и C(6) на 0.535 и 0.161 Å соответственно. В аналогичной конформации находится и цикл Ni(1)N(4)C(7)C(8)C(12)N(6): атомы Ni(1) и N(4) отклоняются от плоскости C(7)C(8)C(12)N(6) на

Связь	d, Å	Связь	d, Å
		I	
Ni(1)–N(6)	1.8439(14)	Ni(1)-N(4)	1.8839(14)
Ni(1)–N(1)	1.8669(14)	Ni(1)-N(3)	1.8925(13)
		II	
Ni(1)-N(2)	1.837(5)	Ni(2)–N(6)	1.855(5)
Ni(1)-N(3)	1.864(5)	Ni(2)–N(7)	1.865(5)
Ni(1)–O(1)	1.871(4)	Ni(2)–O(2)	1.865(4)
Ni(1)-N(10)	1.914(5)	Ni(2)–N(10)	1.914(5)
Ni(3)–O(1)	2.045(4)	Ni(3)–O(2)	2.036(4)
Ni(3)–N(1)	2.063(6)	Ni(3)–N(5)	2.076(6)
Ni(3)–O(1w)	2.121(5)	Ni(3)–O(3 <i>w</i>)	2.236(5)
Угол	ω, град	Угол	ω, град
		Ι	
N(6)Ni(1)N(1)	88.44(6)	N(6)Ni(1)N(3)	166.94(6)
N(6)Ni(1)N(4)	92.23(6)	N(1)Ni(1)N(3)	91.77(6)
N(1)Ni(1)N(4)	166.39(6)	N(4)Ni(1)N(3)	90.63(6)
		II	'
N(2)Ni(1)N(3)	94.2(2)	N(6)Ni(2)N(7)	94.8(2)
N(2)Ni(1)O(2)	86.6(2)	N(6)Ni(2)O(2)	86.4(2)
N(3)Ni(1)O(1)	178.5(2)	N(7)Ni(2)O(2)	178.5(2)
N(2)Ni(1)N(10)	172.8(2)	N(6)Ni(2)N(10)	172.6(2)
N(3)Ni(1)N(10)	92.6(2)	N(7)Ni(2)N(10)	92.3(2)
O(1)Ni(1)N(10)	86.58(19)	O(2)Ni(1)N(10)	86.54(18)
N(2)Ni(1)Ni(2)	139.73(16)	N(6)Ni(2)Ni(1)	139.67(17)
N(3)Ni(1)Ni(2)	84.99(15)	N(7)Ni(2)Ni(1)	84.15(15)
O(1)Ni(1)Ni(2)	93.59(14)	O(2)Ni(2)Ni(1)	94.41(14)
N(10)Ni(1)Ni(2)	43.23(14)	N(10)Ni(2)Ni(1)	43.22(15)
O(2)Ni(3)O(1)	96.72(17)	N(1)Ni(3)N(5)	97.4(2)
O(2)Ni(3)N(1)	177.2(2)	O(1)Ni(3)N(5)	178.9(2)
O(1)Ni(3)N(1)	82.5(2)	O(2)Ni(3)N(5)	83.4(2)
O(2)Ni(3)O(1w)	88.2(2)	O(2)Ni(3)O(2w)	95.20(18)
O(1)Ni(3)O(1w)	89.0(2)	O(1)Ni(3)O(2w)	93.41(18)
N(1)Ni(3)O(1w)	89.1(2)	N(1)Ni(3)O(2w)	87.6(2)
N(5)Ni(3)O(1w)	90.0(3)	N(5)Ni(3)O(2w)	87.6(2)

Таблица 2. Основные межатомные расстояния и валентные углы в координационных полиэдрах атомов никеля в структуре I, II

D–H…A	Расстояние, Å			Veee DUA -ree
	D-H	Н…А	D…A	угол DHA, град
Ι				
N(1)-H(1A)····O(1S)	0.86	2.14	2.952(2)	158
N(2)-H(2A)····O(2S)	0.86	1.83	2.675(2)	168
N(6)-H(6A)····O(1S)	0.86	2.51	3.345(2)	165
$O(1) - H(1) - O(1w)^{i}$	0.82	1.84	2.656(3)	175
$O(1w) - H(1w1) - N(5)^{ii}$	0.81(2)	2.07(2)	2.851(3)	162(3)
$O(1w) - H(2w1) - O(1S)^{ii}$	0.81(2)	1.99(2)	2.747(3)	158(3)
II				
N(1)-H(1C)···O(2S) ⁱ	0.90	2.22	2.990(8)	143
O(1w)-H(1w 1)…O(3S) ⁱⁱ	0.82(8)	1.98(8)	2.784(11)	164(8)
O(1w)-H(2w 1)…O(3S) ⁱⁱ	0.82(4)	1.98(6)	2.746(8)	155(8)
$N(5)-H(5A)\cdots O(3w)^{ii}$	0.90	2.38	3.269(9)	172
N(5)-H(5 <i>B</i>)····O(1S) ⁱ	0.90	2.31	3.168(8)	159

Таблица 3. Геометрические параметры водородных связей в монокристалле комплексов I, II*

* Кристаллографические положения: $^{i}-x$, 1-y, 1-z; $^{ii}1-x$, 2-y, 1-z (I); $^{i}-1+x$, y, -1+z; $^{ii}-1+x$, 1/2-y, -1/2+z (II).

0.351 и 0.123 Å соответственно. Третий шестичленный хелатный цикл Ni(1)N(3)C(13)C(14)C(15)N(4) находится в *твист*-конформации. и N(2)-H(2A)···O(2S); имеет место также слабая BC N(6)-H(6A)···O(1S) (табл. 3).

В монокристалле комплекса I одна из депротонированных аминогрупп и NH-группа протонированного пиридинового цикла образуют с ацетатионом водородные связи (**BC**) N(1)–H(1*A*)···O(1S) Наличие в монокристалле комплекса I сольватной молекулы воды обусловливает образование еще трех BC: $O(1)-H(1)\cdots O(1-w)^i$, $O(1w)-H(1w1)\cdots N(5)^{ii}$ и $O(1w)-H(2w1)\cdots O(1S)^{ii}$ (кристаллографические

Рис. 1. Структура молекулы комплекса І в представлении атомов эллипсоидами тепловых смещений с 50% вероятностью.

Рис. 2. Упаковка молекул в монокристалле комплекса I (вид вдоль кристаллографической оси x*).

Рис. 3. Структура молекулы комплекса II в представлении атомов эллипсоидами тепловых смещений с 50% вероятностью; атомы ацетат-ионов и сольватных молекул воды и метанола не показаны. На вставке — общий вид молекулы вдоль линии Ni(1)…Ni(2).

положения: ⁱ -x, 1 - y, 1 - z; ⁱⁱ 1 - x, 2 - y, 1 - z). В результате в монокристалле I образуются слои из противоположно направленных бесконечных зигзагообразных цепочек комплексных молекул, связанных посредством ВС через молекулы воды и ацетат-ионы (рис. 2).

При проведении PCA I было обнаружено, что образец комплекса, полученный из реакционной смеси, содержит незначительную (~5%) примесь пластинчатых кристаллов другого соединения. Было установлено, что примесью является трехъядерный комплекс II состава $[Ni_3L'(H_2O)_2]^+ \cdot (CH_3COO)^- \cdot CH_3OH \cdot H_2O.$ Здесь L' – N_5O_2 -донорный двенадцатидентатно-мостиковый лиганд, являющийся, по-видимому, продуктом частичного гидролиза *бис*-азометина H₂L. Его можно описать

КООРДИНАЦИОННАЯ ХИМИЯ том 45 № 3 2019

Рис. 4. Линейные цепочки молекул комплекса II в монокристалле (вид вдоль кристаллографической оси у).

как геминальный диамин, представляющий собой два 3-(((2-аминопиридин-2-ил)метилен)амино)-1аминопропан-2-ольных фрагмента, "сшитых" через 2-аминопиридиновые группы 2-аминопиридин-3-метиленовым радикалом. Мостиковую функцию в лиганде выполняют алкоксидные атомы O(1) и O(2), связывающие соответственно атомы Ni(1) и Ni(3), Ni(2) и Ni(3), и аминный атом N(10), связывающий атомы Ni(1) и Ni(2).

Сольватная молекула метанола в II неупорядочена. В структуре не удалось локализовать атомы Н одной из координированных молекул воды и неупорядоченной сольватной молекулы метанола. Молекулярное строение комплекса II показано на рис. 3.

Координационный полиэдр атомов Ni(1) и Ni(2) в II – слабо искаженный плоский квадрат; структурные параметры обоих атомов довольно близки (табл. 2).

Шестичленные хелатные шиклы Ni(1)N(2)C(4)C(5)C(9)N(3) и Ni(2)N(6)C(13)-C(14)C(18)N(7) несколько искажены в результате выхода атомов Ni из средней плоскости остальных атомов на 0.242 и 0.182 Å соответственно. Шестичленные хелатные циклы Ni(1)N(3)-C(24)C(20)C(19)N(10) и Ni(2)N(7)C(24)C(20)-C(19)N(10) сильно искажены в результате перегиба C(24)····N(10); двугранные линии углы по между средними плоскостями составляют, соответственно, 51.69° и 52.75°. Пиридиновый цикл N(9)C(19)C(20)C(21)C(22)C(23) почти перпендикулярен плоскости Ni(1)Ni(2)Ni(3) (двугранный угол 87.6°).

Конформацию пятичленных металлоциклов Ni(1)O(1)C(2)C(3)N(2) и Ni(2)O(2)C(11)C(12)N(6) можно описать как конверт, клапан которого образован метиновыми атомами C(2) и C(12) соответственно.

Координационный полиэдр атома Ni(3) — искаженный октаэдр; в экваториальной плоскости находятся мостиковые алкоксидные атомы O(1) и O(2) и аминные атомы N(1) и N(5), а в аксиальной — атомы O(1w) и O(2w) координированных молекул воды. Оба пятичленных металлоцикла Ni(3)N(1)C(1)C(2)O(1) и Ni(3)N(5)C(10)C(11)O(2) находятся в *твист*-конформации относительно связей С-С.

В целом симметрия молекулы комплекса II довольно близка к C_s (R = 0.1715). Расстояния Ni···Ni в молекуле комплекса II существенно меньше суммя ван-дер-ваальсовых радиусов: на ~30% для Ni(1)···Ni(2) (2.789(1) Å) и на ~15% для Ni(1)···Ni(3) и Ni(2)···Ni(3) (3.393(1) и 3.369(1) Å соответственно) [22–24].

В монокристалле молекулы комплекса II связаны посредством разветвленной сети BC (табл. 3). За счет BC, образуемых ацетат-ионами и координированными молекулами воды, молекулы комплекса II образуют линейные цепочки, вытянутые вдоль кристаллографической оси z (рис. 4). Между собой цепочки также связаны посредством BC с участием сольватных молекул метанола. Поскольку последние разупорядочены, определить параметры соответствующих связей не удалось.

СПИСОК ЛИТЕРАТУРЫ

- 1. Луков В.В., Щербаков И.Н., Левченков С.И. и др. // Коорд. химия. 2017. Т. 43. № 1. С. 3 (Lukov V.V., Shcherbakov I.N., Levchenkov S.I. et al. // Russ. J. Coord. Chem. 2017. V. 43. № 1. Р. 1. doi 10.1134/ S1070328417010055).
- 2. *Hay P.J., Thibeault J.C., Hoffmann R.* // J. Am. Chem. Soc. 1975. P. 4884.
- 3. *Nishida Y., Kida S.* // Inorg. Chem. 1988. V. 27. № 3. P. 447.
- 4. *Elmali A., Zeyrek C.T., Elerman Y. //* J. Mol. Struct. 2004. V. 693. № 1–3. P. 225.
- 5. *Yamaguchi K., Takahara Y., Fueno T., Houk K.N. //* Theor. Chim. Acta. 1988. V. 73. № 5. P. 337.
- 6. *Tupolova Y.P., Kogan V.A., Lukov V.V. et al.* // Transition Met. Chem. 2007. № 32. P. 656.
- 7. *Chou Y.-C., Huang S.-F., Koner R. et al.* // Inorg. Chem. 2004. V. 43. № 9. P. 2759.
- 8. *Коган В.А., Луков В.В., Новоторцев В.М. и др. //* Изв. АН. Сер. хим. 2005. Т. 4. № 3. С. 592.
- 9. *Lee C.-J., Cheng S.-C., Lin H.-H., Wei H.-H. //* Inorg. Chem. Commun. 2005. V. 8. № 3. P. 235.
- 10. Popov L.D., Levchenkov S.I., Shcherbakov I.N., et al. // Inorg. Chem. Commun. 2012. V. 17. P. 1.

КООРДИНАЦИОННАЯ ХИМИЯ том 45 № 3 2019

- 11. Shcherbakov I.N., Levchenkov S.I., Tupolova Y.P. et al. // Eur. J. Inorg. Chem. 2013. V. 2013. № 28. P. 5033.
- 12. Левченков С.И., Щербаков И.Н., Попов Л.Д. и др. // Коорд. химия. 2014. Т. 40. № 8. С. 451 (Levchenkov S.I., Shcherbakov I.N., Popov L.D. et al. // Russ. J. Coord. Chem. 2014. V. 40. № 8. P. 523. doi 10.1134/S1070328414020055).
- 13. Popov L.D., Tupolova Y.P., Lukov V.V. et al. // Inorg. Chim. Acta. 2009. V. 362. P. 1673.
- 14. Щербаков И.Н., Левченков С.И., Попов Л.Д. и др. // Коорд. химия. 2015. Т. 41. № 2. С. 67 (Shcherbakov I.N., Levchenkov S.I., Popov L.D. et al. // Russ. J. Coord. Chem. 2015. V. 41. № 2. Р. 69. https://doi.org/). doi 10.1134/S1070328415020098
- Swamy B., Swamy J., Ramanuja J. // Orient. J. Chem. 1990. V. 6. P. 95.
- Dasharatham D. // J. Chem. Pharm. Sci. 2011. V. 4. P. 66.

- 17. *Fernando M.R., Ávalos M., Babiano R., Cintas P. //* Eur. J. Org. Chem. 2010. V. 32. P. 6224.
- SMART and SAINT. Release 5.0. Area Detector Control and Integration Software. Bruker AXS, Madison (WI, USA): Analytical X-Ray Instruments, 1998.
- 19. *Sheldrick G.M.* SADABS. A Program for Exploiting the Redundancy of Area-detector X-Ray Data. Göttingen (Germany): Univ. of Göttingen, 1999.
- 20. *Sheldrick G.M.* // Acta Crystallogr. A. 2008. V. 64. № 1. P. 112.
- 21. Spek A.L. // J. Appl. Crystallogr. 2003. V. 36. P. 7.
- 22. Бацанов С.С. // Неорган. матер. 2001. Т. 37. № 9. С. 1031.
- 23. Alvarez S. // Dalton Trans. 2013. V. 42. № 24. P. 8617.
- Hu S.-Z., Zhou Z.-H., Robertson B.E. // Z. Kristallogr. 2009. V. 224. № 8. P. 375.