УДК 546.922+546.98+546.733

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И СВОЙСТВА [Co(NH₃)₆][PdCl₄]Cl

© 2019 г. Е. В. Волчкова^{1, *}, А. В. Чураков², Е. С. Пятахина³, Л. А. Носикова^{1, **}

¹МИРЭА – Российский технологический университет, Москва, Россия

²Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия

³Научно-производственный комплекс "Суперметалл" им. Е.И. Рытвина, пос. Андреевка, Московская область, Россия

*e-mail: volchkovaev@bk.ru **e-mail: nosikova_lyubov@mail.ru Поступила в редакцию 06.07.2018 г. После доработки 22.08.2018 г. Принята к публикации 20.09.2018 г.

Получены и охарактеризованы комплексы [Co(NH₃)₆][PdCl₄]Cl (I) и [Co(NH₃)₆]₂[PtCl₄]₃ (II). Комплекс I выделен впервые. Состав, строение и структуры комплексов подтверждены методами PCA (CIF file CCDC № 1830657), РФА, ИК-спектроскопии, элементного анализа. Термическое разложение комплекса I на воздухе приводит к образованию трехфазного продукта: Pd (пр. гр. *Fm3m*), PdO (пр. гр. *P*4*n*2) и Co₃O₄ (пр. гр. *Fd3m*); комплекса II – двухфазного продукта, состоящего из металлической платины Pt (пр. гр. *Fm3m*) и оксида кобальта Co₃O₄ (*Fd3m*). Выявлена возможность получения однофазного продукта (твердого раствора на основе драгметалла и кобальта) либо термическим разложением соответствующих двойных комплексных соединений в токе водорода, либо химическим восстановлением с использованием раствора N₂H₄ · HCl.

Ключевые слова: комплексообразование, двойные комплексные соединения, палладий, платина, кобальт, биметаллические порошки, термическая устойчивость, химическое восстановление **DOI:** 10.1134/S0132344X19030101

Гетероядерные двойные комплексные соединения (ДКС), содержащие в катионной и анионной комплексных частях центральные атомы разных металлов, интересны как с точки зрения расширения научных основ координационной химии, так и в качестве предшественников порошковых полиметаллических материалов. Наличие уже в самом соединении разных металлов способствует образованию при термическом или химическом разрушении таких ДКС однофазных полиметаллических порошков [1–5], проявляющих высокую каталитическую активность в разнообразных процессах, зачастую превышающую каталитическую способность монометаллических порошков благородных металлов [6–8].

К настоящему времени значительное количество работ посвящено исследованию взаимодействия растворов, содержащих аммиачные комплексы $[M(NH_3)_5X]^{2+}$ (M = Co(III), Cr(III), Rh(III), Ir(III), Ru(III), X = ацидолиганд) и хлорокомплексы платиновых металлов с зарядом анионной части 2– [9, 10], приводящего, как правило, к образованию ДКС с мольным соотношением металлов равным 1 : 1. Следует отметить, что образование ДКС зачастую происходит в результате смешения растворов, содержащих исходные комплексы металлов и не вызывает экспериментальных трудностей.

Взаимодействие хлорокомплексов платины(II, IV) и палладия(II) с катионом гексаамминокобальта(III) [Co(NH₃)₆]³⁺ изучено в гораздо меньшей степени. Первые упоминания о взаимодействии лутеосоли [Co(NH₃)₆]Cl₃ с растворами, содержащими платиновые металлы, относятся ко второй половине XIX в. [11, 12]. Так, В. Гиббс [11] показал, что хлорокомплексы иридия, платины, родия и палладия в этих условиях образуют осадки двойных соединений. Однако состав и свойства образующихся соединений детально не исследованы. Ранее мы показали [13] и позже в [14] было подтверждено, что при взаимодействии $[Co(NH_3)_6]^{3+}$ с раствором, содержащим тетрахлороплатинат(II)-ионы, в твердую фазу выделяется комплекс [Co(NH₃)₆]₂[PtCl₄]₃.

Цель настоящей работы — выделение двойного комплексного соединения на основе катиона $[Co(NH_3)_6]^{3+}$ и аниона $[PdCl_4]^{2-}$, а также сопоставление состава и свойств данного соединения с комплексом $[Co(NH_3)_6]_2[PtCl_4]_3$, синтезируемого в аналогичных условиях.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали $CoCl_2 \cdot 6H_2O$ квалификации "х. ч."; $K_2[PtCl_6]$ квалификации "ч.", $PdCl_2$ квалификации "ч.", Аурат). Реагенты NH_4Cl , $N_2H_4 \cdot HCl$, NH_3 , неорганические кислоты, имели квалификацию "х. ч.". Исходные комплексы $K_2[PtCl_4]$, $K_2[PdCl_4]$, $[Co(NH_3)_6]Cl_3$ синтезировали по методикам, описанным в [15, 16].

Комплексы [Co(NH₃)₆]₂[PtCl₄]₃ и [Co(NH₃)₆]-[PdCl₄]Cl выделяли смешением солянокислых растворов (pH 2), содержащих исходные комплексы платиновых металлов(II) [MCl₄]^{2–} (M = = Pd(II), Pt(II)), и [Co(NH₃)₆]³⁺ ($c_{Pd,Pt,Co}^{\mu cx} =$ = 0.01 моль/л) при комнатной температуре. Образующиеся через ~1 ч осадки отфильтровывали, промывали спиртом и сушили при 30–40°C на воздухе.

Хлорид тетрахлоропалладат(II) гексаамминокобальта(III) [Co(NH₃)₆][PdCl₄]Cl (I) выделяется в виде мелких пластинок бордового цвета. Выход продукта 70.9%.

Найдено, %: H 3.9; N 17.9; Cl 40.3; Co 12.5; Pd 24.6. Для H₁₈N₆Cl₅CoPd (*M* = 444.78) вычислено, %: H 4.05; N 18.9; Cl 39.9; Co 13.3; Pd 23.9.

Монокристалл І выращивали по следующей

методике. К 3 мл раствора $K_2[PdCl_4]$ в 0.01 М HCl медленно приливали 2 мл раствора $[Co(NH_3)_6]Cl_3$ в 0.01 М HCl ($c_{Pd,Co}^{\mu cx} = 0.01$ моль/л). Исходное мольное отношение Pd : Co = 1.5 : 1. Через неделю отделяли кристаллы от маточника, промывали водой и сушили в эксикаторе до постоянной массы.

Комплекс $[Co(NH_3)_6]_2[PtCl_4]_3$ (II) представляет собой кристаллический осадок оранжевого цвета. Выход продукта 71.6%.

Найдено, %: H 2.50; N 12.9; Cl 32.0; Co 8.58; Pt 43.9, Для $\rm H_{36}N_{12}Cl_{12}Co_2Pt_3$

вычислено, %: H 2.70; N 12.6; Cl 31.9; Co 8.84; Pt 43.9,

Выделенные соединения мало растворимы в воде и 0.1–2 М HCl, не растворимы в метиловом и этиловом спирте, эфире, хлороформе, толуоле, метилене, гептане и четыреххлористом углероде, растворимы в 2–3 М растворах HCl при нагревании.

Маточные растворы и растворы, полученные растворением навесок выделенных соединений, анализировали на содержание платиновых металлов по известным спектрофотометрическим методикам с дихлоридом олова [17]; анализ на кобальт проводили комплексонометрическим методом [18].

ЭСП солянокислых растворов регистрировали спектрофотометре SPECORD UV-Visible на Helios в интервале длин волн 200-1000 нм в кварцевых кюветах толщиной поглощающего слоя 1 см. ИК-спектры поглощения записывали на ИК-Фурье спектрометре Eq.55 фирмы Bruker в лиапазоне частот 200-4000 см⁻¹. Лифференциальный термический анализ образцов проводили на воздухе на дериватографе Q-1500 D (Паулик-Паулик-Эрдей; МОМ, Венгрия) с одновременной записью четырех кривых: дифференциальной (DTA), температурной (T), дифференциально-термогравиметрической (DTG) и интеграль-(**TG**) ной кривой изменения массы с использованием программно-аппаратного комплекса, разработанного ООО ИП Тетран, в среде фирмы National Instruments LabVIEW 8.21 (Остин, Техас, США). Температуру измеряли термопарой платина-платинородий (ПП-1) с погрешностью ±5°С в интервале температур 20-1000°С при скорости нагрева 10 град/мин, используя в качестве стандарта α-Al₂O₃. Масса навески составляла 50-100 мг (погрешность взвешивания ± 0.4 мг). Разложение комплексов в токе водорода проводили в трубчатой печи в кварцевых лодочках при $T = 500-550^{\circ}$ С в течение 2 ч.

Пикнометрическую плотность [Co(NH₃)₆] [PdCl₄]Cl и [Co(NH₃)₆]₂[PtCl₄]₃ с использованием ультратермостата марки U10 определяли по методике [19] при температуре 20°C (I) и 22°C (II). Пикнометрическую плотность (ρ_n) рассчитывали по формуле: $\rho_n = (m_2 - m_0)\rho_*/[(m_1 - m_0) - (m_3 - m_2)]$, где m_0 – масса пустого пикнометра, г; m_1 – масса пикнометра с CCl₄, г; m_2 – масса пикнометра с пробой порошка, г; m_3 – масса пикнометра с пробой порошка и CCl₄, г; ρ_* – плотность CCl₄, 1.594 г/см³ (20°C), 1.590 г/см³ (22°C).

Порошки металлов из растворов получали следующим образом. Навески комплексов [Co(NH₃)₆] [PdCl₄]Cl или [Co(NH₃)₆]₂[PtCl₄]₃ массой 0.1 ± ± 0.001 г растворяли в 50 мл 3 М HCl. Раствором щелочи доводили значение pH до 11-12 по индикаторной бумаге, затем вносили каплю раствора $N_2H_4 \cdot HCl c$ концентрацией 1 моль/л, сразу наблюдали образование мелкого черного порошка. Также разложение комплексов осуществляли обработкой навески вещества 1 М раствором NaOH и добавлением к пульпе при перемешивании раствора N₂H₄ · HCl с концентрацией 1 моль/л. Мгновенно происходило образование черного порошка. Порошки отделяли от маточного раствора декантацией, многократно промывали водой и сушили при 40°С до постоянной массы.

Рентгенофазовый анализ (РФА) полученных ДКС и продуктов их термолиза выполняли на дифрактометрах ДРОН-3 (графитовый монохроматор), Bruker D8 (Ni-фильтр) и HZG-4 (Ni-фильтр): Си K_{α} -излучение, вращение образца непрерывный (1 град/мин) b – пошаговый (шаг 0.02°, экспозиция 10 с) режимы в интервале углов 20 20–100. Качественный РФА проводили сравнением рентгенометрических данных синтезированных образцов и фаз, принадлежащих этой системе и изоструктурных с ними, с использованием автоматизированной порошковой базы данных ICDD PDF-2.

РСА выполнен на автоматическом дифрактометре Enraf-Nonius CAD4 при комнатной температуре (Мо K_{α} -излучение, $\lambda = 0.71073$ Å, графитовый монохроматор). Кристаллы I (M = 444.78) тетрагональные, пр. гр. $P4_22_12$, a = 15.490(2), c == 11.307(3) Å, V = 2713.0(9) Å³, Z = 8, ρ (выч.) = = 2.178 Γ/cm^3 , $\mu(MoK_{\alpha}) = 3.506 \text{ mm}^{-1}$, F(000) = 1744. Интенсивности 13350 отражений (из них 2661 независимых, $R_{int} = 0.0376$) измерены с использованием ω -сканирования в интервале $2.23^{\circ} < \theta < 25.96^{\circ}$ $(-19 \le h \le 3, -19 \le k \le 19, -13 \le l \le 13)$. Экспериментальные данные скорректированы с учетом факторов Лорениа и поляризации [20]. Алсорбционная коррекция введена на основе измерений интенсивностей эквивалентных отражений (программа XPREP в пакете SHELXTL [21]). Структура расшифрована прямым методом и уточнена полноматричным анизотропным МНК по *F*² для всех неводородных атомов (SHELXTL). Все Натомы помещены в рассчитанные положения и уточнены по модели "наездника" с учетом вращения вокруг связей Co-N. Окончательные значения $R_1 = 0.0238, wR_2 = 0.0530$ для 2183 отражений с I > $2\sigma(I)$ и 126 параметров уточнения. GOOF = 1.086, $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} = 0.438, -0.558 e/Å^3$. Πараметр абсолютной структуры 0.13(4). РСА выполнен в ЦКП ИОНХ РАН.

Кристаллографические данные структуры I депонированы в Кэмбриджском банке структурных данных (КБСД № 1830657; deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk/data_request/cif).

Размер частиц определяли с помощью анализатора Delsa Nano (Beckman Coulter, Germany).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

При взаимодействии изученных разнозарядных комплексных ионов Co(III) и Pd(II) или Pt(II) (комплексный катион имеет заряд +3, анион заряд -2) ожидаемо выделение ДКС с мольным отношением металлов, отличным от 1 : 1. Однако мы выявили, что взаимодействие раствора, содержащего катионы $[Co(NH_3)_6]^{3+}$ с растворами, содержащими хлорокомплексы платиновых металлов $[MCl_4]^{2-}$ (M = Pd(II) или Pt(II)) приводит к образованию двойных комплексных соединений, различающихся не только природой платинового металла, но и строением. Если в качестве

Рис. 1. Независимая область в структуре [Co(NH₃)₆][PdCl₄]Cl.

исходного соединения выступает тетрахлороплатинат(II) калия, то кристаллизуется комплекс II с мольным соотношением металлов Co : Pt = 1 : 1.5, независимо от заданного исходного мольного соотношения ионов металлов в смешиваемых растворах (Co : Pt = 1 : (0.5–2.5)). Если же в качестве исходного комплекса выступает тетрахлоропалладат(II) калия, выделяется соединение I [Co(NH₃)₆] [PdCl₄]Cl, в котором мольное соотношение металлов Co : Pd = 1 : 1 также независимо от исходного соотношения ионов металлов Co(III) и Pd(II) в смешиваемых растворах. Данный комплекс I выделен впервые.

Структура I состоит из октаэдрического катиона $[Co(NH_3)_6]^{3+}$, квадратного аниона $[PdCl_4]^{2-}$ и хлорид-аниона (рис. 1). Все структурные единицы расположены в общих положениях. Катион представляет собой почти правильный октаэдр с *цис*-углами NCoN в пределах 87.71(15)°– 91.64(15)° и длинами связей Co–N 1.960(3)– 1.969(3) Å. Анион $[PdCl_4]^{2-}$ – почти правильный квадрат с *цис*-углами CIPdCl 89.23(6)°–91.30(4)° и расстояниями Pd–Cl 2.3051(12)–2.3115(13) Å. Согласно данным КБСД [22], длины связей Co–N и Pd–Cl имеют в I обычные значения для комплексных ионов $[Co(NH_3)_6]^{3+}$ и $[PdCl_4]^{2-}$.

Все восемнадцать атомов водорода аминогрупп участвуют в водородных связях (**BC**) N-H····Cl как со всеми атомами хлора иона $[PdCl_4]^{2-}$, так и с хлорид-анионом; пять из этих BC бифуркатные типа Cl···H(N)···Cl. Расстояния N···Cl составляют

Отнесение	[Co(NH ₃) ₆]Cl ₃ [23]	[Co(NH ₃) ₆][PdCl ₄]Cl	$[\mathrm{Co}(\mathrm{NH}_3)_6]_2[\mathrm{PtCl}_4]_3$	
$v_{as}(NH_3)$	3240	3272, 3251 ш. с	3273 ш. с	
$v_s(NH_3)$	3160	3150, 3118 ш. с	3181 ш. с	
$\delta_{as}(HNH)$	1619	1606 c	1610 ш. с	
$\delta_s(HNH)$	1329	1330 оч. с	1341, 1323 оч. с	
r(NH ₃) 831		849 ш. с	828 оч. с	
v(Co-N)) 498 4 477 4 449 4		493 461 432	
δ(ΗΝΗ)	331	333 c	325	
v(M-Cl) (M = Pd(II), Pt(II))		322 c	312	

Таблица 1. Положение полос поглощения в ИК-спектрах комплексов $[Co(NH_3)_6]Cl_3$, $[Co(NH_3)_6][PdCl_4]Cl$ и $[Co(NH_3)_6]_2[PtCl_4]_3$ и их отнесение

3.253(3)–3.650(3) Å, углы N–H···Cl варьируют в пределах 111°–173°. Многочисленные ВС приводят к возникновению в кристалле сложного 3D-связанного супрамолекулярного мотива.

Пикнометрическая плотность комплекса I $(2.19 \pm 0.02 \text{ г/см}^3)$ и II $(2.94 \pm 0.02 \text{ г/см}^3)$ согласуется с данными по расчету рентгеновской плотности: 2.178 г/см³ (I, 20°C) и 2.938 г/см³ (II, 22°C [14]).

В табл. 1 приведены положения полос поглощения в ИК-спектрах комплексов I, II и их отнесение. В ИК-спектрах соединений сохраняются полосы поглощения, отвечающие колебаниям исходных комплексных ионов: [Co(NH₃)₆]³⁺ и $[MCl_4]^{2-}$ (M = Pd(II), Pt(II)) [23]. Однако замена хлорид-иона в [Co(NH₃)₆]Cl₃ на анионные комплексные хлориды платиновых металлов приводит к некоторым изменениям в положениях полос поглощений связей в ИК-спектрах синтезированных комплексов. Наиболее чувствительными к замене анионного окружения оказались колебания связи N-H. Так, в ИК-спектре комплекса II валентные колебания связи N-H v(NH₃) претерпевают высокочастотный сдвиг (33 см⁻¹ для $v_{as}(NH_3)$ и 21 см⁻¹ для v_{s} (NH₃)), что свидетельствует об усилении связи N–Н во внутренней сфере катиона $[Co(NH_3)_6]^{3+}$ по сравнению с $[Co(NH_3)_6]Cl_3$ за счет ослабления ВС между комплексными катионом и анионом. Для комплекса І наблюдается другая картина: происходит уширение и расщепление полос $v(NH_3)$ на две компоненты. Это можно объяснить различным анионным окружением катиона $[Co(NH_3)_6]^{3+}$ в соединении I, составляющим хлорид- и [PdCl₄]²⁻-анионы. Также наблюдаемые изменения и расшепления в положениях полос поглощения деформационных и маятниковых колебаний связей N-H (область 1620-800 см⁻¹) в ИК-спектрах обоих комплексов свидетельствуют

о некотором искажении симметрии октаэдра [Co(NH₃)₆]³⁺ при образовании двойных комплексных соединений.

Сравнение дифрактограмм полученных продуктов I, II и исходных соединений показало, что пики отражения последних на дифрактограмме I, II отсутствуют. Экспериментальная дифрактограмма для полученного в данной статье соединения II и рассчитанная для него же на основании литературных монокристальных данных [14] представлены на рис. 2.

Исследована термическая устойчивость выделенных ДКС и фазовый состав продуктов разложения (разложение проводили на воздухе). В качестве примера на рис. 3 приведена термогравиграмма соединения I.

Разложение комплекса I протекает в ряд трудноразделимых стадий. Начало разложения 230°С. При 270°С наблюдается излом на кривой потери массы (ТG). При этом образец теряет 7.9% от исходной массы, что может быть связано с удалением внешнесферного иона хлора (теоретическая потеря массы 7.97%). Эта стадия сопровождается узким сильным эндоэффектом с максимумом при 262°С. Основная потеря массы (38.5%) происходит в диапазоне температур 27-397°С. Далее до 491°С на кривой ТС наблюдается увеличение массы образца на 2.1%, что, по-видимому, обусловлено процессами окисления металлов. Это подтверждается наличием экзоэффекта с максимумом на кривой производной DTA при 440°C. В диапазоне температур 65–900°С масса образца практически не меняется и не наблюдаются термические эффекты. Полное разложение заканчивается при 935°C; в интервале 900°-935°C происходит уменьшение массы на 3.4%. Суммарная потеря массы составляет 58.5%. РФА продукта термолиза выявил три фазы: металлический палладий Pd (пр. гр. Fm3m), следы оксида палладия

Рис. 2. Экспериментальная (*a*) и рассчитанная из монокристальных данных (*б*) дифрактограммы комплекса [Co(NH₃)₆]₂[PtCl₄]₃.

Рис. 3. Кривые термического разложения комплекса [Co(NH₃)₆][PdCl₄]Cl.

2019

Продукт разрушения			Pd (пр. гр. <i>Fm</i> 3 <i>m</i>)		Рt (пр. гр. <i>Fm</i> 3 <i>m</i>)		
Ι		II		89-4897		04-0802	
20	I _{отн} , %	20	$I_{\rm oth},\%$	20	$I_{\rm oth},\%$	20	$I_{\rm oth},\%$
41.72	100	41.14	100	40.119	100	39.76	100
48.54	44	47.84	46	46.664	44	46.24	53
71.08	21	70.00	34	68.128	21	67.45	31
85.92	21	84.50	37	82.112	21	81.28	33

Таблица 2. Рентгенометрические данные продукта термолиза І и ІІ в токе водорода

PdO (пр. гр. *P*4*n*2) и оксид кобальта Co₃O₄ (пр. гр. *Fd*3*m*).

Комплекс II оказался термически менее устойчив, чем І. Его разрушение начинается уже при 130°С и протекает через ряд трудно разделимых стадий, сопровождающихся слабо выраженными эндоэффектами (максимумы при 260 и 348°С). Процесс разложения завершается при 620°С. Конечное значение потери массы соответствует разложению комплекса до металлической платины и оксида кобальта Со₃О₄ (потеря массы составила 43.1%. масса остатка практическая 21.5 мг, рассчитанная на сумму: платина и оксид кобальта – 21.2 мг). РФА продукта термолиза подтвердил наличие двух фаз: металлической платины Рt (пр. гр. *Fm3m*) и оксида кобальта Co₃O₄ (пр. гр. *Fd3m*). Таким образом, в процессе термического разрушения комплексов на воздухе не образуются однофазные продукты.

Рис. 4. ЭСП растворов, полученных растворением комплексов: $K_2[PtCl_4]$ в 3 М HCl (*1*); $[Co(NH_3)_6]Cl_3$ в 0.01 М HCl (*2*), $[Co(NH_3)_6]_2[PtCl_4]_3$ в 3 М HCl (*3*).

КООРДИНАЦИОННАЯ ХИМИЯ том 45 № 3 2019

Исследование продуктов термолиза комплексов I и II в токе водорода показало, что в восстановительной атмосфере продуктами термического разложения являются твердые растворы на основе платиновых металлов. В табл. 2 приведены рентгенометрические данные продуктов восстановления обоих комплексов. Для продукта восстановления I получено значение параметра элементарной ячейки: $a = 3.748 \pm 0.005$ Å, соответствующее твердому раствору Pd–50% ат. Со (параметр, приводимый в базе данных ICDD PDF-2 65-6075 $a_{\alpha-Co,Pd} = 3.750$ Å (пр. гр. *Fm3m*)). Биметаллические частицы, полученные термолизом в токе водорода, имеют средний диаметр частиц 5.9 мкм.

Параметр ячейки гомогенной фазы в образце, полученном термическим разложением II в токе водорода, $a = 3.799 \pm 0.004$ Å соответствует твердому раствору на основе платины Pt_xCo_{1-x} (параметр $a_{Pt} = 3.923$ Å, приводимый в базе данных ICDD PDF-2 04-0802, параметр кубической ячейки интерметаллида CoPt₃ $a_{CoPt_3} = 3.831$ Å [24]).

Мы выявили. что выделенные соединения І. П растворимы в 2-3 М соляной кислоте, что позволило охарактеризовать состояние комплексных ионов в растворах методом электронной спектроскопии. На рис. 4 приведены ЭСП индивидуальных растворов, полученных растворением соединений – предшественников в солянокислых растворах: $K_2[PtCl_4]$ и [Co(NH₃)₆]Cl₃ – и раствора, полученного растворением 0.02 г навески II в 3 М HCl (25 мл раствора). В ЭСП раствора, полученного растворением ДКС, наблюдаются широкая полоса поглощения при 333 нм с плечом при 327 нм. Полосы поглощения при 390 и 476 нм, которые, как хорошо видно из рис. 4, являются совокупностью спектров исходных комплексов, что свидетельствует о сохранении комплексных сфер при растворении ДКС без изменений. ЭСП раствора, полученного растворением навески I в 3 М HCl также представляет собой совокупность спектров, отвечающих поглощению [Co(NH₃)₆]³⁺-катиона и [PdCl₄]^{2–}-аниона.

Мы опробовали возможность получения гомогенных биметаллических порошков химическим восстановлением либо из растворов, содержащих растворенные ДКС, либо восстановлением из пульпы, состоящей из комплекса I и 1 М раствора NaOH. В качестве восстановителя использовали раствор N₂H₄ · HCl.

Во всех опытах наблюдали фактически мгновенное образование осадков черного цвета. Степень извлечение суммы металлов в твердый продукт составила более 99.9%.

Дифрактограммы продуктов восстановления имеют расширенные рефлексы, что косвенно свидетельствует об ультрадисперсном состоянии частиц. Из рентгенограмм продукта восстановления комплекса I из раствора мы выявили одну фазу, соответствующую твердому раствору Pd_xCo_{1-x} . Оксидные фазы и металлический кобальт в образце не обнаружены.

Получаемые восстановлением из растворов биметаллические частицы имеют размеры 2–3 мкм. Получение наноразмерных порошков требует дополнительного подбора условий.

Таким образом, впервые выделен и охарактеризован комплекс $[Co(NH_3)_6][PdCl_4]Cl$. Показано, что термическое разложение комплексов $[Co(NH_3)_6]$ $[PdCl_4]Cl$ и $[Co(NH_3)_6]_2[PtCl_4]_3$ на воздухе приводит к образованию многофазных продуктов, содержащих металлические и оксидные фазы. Получение однофазного продукта — твердого раствора на основе драгметалла и кобальта — происходит в результате термического восстановления в токе водорода или химического восстановления с использованием в качестве восстановителя раствора $N_2H_4 \cdot HCl$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Шубин Ю.В., Коренев С.В. // XX Менделеевский съезд по общей и прикладной химии. Тезисы докладов. Екатеринбург, 2016. С. 130.
- Asanova T.I., Asanov I.P., Zadesenets A.V. et al. // J. Nanopart. Res. 2013. V. 15. № 10. P. 1994. doi 10.1007/s11051-013-1994-6
- 3. Печенюк С.И., Семушина Ю.П., Михайлова Н.Л., Иванов Ю.В. // Коорд. химия. 2015. Т. 41. № 3. С. 157 (Pechenyuk S.I., Semushina Y.P., Mikhailova N.L., Ivanov Y.V. // Russ. J. Coord. Chem. 2015. V. 41. № 3. Р. 175. doi 10.1134/S1070328415020086).
- 4. Zadesenets A., Filatov E., Plyusnin P. et al. // Polyhedron. 2011. V. 30. № 7. P. 1305. doi 10.1016/j.poly. 2011.02.012
- Мартынова С.А., Юсенко К.В., Корольков М.В., Громилов С.А. // Коорд. химия. 2007. Т. 33. № 7. С. 541 (Martynova S.A., Yusenko K.V., Korol'kov I.V. et al.

Russ. J. Coord. Chem. 2007. V. 33. P. 530. doi 10.1134/ S1070328407070093).

- Chen Y., Mao J., Shen R. et al. // Nano Res. 2017. V. 10. № 3. P. 890. doi 10.1007/s12274-016-1344-y
- 7. Олексенко Л.П., Луценко Л.В. // Журн. физ. химии. 2013. Т. 87. № 2. С. 200. doi 10.7868/S0044453713020210
- Эллерт О.Г., Цодиков М.В., Николаев С.А., Новоторцев В.М. // Успехи химии. 2014. Т. 83. № 8. С. 718 (Ellert O.G., Tsodikov M.V., Nikolaev S.A., Novotortsev V.M. // Russ. Chem. Rev. 2014. V. 83. № 8. P. 718. doi 10.1070/RC2014v083n08ABEH004432).
- 9. Печенюк С.И., Домонов Д.П. // Журн. структур. химии. 2011. Т. 52. № 2. С. 419 (*Pechenyuk S.I., Domonov D.P.* // J. Struct. Chem. 2011. V. 52. № 2. Р. 412. doi 10.1134/S0036023610050128).
- Коренев С.В., Венедиктов А.Б., Шубин Ю.В. и др. // Журн. структур. химии. 2003. Т. 44. № 1. С. 58 (Korenev S.V., Venediktov A.B., Shubin Yu.V. et al. // J. Struct. Chem. 2003. V. 44. № 1. Р. 46. doi 10.1023/ A:1024980930337).
- 11. Gibbs W. // Am. J. Sci. Arts. 1864. V. 57. № 109. P. 57. https://archive.org/details/mobot31753002152640/ page/56.
- 12. Rogojski J.B. // J. Prakt. Chem. 1852. 56. S. 496.
- Волчкова Е.В., Буслаева Т.М., Лютикова Е.К. и др. // Платиновые металлы в современной индустрии, водородной энергетике и в сферах жизнеобеспечения будущего "Берлин – ПМ'2010": материалы IV Междунар. конф. Берлин, 2010. С. 348.
- Avisar-Levy M., Levy O., Ascarelli O. et al. // J. Alloys Compd. 2015. V. 635. P. 48. doi 10.1016/j.jallcom. 2015.02.073
- Справочник. Синтез комплексных соединений металлов платиновой группы / Под ред. Черняева И.И. М.: Наука, 1972. 616 с.
- 16. *Ключников Н.Г.* Руководство по неорганическому синтезу. М.: Химия, 1997. 316 с.
- 17. *Гинзбург С.И., Езерская Н.А.* Аналитическая химия платиновых металлов. М.: Наука, 1972. 614 с.
- ГОСТ 12560.1-78. Сплавы палладий-серебрянокобальтовые. Метод определения кобальта и серебра.
- ISO 8130-3:1992. Coating Powders. Pt. 3: Determination of Density by Liquid Displacement Pycnometer. Geneva, 1992. 8 p.
- 20. *Harms K.* XCAD4. Program for the Lp-Correction of Nonius CAD4 Data. Marburg (Germany), 1997.
- 21. *Sheldrick G.M.* // Acta Crystallogr. A. 2008. V. 64. № 1. P. 112.
- 22. Groom C.R., Bruno I.J., Lightfoot M.P., Ward S.C. // Acta Crystallogr. B. 2016. № 72. P. 171.
- Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991. 536 с.
- Справочник. Диаграммы состояния двойных металлических систем. Т. 2 / Под ред. Лякишева Н.П. М.: Машиностроение, 1997. 1024 с.