УДК 541.49

К 90-летию со дня рождения академика И.И. Моисеева

ПЕРВЫЙ ГЕТЕРОМЕТАЛЛИЧЕСКИЙ АЦЕТАТ-МОСТИКОВЫЙ КОМПЛЕКС Pt(II)—Pd(II): СИНТЕЗ, СТРУКТУРА И ФОРМИРОВАНИЕ БИМЕТАЛЛИЧЕСКИХ НАНОЧАСТИЦ PtPd₂

© 2019 г. Н. В. Черкашина¹, А. В. Чураков¹, И. А. Якушев¹, И. П. Столяров¹, В. Н. Хрусталев², Е. В. Храмов^{2, 3}, А. А. Марков¹, Н. С. Смирнова¹, Я. В. Зубавичус³, П. В. Дороватовский³, Ж. В. Доброхотова¹, А. Б. Илюхин¹, М. Н. Варгафтик^{1, *}

> ¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия ²Российский университет дружбы народов, Москва, Россия ³Национальный исследовательский центр "Курчатовский институт", Москва, Россия *e-mail: wahr36@gmail.com Поступила в редакцию 11.09.2018 г.

После доработки 03.10.2018 г. Принята к публикации 26.10.2018 г.

При взаимодействии ацетатной платиновой сини брутто-формулы Pt(OOCMe)_{2.50} с ацетатом палладия(II) Pd₃(µ-OOCMe)₆ получен первый гетерометаллический ацетат-мостиковый комплекс платины(II) с палладием(II) Pd₂Pt(µ-OOCMe)₆ (I) в виде сокристаллизатов 17Pd₂Pt(µ-OOCMe)₆ · 4Pd₃(µ-OOCMe)₆ · 42C₆H₆ (IIa) и 17Pd₂Pt(µ-OOCMe)₆ · 4Pd₃(µ-OOCMe)₆ (IIb). Методами PCA (CIF files CCDC № 1568105 и 1852744), EXAFS и квантово-химического анализа (DFT и QTAIM) установлена структура комплекса I в виде слегка искаженного треугольника, аналогичная структуре ацетата палладия(II) Pd₃(µ-OOCMe)₆ и гипотетического комплекса платины(II) Pt₃(µ-OOCMe)₆. Термораспад комплекса II а приводит к образованию биметаллического сплава состава PtPd₂. Совместный анализ методами рентгеновской дифракции и EXAFS показал, что полученный материал состоит из "соге-shell" наночастиц "Pt ядро-Pd оболочка" со средним размером ~28 нм и небольшого количества более мелких (~5 нм) наночастиц PdO на их поверхности. Полученные результаты полезны для понимания природы и структуры нанесенной фазы гетерогенных катализаторов Pt-Pd.

Ключевые слова: платина, палладий, ацетатные комплексы, синтез, рентгеноструктурный анализ, кристаллохимия, квантово-химический анализ, наночастицы **DOI:** 10.1134/S0132344X19040029

Конкуренция между платиной и палладием играет важную роль в современном катализе. Во многих случаях смешанно-металлические катализаторы Pt-Pd проявляют повышенную активность и селективность по сравнению с монометаллическими катализаторами [1–5]. Тралиционно такие катализаторы получают путем раздельного нанесения солей или комплексов соответствующих металлов (прекурсоров) с последующей окислительно-восстановительной обработкой нанесенного катализатора. В настоящей работе мы предприняли попытку объединить оба металла в виде гетерометаллического карбоксилатного комплекса, а затем путем термораспада превратить его в смешанно-металлический наноматериал Pt-Pd и исследовать его структуру. Синтез проводили по ранее предложенному методу получения смешанно-металлических карбоксилатных комплексов палладия(II) из ацетата палладия Pd₃(µ-OOCMe)₆ и карбоксилатов лвух- и трехвалентных металлов [6–10]. В качестве исходного платиносодержащего реагента вместо малодоступного и мало реакционноспособного кристаллического ацетата платины(II) $Pt_4(\mu$ -OOCMe)₈ использовали ранее полученный нами и подробно охарактеризованный некристаллический материал - так называемую ацетатную платиновую синь (АПС) брутто-состава Pt(OOCMe)_{2 50} [11]. В результате реакции АПС с Pd₃(µ-ООСМе)₆ в ледяной уксусной кислоте получены кристаллические комплексы 17Pd₂Pt(µ- $OOCMe)_6 \cdot 4Pd_3(\mu-OOCMe)_6 \cdot 42C_6H_6$ (IIa) и $17Pd_2Pt(\mu-OOCMe)_6 \cdot 4Pd_3(\mu-OOCMe)_6$ (IIb), строение которых изучено методами РСА и EXAFS. Далее методами ДТА-ТГ было изучено

-	* *	-	-	-	
Край	Рассеивающий атом	КЧ	<i>R</i> , Å	$\sigma^2, Å^2$	$R_{f},\%$
PdK	0	4.0**	2.00	0.0009	
	Pd	1.0**	3.09	0.0030**	4.1
	Pt	1.0**	3.42	0.0037***	
PtL ₃	0	4.0**	1.97	0.0024	2.2
	Pd	2.0**	3.42	0.0037***	5.5

Таблица 1. Параметры моделирования EXAFS спектров поликристаллического образца IIb*

* R – межатомное расстояние; σ^2 – фактор Дебая; R_f – R-фактор (относительная погрешность при подгонке экспериментальных данных).

** Параметры фиксированы при XAFS моделировании.

*** Параметры приравнены при совместном моделировании Pd- и Pt-данных XAFS.

термическое разложение комплекса IIa, структура наночастиц платина-палладиевого сплава, образовавшегося при термолизе IIa, исследована методами ДТА и EXAFS.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Продукт реакции Pd₃(µ-OOCMe)₆ с АПС в ледяной уксусной кислоте — гетерометаллический ацетат-мостиковый платина(II)-палладий(II) сокристаллизат IIа при хранении на воздухе теряет кристаллизационные молекулы бензола с образованием комплекса IIb. Наличие обоих металлов в составе гетерометаллической части комплекса IIb доказано методом XAFS.

Данные XAFS для К-края палладия и L₃-края платины поликристаллического образца IIb однозначно доказали присутствие атома платины в координационном окружении атомов палладия в гетерометаллической части комплекса IIb (рис. 1, табл. 1).

ЕХАFS спектр К-края палладия моделировали тремя координационными сферами. Наиболее интенсивный пик соответствует четырем расстояниям Pd–O (2.00 Å), тогда как следующие два пика относятся к координационным сферам Pd–Pd и Pd–Pt. Согласно результатам моделирования, один атом палладия находится на расстоянии 3.09 Å от другого. Пик низкой интенсивности, расположенный на расстоянии ~3.1 Å (в шкале R-δ), относится к координационной сфере Pd–Pt. Совместное моделирование спектров для краев Pt и Pd показало присутствие атома Pt на расстоянии 3.42 Å. Фурье-трансформату EXAFS спектра для PtL_3 края молекулы IIb моделировали двумя координационными сферами. Так же как и для PdK-края, первый пик соответствует четырем расстояниям Pt–O при 1.97 Å, тогда как следующий, менее интенсивный пик относится к сфере Pt–Pd с KЧ 2. Небольшое увеличение расстояния Pt–Pd по сравнению с модельной структурой (3.31 Å) можно объяснить некоторым разупорядочением структуры молекулы либо погрешностью в определении расстояния для более удаленных сфер.

Таким образом, данные XAFS для PdK-края и PtL_3 -края однозначно указывают на то, что атомы Pt и Pd входят в состав гетерометаллического остова молекулы IIb. Данные PCA подтвердили этот вывод и дали более подробную структурную информацию.

Согласно данным РСА (рис. 2, 3, табл. 2, 3), кристаллы IIa и IIb содержат гетерометаллический комплекс с треугольным металлоостовом $Pd_2Pt(\mu-OOCMe)_6$, аналогичным металлоостову известного палладий(II)-медного(II) комплекса $Pd_2Cu(\mu-\mu OOCMe)_6 \cdot 2C_6H_6$ [6] и несколько отличающимся от него металлоостовом ацетата палладия(II) Pd₃(µ-ООСМе)₆ [12, 13]. Треугольные фрагменты Pd₂Pt(µ-OOCMe)₆ в кристаллах Па и Пр перпендикулярны кристаллографической зеркальной плоскости, проходящей через позиции M_2 (M = Pd, Pt), и перпендикулярны положениям атомов углерода ацетатных групп С(31) и С(41). В кристалле На позиции М1 и М2 частично заняты атомами палладия и платины с межатомным расстоянием, отличающимся менее чем на 0.05 Å при

Рис. 1. Данные XAFS для поликристаллического образца IIb: PdK-край (а, б) и PtL₃-край (в, г).

соотношении занятости 0.742(3)/0.258(3) и 0.708(3)/0.292(3) соответственно (в кристалле IIb соотношение занятости в позициях М1 и М2 составляют 0.740(13)/0.260(13) и 0.722(14)/0.278(14)). Все атомы металлов имеют несколько искаженную квадратную координацию. Позиции атомов Рd и Pt несколько смещены из плоскости четырех атомов кислорода к центру молекулы (на 0.227(4)–0.242(2) Å).

Интересно отметить, что геометрия металлоостова в кристаллах IIa и IIb определяется атомами палладия, а не платины, тогда как ацетат платины(II) имеет почти квадратную структуру $Pt_4(\mu$ -OOCMe)₈ [14]. В то же время, геометрия треугольного скелета в IIа меняется незначительно после удаления кристаллизационных молекул бензола при образовании кристалла IIb (табл. 2, 3).

В кристалле IIa гетерометаллические молекулы располагаются слоями, совпадающими с зеркальными плоскостями y = 1/4 and y = 3/4. Таким образом, межплоскостное расстояние составляет

Рис. 2. Молекулярная структура (а) и кристаллическая упаковка (б) комплекса IIa, тепловые эллипсоиды с вероятностью 50%. Атомы водорода не показаны.

b/2 = 11.4876 Å. Пространство между этими слоями заполняется кристаллизационными молекулами бензола, связанными лишь слабыми *T*-образными СН····π-взаимодействиями. Этот факт, по-видимому, и объясняет неустойчивость кристаллосольвата Па при хранении на воздухе. В кристалле Пb молекулы комплекса располагаются послойно таким же образом, как и в Па (рис. 2), притом что здесь отсутствуют слои кристаллизационных молекул бензола. Как и ожидалось, эти данные указывают на близкие значения размера ячеек *а* и *с* в кристаллах Па и Пb (табл. 1).

Треугольная геометрия металлоостова в I не типична для карбоксилатов платины(II). Расстояние Pt–Pt в молекуле ацетата платины(II) $Pt_4(\mu$ -OOCMe)₈ [14] и в нескольких известных структурах ацетат-мостиковых комплексов платины(II) с треугольным металлоостовом составляет 2.5–2.6 Å [15–18]. В отличие от этого, най-

Рис. 3. Молекулярная структура (а) и кристаллическая упаковка (б) комплекса IIb, тепловые эллипсоиды с вероятностью 30%. Атомы водорода не показаны.

денное в молекуле I расстояние Pt–Pd составляет 3.16–3.18 Å (табл. 1), так, как если бы оно определялось атомами палладия (для сравнения, 3.1-3.2 Å в Pd₃(μ -OOCMe)₆ [12, 13]).

В связи с этим мы изучили топологию распределения электронной плотности методами QTAIM [19] молекулы I $Pd_2Pt(\mu$ -OOCMe)₆), в комплексе $Pd_3(\mu$ -OOCMe)₆ и в гипотетическом комплексе платины $Pt_3(\mu$ -OOCMe)₆. Расчет показал, что молекулярные графы всех трех треугольных структур весьма близки друг другу (рис. 4, табл. 4).

Значения электронной плотности $\rho_b \approx 0.1$ а.е. и лапласиана электронной плотности $\nabla^2 \rho_b \approx 0.5$ а.е. в

КООРДИНАЦИОННАЯ ХИМИЯ том 45 № 4 2019

критических связевых точках металл—кислород типичны для взаимодействий в системах с замкнутыми оболочками (ионные взаимодействия), в отличие от ковалентного взаимодействия, для которого $\rho_b > 0.2$ а.е., а величина $\nabla^2 \rho b$ имеет отрицательное значение [20]. Индекс делокализации $\delta(M, O)$ (характеризует порядок связи между атомами металла и кислорода) больше для взаимодействия платина—кислород по сравнению с взаимодействием палладий—кислород, несмотря на почти одинаковые межатомные расстояния. Связевые пути металл—металл образуют треугольник с циклической критической точкой $\rho_b \approx 0.01$ а.е. Найденные значения $\rho_b \approx 0.02$ а.е. и

2	n	2
2	υ	2

Таблица 2. Кристаллографические данные и параметры уточнения структуры комплексов IIa и IIb

П	Значение			
параметр	IIa	IIb		
Эмпирическая формула	$C_{24}H_{30}O_{12}Pd_{2.19}Pt_{0.81}$	$C_{12}H_{18}O_{12}Pd_{2.20}Pt_{0.80}$		
М	901.30	744.23		
Цвет, габитус	Оранжевая призма	Оранжевая призма		
Размер кристалла, мм	$0.20\times0.15\times0.15$	$0.05 \times 0.03 \times 0.03$		
Температура, К	150	100		
Сингония	Ромбическая	Ромбическая		
Пр. гр.	Pnma	Pnma		
Размер ячейки:				
<i>a</i> , Å	15.5134(5)	15.533(3)		
b. Å	22.9752(8)	15.007(3)		
<i>c</i> , Å	8.2481(3)	8.3693(17)		
<i>V</i> , Å ³	2939.82(18)	1950.9(7)		
Z(Z')	4 (0.5)	4 (0.5)		
ρ(выч.), г/см ³	2.036	2.534		
μ, мм ⁻¹	5.217	12.632		
<i>F</i> (000)	1735	1424		
$\theta_{min} - \theta_{max}$, град	2.62-30.00	3.18-31.37		
Интервалы индексов отражений	$-21 \le h \le 21, -32 \le k \le 32, \\ -11 \le l \le 11$	$-19 \le h \le 19, -19 \le k \le 18, \\ -10 \le l \le 10$		
Измерено отражений	33832	28416		
Независимых отражений (<i>R</i> _{int})	4387 (0.0287)	2231 (0.0490)		
Отражений с <i>I</i> > 2σ(<i>I</i>)	3933	1910		
Отражения/ограничения/параметры	4387/0/205	2231/24/152		
<i>R</i> -факторы по <i>I</i> > 2 <i>σ</i> (<i>I</i>)	$R_1 = 0.0178, wR_2 = 0.0331$	$R_1 = 0.0495, wR_2 = 0.1281$		
<i>R</i> -факторы по всем отражениям	$R_1 = 0.0224, wR_2 = 0.0343$	$R_1 = 0.0574, wR_2 = 0.1356$		
GOOF	1.067	1.043		
Коэффициент экстинкции		0.0051(5)		
$T_{\rm max}/T_{\rm min}$	0.508/0.422	0.703/0.571		
Остаточная электронная плотность (min/max), $e \text{ Å}^{-3}$	-0.625/0.456	-0.932/1.420		

Расстояния и углы	IIa	IIb
Pd(1)…Pt(1)*	0.016(4)	0.291(13)
Pd(2)…Pt(2)	0.045(9)	0.275(11)
M(1)-M(1A)**	3.163(3)-3.173(3)	3.140(13)-3.36(2)
M(1)–M(2)	3.161(3)-3.183(4)	3.108(13)-3.322(14)
M(1)–O	1.982(3)-2.001(3)	1.929(10)-2.12(1)
M(2)–O	1.977(4)-2.017(4)	1.951(13)-2.019(14)
M(1)M(2)M(1 <i>A</i>)***	59.80(6)-60.02(6)	59.6(3)-60.6(3)
M(2)M(1)M(1A)	59.82(6)-60.27(6)	57.3(2)-59.6(2)
cis-OM(1)O	85.5(1)-92.3(1)	86.1(5)-94.3(5)
trans-OM(1)O	163.7(1)-168.9(1)	163.7(6)-165.8(7)
cis-OM(2)O	83.5(2)-93.1(1)	83.8(8)-91.8(4)
trans-OM(2)O	166.2(2)-167.0(2)	161.5(5)-174.0(8)

Таблица 3. Избранные расстояния (Å) и углы (град) в молекулах IIa и IIb

* Расстояние между атомами Pd и Pt, занимающими одинаковую позицию. ** М обозначает атомы Pd и Pt в одной и той же позиции.

*** Операции симметрии (*A*): *x*, 1.5 – *y*, *z*.

Таблица	4.	Результаты	расчетов	методами	DFT	И	QTAIM	ацетат-мостиковых	комплексов	$Pd_3(OOCMe)_6$,
$Pd_2Pt(OC)$)C	Me) ₆ (I) и Pt ₃	(OOCMe)	6. Приведе	ны сре	едн	ие значе	ния, в скобках станда	артные отклон	нения

Параметры	$Pd_3(\mu$ -OOCMe) ₆	$Pd_2Pt(\mu-OOCMe)_6(I)$	$Pt_3(\mu$ -OOCMe) ₆
	M–M–	М в треугольниках	
$R_1(M-M), \text{\AA}$	2 241(25)	Pd-Pd 3.177	3.144
$R_2(M-M), Å$	- 5.241(25)	Pd-Pt 3.143, 3.249	3.230(9)
<i>q</i> (M)	0.965(1)	Pd 0.967, Pt 0.932	0.948(4)
ρ_b , a.e.	0.017(1)	Pd–Pd 0.018; Pd–Pt 0.023, 0.020	0.025(2)
$\nabla^2 \rho_b$, a.e.	0.039(2)	Pd-Pd 0.044; Pd-Pt 0.052, 0.042	0.049(5)
$\overline{\epsilon_b^*}$	0.096(9)	Pd–Pd 0.112; Pd–Pt 0.072, 0.117	0.038, 0.069(5)
δ(M,M)**	0.128(7)	Pd–Pd 0.132; Pd–Pt 0.197, 0.158	0.237, 0.198(5)

Атомы кислорода ацетатных мостиковых групп

<i>R</i> (М–О), Å	2.007(5)	2.012(7)	2.014(5)
<i>q</i> (O)	-1.132(7)	-1.129(7)	-1.125(4)
ρ_b , a.e.	0.099(2)	0.102(6)	0.108(2)
$\nabla^2 \rho_b$, a.e.	0.534(5)	0.534(13)	0.548(7)
$\overline{\varepsilon_b}^*$	0.164(10)	Pd 0.167(15), Pt 0.183(15)	0.190(14)
δ(M,O)**	0.632(10)	Pd 0.625(13), Pt 0.718(6)	0.709(7)

* Эллиптичность связи, характеризующая диффузность распределения электронной плотности в плоскости, перпендикулярной линии связи.

** Индекс делокализации, характеризующий порядок связи.

Рис. 4. Молекулярные графы комплексов $Pd_3(OOCMe)_6$ (a), $Pd_2Pt(OOCMe)_6$ (б) и $Pt_3(OOCMe)_6$ (в). Показаны ядерные, связевые и циклические критические точки. В структуре $Pt_3(OOCMe)_6$ один из связевых путей Pt-Pt показан сплошной линией (для него $\rho_b = 0.027$ а.е. несколько превышает пороговое значение 0.025 а.е.).

 $\nabla^2 \rho_b \approx 0.05$ а.е. для связевых критических точек металл-металл указывают на слабое взаимодействие в треугольном металлоцикле.

Термические превращения комплекса IIa в инертной атмосфере (Ar) протекают в две стадии (рис. 5). Первая (эндотермическая) стадия связана с удалением кристаллизационных молекул бензола в интервале 50–90°С. Вторая стадия (резкий экзотерм и последующий сложный эндотерм), связанная с удалением всех ацетатных групп, завершается при ~220°С. Кристаллизационные молекулы бензола удаляются даже при хранении комплекса при комнатной температуре; поэтому первая стадия на кривых ДТА–ТГ имеет размытый характер и наблюдаемая потеря массы (~7%) на этой стадии заметно меньше расчетного значения для потери двух молекул C_6H_6 (~17%). При дальнейшем нагревании образца не наблюдается никаких эффектов ДТА–ТГ вплоть до 400°С, так что суммарная потеря массы (~50%)

Рис. 5. Данные ДТА–ТГ для Па в токе Аг при скорости нагрева 10 град/мин: ТГ (1), ДТГ (2), ДСК (3).

соответствует полному разложению комплекса Па с образованием наночастиц биметаллического сплава Pt—Pd.

Исследование твердой фазы, образующейся при термораспаде IIa, методом рентгеновской дифракции показало наличие двух кристаллических фаз: наносплава Pd_xPt_{1-x} с ГЦК структурой с размером частиц (область когерентного рассеяния) ~28 нм и небольшой примеси (~7%) более мелких частиц PdO размером ~5 нм (рис. 6).

Более подробная информация о структуре этих наночастиц Pd—Pt получена методом XANES/EXAFS (рис. 7, 8).

Полученные данные XANES для К-края Pd (рис. 7) показали контур осцилляций, типичный для металлического палладия. Тем не менее положение К-края несколько смещено к более высоким

Рис. 6. Рентгенограмма образца биметаллических наночастиц Pt-Pd.

энергиям, что предполагает либо наличие связи Pd—Pt, либо частичное окисление палладия. Подгонка данных XANES для PdK-края с помощью линейной комбинации данных для Pd металла и референсного спектра PdO позволила оценить мольную долю окисленного палладия как 7.1%. Основной пик Фурье-трансформаты $k^3\chi(k)$ PdKспектра имеет несколько большую интенсивность, что может указывать на наличие Pd—Pt связи. Дополнительный пик при $R \approx 2$ Å, типичный для расстояний металл—кислород, указывает на возможное присутствие оксида палладия.

Кривая XANES PtL_3 образца (рис. 8) почти совпадает с кривой для металлической Pt с небольшими отличиями в интенсивности. Фурье-трансформата $k^3\chi(k)$ PtL_3 -края имеет меньшую интенсивность пика, относящегося к первой координационной сфере, и заметное укороченное расстояние Pt—Pt, что указывает на образование сплава.

Совместное моделирование данных XAFS для Pd- и Pt-краев (структурные параметры, получен-

Образец	Край	Рассеивающий атом	КЧ	<i>R</i> , Å	σ^2 , Å ²	$R_f, \%$
Наносплав Pt—Pd	PtL ₃	Pt	5.6	2.71	0.0072	0.5
		Pd	6.4	2.74	0.0051	
	PdK	Pd	7.8	2.74	0.0049	0.6
		Pt	1.5	2.74	0.0012	
		0	0.7	2.00	0.0080	
Рd-фольга	PdK	Pd	12.0	2.74	0.0047	1.0
Рt-фольга	PtL ₃	Pt	12.0	2.77	0.0048	0.1

Таблица 5. Локальные структурные параметры координационного окружения атомов Pt and Pd по результатам наилучшей подгонки Фурье трансформаты EXAFS для наночастиц сплава Pd—Pt и двух стандартов (массивные металлы Pd и Pt)*

*R – межатомное расстояние, σ^2 – фактор Дебая–Валлера, R_f – фактор согласования.

Рис. 7. Данные XANES (а) и EXAFS PdK-края (б) для наночастиц Pd-Pt (1) и стандарта Pd-фольги (2).

Рис. 8. Данные XANES (а) и EXAFS PtL₃-края (б) для наночастиц Pd-Pt (1) и стандарта Pt-черни (2).

ные при моделировании, приведены в табл. 5) показало следующее.

1. Суммарное KЧ(Pt) (судя по данным для PtL_3 -края), т.е. общее число атомов $N_{Pd} + N_{Pt}$, находящихся рядом с атомом Pt на расстоянии ~2.7 Å, систематически завышается и превышает значение для массивного металла ($N_b = 12$) для Pt, Pd или твердых растворов Pd_xPt_{1-x} в пределах ошибки определения (±1). Поэтому для структурной корректности при окончательной подгонке величины $k^2\chi(k)$ общее КЧ(Pt) принято равным 12. Такое предположение означает, что почти все атомы платины находятся внутри наночастицы. В противном случае, т.е. если бы значительная часть атомов Pt находилась на поверхности, либо в другой фазе с иным типом координации, координационное число $N_{\rm Pd} + N_{\rm Pt}$ должно было систематически занижаться, как это имеет место для PdK-края. Суммарное КЧ ($N_{\rm Pt} + N_{\rm Pd}$) по краю палладия равно 10, что значительно меньше значения для массивного металла. Это может быть объяснено в рамках формирования "core-shell" структуры с тенденцией расположения атомов платины внутри, а атомов палладия — на поверхности частицы. Другим объяснением заниженного суммарного КЧ для палладия может быть переход части палладия в окисленное состояние (PdO).

2. Координационные числа Pt-Pt and Pt-Pd близки друг другу. При этом КЧ Pd–Pt в несколько раз меньше КЧ Pd-Pd. Параметры сегрегации [21], вычисленные из КЧ, равны $J_{Pt} = 82\%$ и $J_{Pd} =$ = 46% соответственно. Это означает, что несмотря на снижение КЧ из-за частичного окисления атомов Pd, наблюдается тенленция к образованию системы "ядро-оболочка" (т.е. "core-shell"). Однако обогащенное платиной "ядро" также содержит некоторое количество атомов палладия, и атомы Pd и Pt более или менее равномерно распределены внутри "ядра" частицы, тогда как "оболочка" состоит в основном из атомов Pd, причем часть из них частично окислена. Доля окисленных атомов Pd, оцененная по координационным числам, составляет ~7.0%, что находится в согласии с данными XANES.

3. Расстояния Pd—Pt, Pt—Pd и Pd—Pd практически совпадают с расстоянием Pd—Pd в первой координационной сфере массивного палладия. Однако расстояние Pt—Pt значительно уменьшено не только по сравнению с расстоянием Pt—Pt в массивной платине, но и с расстоянием Pd—Pd в массивном палладии.

4. Высокое значение фактора Дебая для Pt-Pt (0.0072 Å²) указывает на значительное разупорядочение обогащенного платиной "ядра" наночастицы.

Таким образом, полученные в данной работе результаты подтвердили применимость ацетатной платиновой сини (Pt(OOCMe)₂₅, АПС) в качестве исходного реагента для синтеза новых карбоксилатных комплексов платины. Ранее исходя из АПС мы синтезировали и структурно охарактеризовали методом PCA трехъядерный комплекс платины(IV) с кобальтом(II) $Pt^{IV}Co_2^{II}(\mu,\eta^2-OOCCMe_3)_4(OOCC-Me_3)_2(OH)_2(HOOCCMe_3)_4$ [22], биядерные комплексы платины(III) $Pt_2^{III}(\mu$ -OOCMe)₄(O₃SMe)₂ и Pt^{III} (µ-ООСМе)₄-(O₃SPhMe)₂ [23], а также биядерный комплекс платины(II) Pt^{II}(µ-OOCMe)₄- $Co^{II}(OH_2)$ [11]. В настоящей работе этот подход использован для синтеза комплекса I платины(II) с палладием(II) с треугольным металлоостовом. Данные PCA, EXAFS и квантово-химический анализ методами DFT-QTAIM показали, что структура комплекса I с несколько искаженным треугольным металлоостовом близка к структуре ацетата палладия $Pd_3(\mu$ -OOCMe)₆ и гипотетического комплекса $Pt_3(\mu$ -OOCMe)₆.

Рис. 9. Схематическая структура наноразмерной частицы сплава Pd—Pt: Pd — серый кружок, Pt — белый кружок.

При термическом разложении комплекса IIа выше 200°С в инертной атмосфере получен твердый сплав состава PtPd₂. Данные РФА и XANES показали, что полученный материал PtPd₂ состоит из двух наноразмерных кристаллических фаз: основного компонента — твердого раствора Pd_xPt_{1-x} и небольшой примеси окисленного палладия PdO. Согласно этим результатам, сравнительно более крупные наночастицы фазы Pd_xPt_{1-x} со средним размером (OKP) ~28 нм состоят из обогащенной платиной внутренней области и преимущественно атомов палладия в наружной области (рис. 9).

Небольшое количество частично окисленных атомов палладия (PdO, средний размер ~5 нм), по-видимому, находится на поверхности наночастиц Pd_xPt_{1-x} . Параметр решетки (3.9032 Å) и кратчайшие расстояния Pd–Pd и Pd–Pt (2.74 Å) близки к значениям для массивного палладия. Таким образом, твердый раствор образуется на основе палладиевой матрицы путем замещения части атомов Pd на атомы Pt.

Полученные результаты согласуются с данными опубликованных ранее экспериментальных (в том числе EXAFS) [24] и теоретических [25] работ по биметаллическим наночастицам Pt–Pd с различными соотношениями Pt : Pd. Согласно выводам [24, 25], "core-shell" наночастицы Pt-Pd энергетически более выгодны, чем структуры с равномерным распределением металлов. На примере сравнительно малых наночастиц (размером 2– 3 нм) была показана тенденция к расположению атомов платины во внутренней области наночастиц и вытеснение атомов паллладия на периферию [24, 25]. Результаты нашей работы показывают, что этот вывод справедлив и для более крупных наночастци размером ~28 нм.

Полученные в данной работе результаты проливают некоторый свет на природу нанесенной фазы биметаллических катализаторов Pt–Pd.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Использованные в настоящей работе растворители (ледяная уксусная кислота и бензол ("х. ч.", Реахим, Россия) очищали по стандартным методикам [26]. Ацетат палладия(II) $Pd_3(OOCMe)_6$ ("х. ч.", Реахим, Россия) очищали кипячением в ледяной уксусной кислоте со свежеприготовленной палладиевой чернью и рекристаллизацией из уксусной кислоты. АПС состава $Pt(OOCMe)_{2.50}$ получали из H_2PtCl_6 ("х. ч.", Реахим, Россия) по методике [11].

Элементный С, H, N-анализ выполняли на автоматическом С, H, N-анализаторе EuroVector EA3000 (Italy, 2008). FTIR ИК-спектры регистрировали на спектрометре Nicolet Nexus 460. Оптические спектры записывали на спектрофотометре Varian Cary 50.

Синтез 17 $Pd_2Pt(\mu$ -OOCMe)₆ · 4 $Pd_3(\mu$ -OOC- $Me_{6} \cdot 42 C_{6}H_{6}$ (IIa). Ацетатную платиновую синь (АПС) состава Pt(ООСМе)_{2.5} (190.6 мг, 0.556 ммоль) и ацетат палладия Pd₃(ООСМе)₆ (124.5 мг, 0.556 ммоль) в 100 мл ледяной уксусной кислоты перемешивали на магнитной мешалке при 80°С в течение 19 ч до образования темно-коричневого раствора. Полученный раствор фильтровали и упаривали досуха на ротационном вакуум-испарителе. Сухой остаток экстрагировали несколько раз бензолом порциями по 20 мл до образования бесцветного раствора. Объединенные бензольные вытяжки медленно упаривали на воздухе. Выход темно-оранжевых кристаллов состава 17 $Pd_2Pt(OOCMe)_6 \cdot 4 Pd_3(OOCMe)_6 \cdot 42 C_6H_6 70.3$ мг (33% по Pd).

Найдено, %:	C 26.11;	H 2.21;	Pt + Pd 48.46.
Для C ₁₈ H ₂₁ O ₁₂	$Pd_{2.19}Pt_{0.81}$		
вычислено:	C 26.35;	H, 2.58;	Pt + Pd 47.67.

ИК-спектр (НПВО; v, см⁻¹): 1600 о. с, 1479 сл, 1427 о. с, 1350 ср, 1042 сл, 950 сл, 696 ср, 622 сл, 552 сл. UV-Vis спектр (АсОН; v, нм): 609, 400, 305.

Синтез 17 $Pd_2Pt(\mu$ -OOCMe)₆ · 4 $Pd_3(\mu$ -OOCMe)₆ (IIb). Комплекс IIa легко теряет молекулы кристаллизационного бензола при хранении на воздухе. Через 3 сут и после высушивания в вакуумэксикаторе над парафином в составе бензол не обнаружен. Данные микроанализа показали уменьшенное содержание органических компонентов в соответствии с составом 17 $Pd_2Pt(OOCMe)_6$ · · $4Pd_3(OOCMe)_6$.

Найдено, %:	C, 19.21;	H, 2.13.
Для C ₁₂ H ₁₅ O ₁₂ Pd _{2.2}	$_{0}$ Pt _{0.80}	
вычислено, %:	C, 19.06;	H, 2.08.

Данные РСА подтвердили сохранение ацетатмостиковой структуры Pd₂Pt в IIb после удаления из IIa молекул кристаллизационного бензола.

PCA Па получали на дифрактометре Bruker SMART APEX II в режиме ω -сканирования в Центре коллективного пользования ИОНХ РАН. Данные рентгеновской дифракции для комплекса IIb получали на рентгеновском пучке станции "Белок" Курчатовского Центра Синхротронного Излучения в Национальном Исследовательском Центре "Курчатовский институт" (Москва, Российская Федерация) в режиме ф-сканирования с использованием CCD детектора Rayonix SX165 при 150 и 100 К соответственно. Первичное индексирование, уточнение параметров и интегрирование отражений производили с использованием программы iMOSFLM из программного пакета ССР4 [27] и программы Bruker SAINT [28]. Поправку на поглощение интенсивности рефлексов вносили по программе Scala [29] и SADABS [30]. Структуры расшифрованы прямыми методами и уточнены полноматричным МНК по F^2 с параметрами анизотропного приближения для всех неводородных атомов. Атомы водорода помещены в рассчитанные положения и уточнены в модели "наездника" с $U_{iso}(H) = 1.5U_{eq}(C)$ для метильных групп и $1.2U_{eq}(C)$ для кристаллизационной молекулы бензола. Для кристалла Па парциальные координаты Pd and Pt, тепловые параметры и заселенности уточняли независимо без использования ограничений. В случае кристалла Пр из-за недостаточной кристалличности образца использовали инструкции EADP для позиций обоих металлов.

Расчеты выполнены с помощью программного пакета SHELXTL [30]. Кристаллографические данные для комплексов IIa and IIb депонированы в Кембриджском банке структурных данных (ССDС № 1568105 и 1852744 соответственно).

Термическое разложение комплекса IIa изучали методами калориметрии (ДСК) и термогравиметрии (ТГ) в токе аргона (20 мл/мин) в интервале 20–400°С. Кривые ТГ регистрировали на приборе TG 209 F1 в алундовых тиглях при скорости нагрева 10°С/мин. Данные ДСК получали на приборе DSC 204 F1 в алюминиевых тиглях при скорости нагрева 10°С/мин. Каждый эксперимент повторяли не менее трех раз. Результаты измерений обрабатывали в соответствии со стандартами ISO 11357-1, ISO 11357-2, ISO 11358 и ASTM E 1269-95 с использованием программного пакета NETZSCH Proteus Thermal Analysis.

XANES и EXAFS. Спектры EXAFS PdK- и PtL₃края регистрировали в режиме пропускания. Интенсивность рентгеновского пучка до и после прохождения через образец измеряли, соответственно, в заполненной воздухом и Ar ионизационных камерах. За второй камерой находилась еще одна заполненная Ar ионизационная камера для измерения референсных спектров металлических Pt и Pd, которые использовали для калибровки. При сканировании энергии использовали монокристальный Si (220) монохроматор с разрешением по энергии $\Delta E/E \approx 2 \times 10^{-4}$. Первичную обработку XAFS спектров проводили с помощью программного пакета IFEFFIT [31, 32]. Нормализованные EXAFS k³-осцилляции анализировали в интервале 2.0–12.5 Å⁻¹ для PdK- и PtL₃-края. Подгонку Фурье-трансформат EXAFS осцилляций проводили в интервале 1–3 Å.

Квантово-химические расчеты. Равновесную геометрию молекул рассчитывали методом DFT с гибридным GGA функционалом PBE0 [33] в спин-ограниченном варианте с использованием программного пакета GAMESS-US [34]. Релятивистские эффекты для атомов палладия и платины учитывали введением поправки Дугласа-Кролла третьего порядка и базисного набора Sapporo-DK-DZP [35–38]. QTAIM расчеты проводили с помощью программного пакета AIMAll [39].

Работы по рентгеновской спектроскопии XANES и EXAFS, квантово-химические расчеты выполнены при финансовой поддержке Российского научного фонда (проект № 18-73-10206). Работа выполнена при поддержке Российского фонда фундаментальных исследований (проекты № 17-03-00355, 18-03-00228, 18-33-00632) и программы "5-100" Российского университета дружбы народов с использованием оборудования ЦКП ФМИ ИОНХ РАН.

Рентгеноструктурные исследования комплекса Пb выполнены при поддержке НИЦ "Курчатовский институт" (Приказ № 2683 от 25.10.2018).

СПИСОК ЛИТЕРАТУРЫ

- 1. Chen M., Schmidt L.D. // J. Catal. 1979. V. 56. P. 198.
- Lee Y.W., Ko Y.A.R., Kim D.Y. et al. // RSC Adv. 2012.
 V. 2. P. 1119.

- 3. Morlang A., Neuhausen U., Klementiev K.V. et al. // Appl. Catal. B. 2005. V. 60. P. 191.
- Lapisardi G., Gélin P., Kaddouri A. et al. // Top. Catal. 2007. V. 42–43. P. 461.
- Wang W., Wang Z., Wang J. et al. // Adv. Sci. 2017. P. 1600486.
- 6. Kozitsyna N.Yu., Nefedov S.E., Dolgushin F.M. et al. // Inorg. Chim. Acta. 2006. V. 359. P. 2072.
- Tkachenko O.P., Stakheev A.Yu., Kustov L.V. et al. // Catal. Lett. 2006. V. 112. P. 155.
- 8. Козицына Н.Ю., Нефедов С.Е., Доброхотова Ж.В. и др. // Росс. нанотехнол. 2008. Т. 3. С. 100.
- 9. Nefedov S.E., Kozitsyna N.Yu., Vargaftik M.N. et al. // Polyhedron. 2009. V. 28. P. 172.
- Nefedov S.E., Kozitsyna N.Yu., Akhmadullina N.S. et al. // Inorg. Chem. Commun. 2011. V. 14. P. 554.
- 11. Cherkashina N.V., Kochubey D.I., Kanazhevskiy V.V. et al. // Inorg. Chem. 2014. V. 53. P. 8397.
- 12. Skapski A.C., Smart M.L. // Chem. Commun. 1970. P. 658.
- Cotton F.A., Han S. // Revue de Chimie Minerale. 1985.
 V. 22. P. 277.
- Carrondo M.A.A.F. de C.T., Skapski A.C. // Acta Crystallogr. B. 1978. V. 34. P. 3576.
- Yamaguchi T., Nishimura N., Ito T. // J. Am. Chem. Soc. 1993. V. 115. P. 1612.
- 16. Yamaguchi T., Nishimura N., Shirakura K. et al. // Bull. Chem. Soc. Jpn. 2000. V. 73. P. 775.
- Yamaguchi T., Ito T. // Adv. Inorg. Chem. 2001. V. 52 P. 205.
- Murahashi T., Usui K., Inoue R. et al. // Chem. Sci. 2011. V. 2. P. 117.
- 19. *Bader R*. Atoms in Molecules: A Quantum Theory. Oxford (USA): Oxford Univ. Press, 1994.
- The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design / Eds. Matta C.F., Boyd R.J. Weinheim: WILEY-VCH, 2007.
- 21. *Hwang B.-J., Sarma L.S., Chen J.-M. et al.* // J. Am. Chem. Soc. 2005. V. 127. P. 11140.
- 22. Nefedov S.E., Kozitsyna N.Yu., Cherkashina N.V. et al. // Inorg. Chem. Commun. 2006. V. 9. P. 1026.
- 23. Cherkashina N.V., Nefedov S.E., Klyagina A.P. et al. // Inorg. Chem. Commun. 2012. V. 21. P. 39.
- 24. *Rades T., Pak C., Polisset-Thfoin M. et al.* // Catal. Lett. 1994. V. 29. P. 91.
- 25. *Huang R., Wen Y.H., Zhu Z.Z. et al.* // J. Phys. Chem. C. 2012. V. 116. P. 8664.
- 26. *Perrin D.D., Armarego W.L.F.* Purification of Laboratory Chemicals. Oxford: Pergamon, 1988.
- 27. Battye T.G.G., Kontogiannis L., Johnson O. et al. // Acta Crystalljgr. D. 2011. V. 67. P. 271.
- 28. SAINT Area-Detector Integration Sofware, 2012. Madison (WI, USA): Bruker AXS Inc., 2012.
- 29. Evans P.R. // Acta Crystallogr. D. 2006. V. 62. P. 72.
- 30. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.

- Ravel B., Newville M. // Synchrotron Radiat. 2005.
 V. 12. P. 537. doi 10.1107/S0909049505012719
- Newville M. // J. Synchrotron Radiat. 2001. V. 8. P. 322. doi 10.1007/978-3-319-03762-2
- Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. P. 6158.
- 34. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. 1993. V. 14. P. 1347.
- 35. Yamamoto H, O. Matsuoka O. // Bull. Univ. Electron. Commun. 1992. V. 5. P. 23.
- Noro T., Sekiya M., Koga T. // Theor. Chem. Accounts. 2003. V. 109. P. 85.
- Noro T., Sekiya M., Koga T. // Theor. Chem. Accounts. 2012. V. 131. P. 1124.
- Noro T., Sekiya M., Koga T. // Theor. Chem. Accounts. 2013. V. 132. P. 1363.
- 39. *Keith T.A.* AIMAll (version 16.05.18). Overland Park (KS, USA): TK Gristmill Software, 2016.