УДК 546.733+546.47+548.73

СИНТЕЗ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА АКВАКОМПЛЕКСОВ ЦИНКА И КОБАЛЬТА С КУКУРБИТ[6]УРИЛОМ

© 2019 г. И. В. Андриенко¹, Е. А. Коваленко^{1, *}, И. Е. Кармадонова^{1, 2}, П. Е. Плюснин^{1, 2}, Д. Г. Самсоненко^{1, 2}, В. П. Федин^{1, 2}

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия ²Новосибирский государственный университет, Новосибирск, Россия

> *e-mail: e.a.kovalenko@niic.nsc.ru Поступила в редакцию 19.10.2018 г. После доработки 28.01.2019 г. Принята к публикации 30.01.2019 г.

Супрамолекулярные комплексы [Zn(H₂O)₄(C₃₆H₃₆N₂₄O₁₂)](NO₃)₂ · 6.5H₂O (I), [Zn(H₂O)₄(C₃₆H₃₆N₂₄O₁₂)]-(NO₃)₂ · 7H₂O (II) и [Co(H₂O)₄(C₃₆H₃₆N₂₄O₁₂)](NO₃)₂ · 7H₂O (III) получены при медленном (для I и III) и быстром (для II) охлаждении после кипячения водных растворов смеси солей соответствующих металлов и кукурбит[6]урила. По данным PCA (CIF files CCDC № 1862494 (I), 1862495 (II), 1862496 (III)) супрамолекулярные комплексы являются первыми примерами, где осуществляется прямая координация атомов цинка и кобальта к молекуле кукурбит[6]урила. Соединения I–III охарактеризованы методами PCA, ТГА, ИК-спектроскопии, элементного анализа.

Ключевые слова: комплексы цинка, комплексы кобальта, кукурбит[6]урил, рентгеноструктурный анализ, супрамолекулярная химия, кристаллическая структура **DOI:** 10.1134/S0132344X1906001X

Интерес к комплексам металлов с макроциклическими кавитандами (каликсаренами, циклодекстринами, кукурбит[n]урилами) обусловлен возможностью создания на их основе высокоорганизованных супрамолекулярных ансамблей, сочетающих органические и неорганические строительные блоки [1, 2].

Способность кукурбит[6]урила (СВ[6]) в водных растворах связывать ионы металлов была обнаружена Берендом еще в 1905 г. [3]. Наличие у СВ[6] карбонильных групп, более поляризованных по сравнению со связями С-О в краун-эфирах или криптандах, приводит к более сильным взаимодействиям между кукурбитурилом и катионами металлов, чем с этими органическими макроциклами [4-11]. Молекула СВ[6] построена из шести гликольурильных фрагментов, соединенных метиленовыми мостиками, и по форме напоминает бочку, в плоскости дна и крышки которой находятся атомы кислорода поляризованных карбонильных групп (порталы), способные или координировать ион металла, или образовывать водородные связи с аквакомплексами металлов. Комплексы металлов координируются атомами кислорода, расположенными в плоскости порталов СВ[6], а не включаются в полость кавитанда. Таким образом, уникальное строение СВ[6] позволяет, наряду со включением во внутримолекулярную полость органических молекул, образовывать супрамолекулярные аддукты или комплексы с широким рядом *s*-, *p*-, *d*- и *f*-элементов.

Несмотря на выполненные исследования в области взаимодействия СВ[n] с комплексами переходных металлов, в этой химии остается много "белых пятен". В частности, это относится к соединениям CB[n] с Zn(II). Известен ряд супрамолекулярных архитектур, в которых тетраэдры [ZnCl₄]²⁻ занимают узлы при формировании упаковки так называемых "сотовых структур" [12-23]. В этих комплексах отсутствует прямое взаимодействие атомов цинка и кислорода порталов кукурбитурилов. Есть несколько примеров прямой координации атомов цинка к СВ[5] [24, 25] и к замещенным СВ[6] [26, 27]. Для незамещенных СВ[6] таких примеров нет. Еще менее изучено взаимодействие CB[n] с солями Co(II). Описаны две структуры, где комплексы кобальта занимают полости, образованные различными соединениями кукурбит[*n*]урила с редкоземельными элементами [28-30]. Кроме того, известны примеры образования полиротаксанов на основе комплексов кобальта, органических лигандов и CB[n] [31, 32], имеющих цепочечечное строение. Для СВ[8] получены соединения включения комплексов Со(II) с полиаминными лигандами [33-35].

В настоящей работе сообщается о синтезе, PCA и физико-химических свойствах трех новых супрамолекулярных комплексов кукурбит[6]урила с Zn(II) и Co(II) состава [Zn(H₂O)₄-(C₃₆H₃₆N₂₄O₁₂)](NO₃)₂ · 6.5H₂O (I), [Zn(H₂O)₄-(C₃₆H₃₆N₂₄O₁₂)](NO₃)₂ · 7H₂O (II) и [Co(H₂O)₄-(C₃₆H₃₆N₂₄O₁₂)](NO₃)₂ · 7H₂O (III).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали реагенты $Zn(NO_3)_2 \cdot 6H_2O$ и Co(NO₃)₂ · 6H₂O марки "ч". Кукурбит[6]урил синтезировали по описанной методике [36]. Синтезы проводили в стеклянных флаконах с завинчивающимися крышками. Анализы на C, H, N выполняли в аналитической лаборатории ИНХ СО РАН на приборе Euro EA 3000. ИК-спектры регистрировали на спектрофотометре Scimitar FTS 2000 (таблетки с KBr). Термогравиметрические (ТГ) измерения в атмосфере гелия проводили с использованием микротермовесов TG 209 F1 Iris® фирмы NETZSCH. Масса навески 10 мг, Аl тигель, скорость потока газа 60 мл/мин, скорость нагрева 10 град/мин в интервале температур 20-400°С. Результаты экспериментов обрабатывали с использованием стандартного пакета программного обеспечения ProteusAnalysis [37].

Синтез I и II. 2 мл 1 М водного раствора цинка азотнокислого и 0.020 г декагидратакукурбит[6]урила (C₃₆H₃₆N₂₄O₁₂ · 10H₂O, CB[6] · 10H₂O, 0.018 ммоль) нагревали до 100°С и выдерживали при этой температуре 48 ч. Объемные бесцветные кристаллы I в виде полиэдров получали при медленном охлаждении реакционной смеси до комнатной температуры в течение 2 сут. Выход 0.020 г (83% в расчете на СВ[6] · 10H₂O). При быстром охлаждении реакционной смеси до комнатной температуры в течение 2 ч получали бесцветные кристаллы II в форме палочек. Выход 0.010 г (42%) в расчете на CB[6] · 10H₂O). При извлечении из маточного раствора кристаллы соединений I и II трескаются и теряют кристалличность. Выполненные элементный анализ и ТГА, а также данные ИК-спектров для высушенных на воздухе образцов I и II совпадают.

Найдено, %: С 30.7; Н 4.2; N 25.7. Для С₃₆H₆₂N₂₆O₃₁Zn (в расчете на 9H₂O_{кристал}) вычислено, %: С 30.4; Н 4.4; N 25.6.

ИК-спектр (v, см⁻¹): 3442, 3003, 2955, 2388, 2289, 1740, 1610, 1480, 1416, 1378, 1327, 1299, 1260, 1236, 1191, 1148, 1029, 967, 821, 800, 760, 675, 633, 455.

ТГА: потеря массы 8% при нагревании до 90°C соответствует удалению шести молекул кристаллизационной воды, на второй ступени потеря массы 10% при нагревании до 160°С — удалению трех молекул кристаллизационной и четырех молекул координационной воды.

Синтез III. 2 мл 1 М водного раствора кобальта азотнокислого и 0.020 г $CB[6] \cdot 10H_2O$ (0.018 ммоль) нагревали до 100°С и выдерживали при этой температуре 48 ч. Объемные розовые кристаллы III получали при охлаждении реакционной смеси до комнатной температуры в течение 2 сут. При извлечении из маточного раствора кристаллы трескаются и теряют кристалличность. Выход 0.010 г (42% в расчете на $CB[6] \cdot 10H_2O$)

Найдено, %:	C 31.1;	H 4.1;	N 25.9.		
Для $C_{36}H_{60}N_{26}O_{30}Co$ (в расчете на $8H_2O_{\text{кристал}}$)					
вычислено, %:	C 31.0;	Н 4.3;	N 26.1.		

ИК-спектр (v, см⁻¹): 3420, 3003, 2956, 2388, 2290, 1740, 1610, 1482, 1417, 1378, 1327, 1300, 1260, 1236, 1191, 1149, 1029, 970, 821, 800, 759, 676, 633, 454.

ТГА: потеря массы 5% при нагревании до 90°С соответствует удалению четырех молекул кристаллизационной воды, на второй ступени потеря массы 10% при нагревании до 160°С — удалению четырех молекул кристаллизационной и четырех молекул координационной воды.

РСА. Дифракционные данные для монокристаллов соединений I-III получены при 130 К на автоматическом дифрактометре Agilent Xcalibur, оснащенном двухкоординатным детектором AtlasS2 (графитовый монохроматор, $\lambda(MoK_{\alpha}) =$ = 0.71073 Å, ω -сканирование). Интегрирование, учет поглощения, определение параметров элементарной ячейки проведены с использованием пакета программ CrysAlisPro [38]. Кристаллические структуры расшифрованы по программе SHELXT [39] и уточнены полноматричным МНК в анизотропном (за исключением атомов водорода) приближении (SHELXL) [40]. Позиции атомов водорода органических лигандов рассчитаны геометрически и уточнены по модели "наездника". Катионы Zn(II) в структуре I разупорядочены по трем позициям (Zn(1), Zn(2) и Zn(3)) с относительными весами 0.79/0.12/0.09. Координационное окружение катионов Zn(II), располагающихся в минорных положениях (Zn(2) и Zn(3)), установить не удалось ввиду малой заселенности данных позиций. Катионы Zn²⁺ и Co²⁺ в структурах II и III разупорядочены каждый по четырем равновероятным позициям. Часть координационного окружения катионов Zn²⁺ и Co²⁺ также разупорядочена. Кристаллографические данные и детали дифракционных экспериментов І-ІІІ приведены в табл. 1.

Полные таблицы межатомных расстояний и валентных углов, координаты атомов и парамет-

АНДРИЕНКО и др.

Параметр	Значение		
	Ι	II	III
Брутто-формула	$C_{36}H_{57}N_{26}O_{28.5}Zn$	C ₃₆ H ₅₈ N ₂₆ O ₂₉ Zn	C ₃₆ H ₅₈ N ₂₆ O ₂₉ Co
М, г/моль	1375.44	1384.45	1378.01
Сингония	Ромбическая	Ромбическая	Ромбическая
Пр. гр.	$P2_{1}2_{1}2_{1}$	Pnnm	Pnnm
<i>a</i> , Å	11.5609(2)	11.5797(3)	11.5454(3)
b, Å	16.1024(3)	16.0615(4)	16.0936(5)
c, Å	29.5339(6)	14.8855(4)	14.7975(4)
<i>V</i> , Å ³	5497.98(18)	2768.51(12)	2749.48(13)
Ζ	4	2	2
ρ(выч.), г/см ³	1.662	1.661	1.664
μ, мм ⁻¹	0.564	0.561	0.430
<i>F</i> (000)	2852	1436	1430
Размер кристалла, мм	$0.24 \times 0.12 \times 0.09$	$0.32 \times 0.26 \times 0.19$	$0.24 \times 0.20 \times 0.19$
Область сканирования по θ, град	3.27-25.68	3.38-25.68	3.38-29.06
Диапазон индексов <i>hkl</i>	$-14 \le h \le 15,$	$-15 \le h \le 14,$	$-12 \le h \le 15,$
	$-18 \le k \le 20,$	$-15 \le k \le 20,$	$-16 \le k \le 22,$
N	$-3/ \le l \le 32$	$-13 \le l \le 19$	$-19 \le l \le 21$
<i>N_{hkl}</i> измеренных/независимых	22779/10308	/420/2/38	0.0176
R _{int}	0.0246	0.0142	0.0176
N_{hkl} c $I > 2\sigma(I)$	9253	2385	2808
GOOF по F^2	1.046	1.069	1.063
R -факторы ($I \ge 2\sigma(I)$)	$R_1 = 0.0587,$	$R_1 = 0.0820,$	$R_1 = 0.0742,$
	$wR_2 = 0.1597$	$wR_2 = 0.2390$	$wR_2 = 0.2157$
<i>R</i> -факторы (по всем отражениям)	$R_1 = 0.0671,$	$R_1 = 0.0894,$	$R_1 = 0.0827,$
	$wR_2 = 0.1666$	$wR_2 = 0.2482$	$wR_2 = 0.2250$
Остаточная электронная плотность (max/min), <i>e</i> /Å ³	1.339/-0.395	0.702/-0.841	1.469/-0.646

Таблица 1. Основные кристаллографические данные и параметры уточнения структур I-III

ры атомных смещений для комплексов депонированы в Кембриджском банке структурных данных (№ 1862494 (I), 1862495 (II), 1862496 (III); http:// www.ccdc.cam.ac.uk/structures/), а также могут быть получены у авторов.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Соединения I–III получены при нагревании до 100°С смеси 1 M раствора нитрата цинка или кобальта с CB[6] в течение 48 ч. При медленном охлаждении реакционной смеси в течение 48 ч (синтезы I и III) получены монокристаллы в виде полиэдров, по данным PCA имеющие состав [Zn(H₂O)₄(C₃₆H₃₆N₂₄O₁₂)](NO₃)₂ · 6.5H₂O и [Co(H₂O)₄(C₃₆H₃₆N₂₄O₁₂)](NO₃)₂ · 7H₂O соответственно. При быстром охлаждении реакционной смеси в течение 2 ч (синтез II) образуются моно-

кристаллы в виде палочек, которые, по данным PCA, кристаллизуются в пр. гр. *Рипт* (в отличие от $P2_12_12_1$ для I) и имеют состав [Zn(H₂O)₄-(C₃₆H₃₆N₂₄O₁₂)](NO₃)₂ · 7H₂O. Разный режим охлаждения реакционной смеси в случае соединений I и II с цинком приводит к образованию кристаллов разной формы. При медленном охлаждении кристаллизуется более упорядоченная фаза, в которой симметрия ниже. Быстрое охлаждение приводит к кристаллизации более разупорядоченной фазы, в которой симметрия выше.

При извлечении из маточного раствора кристаллы соединений I–III трескаются и теряют кристалличность. Кристаллы соединений I–III нерастворимы в воде, метаноле, спирте. По данным ТГА, проведенного на свежеприготовлен-

Рис. 1. Координационное окружение катиона Zn(II) в структурах I (а) и II (б). Эллипсоиды 50%-ной вероятности. Атомы водорода не показаны. Для II альтернативные положения катионов Zn(II) и аквалигандов показаны пунктирными линиями.

ных образцах, содержание воды в них выше, чем в образцах, отобранных для PCA.

В структуре комплекса I атом Zn(II) находится в октаэдрическом окружении, состоящем из двух атомов кислорода карбонильных групп молекулы CB[6] (Zn–O 2.124(5) и 2.200(4) Å) и четырех атомов кислорода аквалигандов (Zn–O 2.026(5)– 2.092(5) Å). Таким образом, формируется комплексный катион состава [Zn(H₂O)₄(CB[6])]²⁺ (рис. 1а).

Кристаллы соединений II и III изоструктурны. Атомы Zn(II) в структуре II и Co(II) в III также находятся в искаженном октаэдрическом координационном окружении, состоящем из двух атомов кислорода карбонильных групп молекулы CB[6] (Zn–O 2.103(3) и 2.315(3) Å для II; Co–O 2.075(3) и 2.308(3) Å для III) и четырех аквалигадов (Zn–O 1.864(8)–2.113(4) Å; Co–O 1.934(5)–2.097(3) Å). Центр молекулы CB[6] располагается в частной позиции с симметрией 2/m, что приводит к разупорядочению катиона Zn²⁺ со своим координационным окружением по четырем равнозаселенным позициям (рис. 16).

Катионы Zn^{2+} в структуре I разупорядочены по трем позициям (Zn(1), Zn(2) и Zn(3)), в то время как катионы Zn^{2+} и Co^{2+} в II и III соответственно разупорядочены каждый по четырем равновероятным позициям. Описанные выше комплексные катионы $[M(H_2O)_4(CB[6])]^{2+}$ (M = Zn, Co) в структурах I–III соединены посредством водородных связей между аквалигандами, карбонильными группами молукул CB[6] и молекулами кристаллизационной воды, образуя цепочки, параллельные кристаллографической оси *a*. Цепочки из соседних слоев смещены относительно друг друга на половину трансляции вдоль оси *a* (рис. 2). В пространстве между цепочками образуются каналы, направленные вдоль оси *a*, в которых располагаются нитрат-анионы. Нитрат-анионы, аквалиганды и молекулы кристаллизационной воды образуют единую разветвленную сетку водородных связей: О…О 2.67–2.98 Å для I, 2.63–3.01 Å для II и 2.54–3.00 Å для III.

В ИК-спектрах комплексов I–III в области 3700–3100 см⁻¹ наблюдаются полосы валентных колебаний О–Н молекул кристаллизационной воды, в областях 3100–2980 см⁻¹ – групп N–H и 2980–2890 см⁻¹ – групп С–Н, при 1743–1740 см⁻¹ – колебания групп С=О СВ[6]. Полосы поглощения нитрат-анионов в спектрах комплексов проявляются при 1378 см⁻¹.

Результаты ТГА соединений I–III показывают, что при скорости нагрева 10°С/мин молекулы воды удаляются в интервале 20–160°С в две стадии, процесс сопровождается эндоэффектами. Потеря массы на первой ступени при 90°С составляет 8% для I и II и 5% для III, что соответствует удалению шести и четырех молекул кристаллизационной воды соответственно. Суммарная потеря кристаллизационной и координационной воды на двух ступенях составляет 18 и 15%. Нагревание

Рис. 2. Кристаллическая упаковка в структурах I (а) и II (б). Атомы водорода не показаны. Позиции катионов Zn(II) показаны темными шарами. Показано только одно из альтернативных положений катионов Zn(II) аквалигандов.

выше 250°С приводит к полному термическому разрушению (рис. 3).

Исходя из данных элементного и термогравиметрических анализов состав поликристаллических образцов можно представить следующими формулами: $[Zn(H_2O)_4(C_{36}H_{36}N_{24}O_{12})](NO_3)_2 \cdot 9H_2O$ для соединений из синтеза I и II и $[Co(H_2O)_4-(C_{36}H_{36}N_{24}O_{12})](NO_3)_2 \cdot 8H_2O$ для соединения из синтеза III.

До настоящей работы был получен и структурно охарактеризован единственный комплекс цинка с производным СВ[6] [26], в котором наблюдается непосрественная координация карбонильных групп макроцикла к катиону Zn²⁺. Описано несколько соединений Zn(II) с кукурбит[5]урилом [24, 25]. Примеры комплексов с непосредствен-

Рис. 3. ТГ-кривые для соединений: для $Zn(H_2O)_4(C_{36}H_{36}N_{24}O_{12})](NO_3)_2 \cdot 9H_2O$ (сплошная линия) и $[Co(H_2O)_4(C_{36}H_{36}N_{24}O_{12})](NO_3)_2 \cdot 8H_2O$ (пунктирная линия).

ной координацией карбонильных групп кукурбитурилов к катионам Co²⁺ в литературе отсутствуют. Таким образом, соединения, полученные в настоящей работе — первые комплексы цинка(II) и кобальта(II) с нефункционализированным кукурбит[6]урилом.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 17-73-10213).

СПИСОК ЛИТЕРАТУРЫ

- Lee J.W., Samal S., Selvapalam N. et al. // Acc. Chem. Res. 2003. V. 36. P. 621.
- Lagona J., Mukhopadhyay P., Chakrabarti S. et al. // Angew. Chem. Int. Ed. 2005. V. 44. P. 4844.
- 3. Behrend R., Meyer E., Rusche F. // Justus Liebigs Ann. Chem. 1905. V. 339. P. 1.
- 4. Freeman W.A. // Acta Crystallogr. B. 1984. V. 40. P. 382.
- 5. Герасько О.А., Самсоненко Д.Г., Федин В.П. // Успехи химии. 2002. Т. 71. С. 741.
- Gerasko O.A., Sokolov M.N., Fedin V.P. // Pure Appl. Chem. 2004. V. 76. P. 1633.
- Коваленко Е.А., Наумов Д.Ю., Федин В.П. // Коорд. химия. 2011. Т. 37. С. 139 (Kovalenko E.A., Naumov D.Y., Fedin V.P. // Russ. J. Coord. Chem. 2011. V. 37. P. 137. doi 10.1134/S1070328411010076).
- Коваленко Е.А., Наумов Д.Ю., Федин В.П. и др. // Коорд. химия. 2012. Т. 38. С. 165 (Kovalenko E.A., Naumov D.Y., Fedin V.P. et al. // Russ. J. Coord. Chem. 2012 V. 38. P. 153. doi 10.1134/S1070328412020054).
- Коваленко Е.А., Палаткина М.Ю., Самсоненко Д.Г. и др. // Коорд. химия. 2012. Т. 38. С. 395 (Kovalenko E.A., Palatkina M.Y., Samsonenko D.G. et al. //

КООРДИНАЦИОННАЯ ХИМИЯ том 45 № 6 2019

Russ. J. Coord. Chem. 2012. V. 38. P. 379. doi 10.1134/ S1070328412050041).

- Lü J., Lina J.-X., Caoa M.-N. et al. // Coord. Chem. Rev. 2013. V. 257. P. 1334.
- 11. *Герасько О.А., Коваленко Е.А., Федин В.П. //* Успехи химии. 2016. Т. 85. № 8. С. 795.
- 12. Wei L.T., Zhang Y.Q., Zhou K.Zh. et al. // Inorg. Chim. Acta. 2016. V. 445. P. 1.
- 13. Wei L.T., Zhang Y.Q., Zhou K.Zh. et al. // Inorg. Chim. Acta. 2016. V. 445. P. 277.
- 14. Zhang Ch., Zhang Y.-Q., Xue S.-F. et al. // Inorg. Chim. Acta. 2016. V. 450. P. 258.
- Zhao Y., Liang L.-L., Chen K. et al. // CrystEngComm. 2013. V. 15. P. 7987.
- Qiu Sh.-Ch., Li Q., Zhang J. et al. // J. Incl. Phenom. Macrocycl. Chem. 2016. V. 86. P. 1.
- 17. *Zhang D.-Q., Sun T., Zhang Y.-Q. et al.* // Eur. J. Inorg. Chem. 2015. V. 318. P. 323.
- Qiu Sh.-Ch., Li Q., Chen K. et al. // Inorg. Chem. Commun. 2016. V. 72. P. 50.
- Li Q., Qiu Sh.-Ch., Zhang Y.-Q. et al. // RSC Adv. 2016. V. 6. P. 77805.
- Li Q., Zhang Y.-Q., Zhu Q.-J. et al. // Chem. Asian J. 2015. V. 10. P. 1159.
- Liang L.-L., Zhao Y., Zhang Y.-Q. et al. // CrystEng-Comm. 2013. V. 15. P. 3943.
- 22. Ji N.-N., Cheng X.-J., Zhao Yet al. // Inorg. Chem. 2014. V. 53. P. 21.
- Xiao X., Chen K., Xue S.-F. et al. // J. Mol. Struct. 2010. V. 969. P. 216.
- 24. Cong H., Chen K., Wang Ch.-Z. et al. // Wuji Huaxue Xuebao. 2014. V. 30. P. 2839.

- Liu J.-X., Long L.-Sh., Huang R.-B. et al. // Acta Crystallogr. E. 2005. V. 61. P. m1021.
- 26. Zhang Y.-Q., Zhen L.-M., Yu D.-H. et al. // J. Mol. Struct. 2008. V. 875. P. 435.
- 27. *Qin X., Chen W.-J., Zhang Y.-Q. et al.* // J. Mol. Struct. 2011. V. 996. P. 12.
- 28. *Liang Zh.-Y., Chen H.-Y., Shan Ch.-Y. et al.* // Polyhedron. 2010. V. 110. P. 125.
- 29. *Liang L.-L., Zhao Y., Chen K. et al.* // Polymers. 2013. V. 5. P. 418.
- Limei Zh., Jiannan Zh., Yunqian Zh. et al. // Supramolecular Chem. 2008. V. 20. P. 709.
- 31. *Wang Zh.-B., Zhao M., Li Y.-Zh. et al.* // Supramolecular Chem. 2008. V. 20. P. 689.
- 32. Yi S., Captain B., Ottaviani M.F. et al. // Langmuir. 2011. V. 27. P. 5624.
- Коваленко Е.А., Митькина Т.В., Герасько О.А. и др. // Коорд. химия. 2011. Т. 37 С. 163 (Kovalenko E.A., Mitkina T.V., Geras'ko O.A. et al. // Russ. J. Coord. Chem. 2011. V. 37. P. 161. doi 10.1134/ S1070328411020023).
- Mitkina T.V., Sokolov M.N., Naumov D.Y. et al. // Inorg. Chem. 2006. V. 45. P. 6950.
- 35. *Mitkina T.V., Zakharchuk N.F., Naumov D.Y. et al.* // Inorg. Chem. 2008. V. 47. P. 6748.
- Freeman W.A., Mock W.L., Shih N.-Y. // J. Am. Chem. Soc. 1981. V. 103. P. 7367.
- 37. NETZSCH Proteus Thermal Analysis. Vtersion 4.8.1. Bayern (Germany): NETZSCH-Gerätebau, 2005.
- CrysAlisPro 1.171.38.41. Rigaku Oxford Diffraction. 2015.
- 39. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
- 40. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.