УДК 548.73+546.94

ОСОБЕННОСТИ СТРОЕНИЯ МОНОМЕРНЫХ ОКТАЭДРИЧЕСКИХ МОНООКСОКОМПЛЕКСОВ *d*²-РЕНИЯ(V) С АТОМАМИ КИСЛОРОДА ТРИДЕНТАТНО-ХЕЛАТНЫХ (О,Р,О И О,Р,N) ЛИГАНДОВ

© 2019 г. В. С. Сергиенко^{1, 2, *}

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия ²Всероссийский институт научной и технической информации РАН, Москва, Россия *e-mail: sergienko@igic.ras.ru Поступила в редакцию 16.07.2018 г. После доработки 12.09.2018 г.

Принята к публикации 18.10.2018 г.

Рассмотрены особенности строения восьми моноядерных октаэдрических монооксокомплексов d^2 -Re(V) с тридентатно-хелатными (O,P,O и O,P,N) лигандами [ReO(L_{Tpu}^m)(L_{6u}^n)], [ReO(L_{Tpu}^m)Cl₂], [ReO(L_{Tpu}^m)Cl(PPh₃)]. Показано, что связи Re–O(L_{Tpu}^m)_{*mpanc*} соизмеримы по длине (или несколько короче) со связями Re–O(L_{Tpu}^m)_{*цис*} или Re–O(CT), что свидетельствует о наличии в структуре псевдо-диоксогрупп ReO₂ с повышенной кратоностью обеих расположенных в *mpanc*-положениях друг к другу связей Re–O. В структуре двух соединений связи Re–O(L_{6u}^2)_{*mpanc*} в среднем на 0.094 Å длиннее, чем Re–O(CT) и на 0.189 Å длиннее, чем Re–O(HL $_{6u}^3$)_{*цис*} в соответствии со структурным проявлением *mpanc*-влияния кратносвязанного оксолиганда.

Ключевые слова: кристаллическая структура, рентгеноструктурный анализ, шестикоординационные монооксосоединения *d*²-Re, тридентато-хелатные (O,P,O и O,P,N) лиганды **DOI:** 10.1134/S0132344X19060070

Строение мономерных октаэдрических комплексов (**MOK**) d^0 -, d^2 -металлов V–VII групп (Nb, V, Mo, W, Re, Tc) с кратносвязанными лигандами О(оксо) подробно описано в [1–7]. Для d^2 -Re(V) методом РСА определена кристаллическая структура более 500 соединений – см. Кембриджский банк структурных данных (КБСД, версия 5.38, ноябрь 2017 г. [8]. Большинство из этих комплек- $\cos - MOK \operatorname{ReO}_{okco}O(\operatorname{Lig})_{mpahc} - c$ атомами кислорода моно- и полидентатных лигандов в транспозициях к оксолигандам. Ранее мы опубликовали ряд обобшающих статей по MOK d^2 -Re(V) с лиганлами – атомами галогенилов, азота, серы и водорода, кислорода монодентатных ацидолигандов [гидроксо, алкоксо (метоксо-, этоксо-, пропокco-), OR^{n-} (*n* = 1, 2; R = Ph, Cy, C₆H₄OH, C_6H_4OMe , P(O)(OMe)₂, C(O)(CF₃), OCMe(CF₃)₂, BF₃), OERⁿ⁻ (n = 1, 2; E = Si, B, S; R = Me₃, F₃, O_2CF_3], бидентатно-хелатных (O,O), (O,S), (O,C), (O,P), (O,N) однозарядных лигандов, тридентатно-хелатных (O,N,O) [9], (O,O,O) [10], (O,S,O и S,O,S) [11] одно- и двузарядных лигандов, а также нейтральных кислородсодержащих лигандов молекул воды, фосфин- и арсиноксидных OER₃ (E = P, As; R₃ = Ph₃, PhEt₂), молекул OR' [ДМФ, R"OH (R" = Me, Et, Pr), L (ON₄C₆ · C₆H₁₀, O⁻(C₆H₃MeCH₂NH⁺Et₂)), O⁻(NH⁺C₅H₄)] в *транс*-позициях к кратносвязанным лигандам O(оксо). Ранее мы опубликовали обзорные статьи по особенностям строения MOK d^0 -Re(VII) [12] и d^0 -, d^2 -технеция(V, VII) [13].

Структурное проявление *транс*-влияния кратносвязанного лиганда O(оксо) (**СПТВ**) – удлинение противолежащей связи Re– L_{mpahc} – характеризуется параметром Δ (разность длин одноименных связей {[Re– L_{mpahc}] – [Re– L_{uuc}]}). Если в структуре нет лигандов одного сорта и в *транс*-, и в *цис*позициях к O(оксо), мы используемем параметр {[Re– L_{mpahc}] – [Re–L(CT)]}, где CT – среднестатистическая стандартная длина связи Re(V) с атомом лиганда того же сорта, что и L_{mpahc} . В качестве параметра Re–O(CT) мы приняли (как и в [4]) значение 2.04 Å.

В настоящей статье обсуждается строение мономерных октаэдрических монооксокомплексов

Рис. 1. Строение комплексов: [ReO (L^1_{TDH}) Cl(PPh₃)] (I); [ReO $(L^2_{TDH})(L^1_{6H})$] (II).

 $[\text{ReO}(L^m_{\text{три}})(L^n_{6u})]$, $[\text{ReO}(L^m_{\text{три}})\text{Cl}_2]$, содержащих тридентатно-хелатный (O,P,O или O,P,N), а также бидентатно-хелатный или два монодентатных лиганда.

Основные длины связей в восьми структурно исследованных соединениях указанного выше типа приведены в табл. 1.

СТРОЕНИЕ КОМПЛЕКСОВ С ТРИДЕНТАТНО-ХЕЛАТНЫМ (О,Р,О) ЛИГАНДОМ

В каждом из двух рассматриваемых в данной главе комплексов все три атома двухзарядных тридентатно-хелатных (O,P,O) лигандов L_{Tpu}^{m} (m = 1, 2) расположены на общей грани октаэдра атома Re (*fac*-изомер). *Транс*-позицию к кратносвязанному оксолиганду в обеих структурах занимает один из двух алкоксиатомов кислорода лиганда L_{Tpu}^{m} . При координации с атомом рения лигандов L_{Tpu}^{m} замыкаются два сочлененных по связи Re-P аналогичных пятичленных металлоцикла ReOC₂P. Строение комплекса [ReO(L_{Tpu}^{1})Cl(PPh₃)] · CH₃Cl₂ (I). В кристаллической структуре I [14]

• СН₃Cl₂ (I). В кристаллической структуре I [14] (рис. 1) в тридентатном *бис*(хелатном) ((2-триметилсилилокси)фенил)*бис*(2-фенолято)фосфиновом лиганде P(C₆H₄O)₂(C₆H₄OSiMe₃ (L¹_{три}) группа Me₃SiOC₆H₄ концевая. Связь Re–O2(L¹_{три}) в *транс*-позиции к O1(оксо) 2.047 Å на 0.028 Å

КООРДИНАЦИОННАЯ ХИМИЯ том 45 № 6 2019

длиннее, чем Re–O3 $(L^{1}_{TPH})_{\mu\muc}$ 2.019 Å. Из двух связей Re–P одна – с атомом P(1) лиганда L^{1}_{TPH} (2.4833 Å) – заметно длиннее, чем Re–P2(PPh₃) (2.4240 Å).

Строение комплекса [ReO $(L^2_{TDH})(L^1_{\overline{DH}})$] (II) с бидентатно-хелатным (O,P) лигандом L¹_{би}. В кристаллической структуре II [15] (рис. 1) тридентатно-хелатный бис(о-гидроксифенил)фенилфосфиновый лиганд (OC₆H₄)₂PPh $\left(L^2_{_{TPH}}\right)^{2-}$ замыкает два пятичленных металлоцикла ReOC₂P, а однозарядный бидентатно-хелатный (О,Р) (о-гидроксифенил)дифенилфосфиновый лиганд OC₆H₄PPh₂ $\left(L^{l}_{\delta u}
ight)$ – один аналогичный хелатный цикл. Отметим, что в комплексе II, в отличие от I, связь Re- $O3(L^2_{_{TPH}})_{_{mDaHc}}$ 2.026 Å не длиннее, а несколько короче (на 0.024 Å), чем Re–O2 $(L^2_{_{TPH}})_{_{uuc}}$ (2.050 Å), а также связь Re–P1 (L^2_{TDH}) 2.391 Å заметно короче (на 0.092 Å), чем аналогичная связь в I, и на 0.037 Å короче связи $P2(L_{6\mu}^2)$ в данном соединении II (2.428 Å). В комплексе II атом рения, как обычно, смещен из экваториальной плоскости атомов O_2P_2 к оксолиганду: параметр Δ_{Re} равен 0.273 Å.

Комплекс	Re=O	Re–L _{uuc}	Re–O _{<i>mpahc</i>}	Δ, (Δ)	Литература
$[\operatorname{ReO}(\operatorname{L}^{1}_{\mathrm{TPH}})\operatorname{Cl}(\operatorname{PPh}_{3})]$ CH ₃ Cl ₂ (I)	1.670(3)	2.019(3) $O(L^{1}_{TPH})$	2.047(3)	0.028	[14]
		2.4833(12) $P(L_{Tp\mu}^{1})$ 2.4240(12) $P(PPh_{3})$ 2.3759(12) Cl	$O(L^1_{_{TPH}})$		
$[\operatorname{ReO}(L^2_{\rm TPH})(L^1_{\rm 6H})] (II)$	1.692(3)	2.050(3) $O(L_{TPH}^2)$	2.026(3)	-0.024	[15]
		1.994(2) О $(L^1_{6\mu})$	$O(L^2_{_{TPH}})$		
		2.391(1) $P(L_{6H}^2)$			
		2.428(1) $P(L_{6\mu}^{1})$			
$[\text{ReO}(\text{HL}_{\text{три}}^3)\text{Cl}_2] \text{ (III)}$	1.680(7)	2.224(8) N(L_{TPH}^3)	1.943(7)	(-0.097)	[16]
		2.414(2) Р(HL ³ _{три}) 2.453(3) Сl(<i>транс</i> к Р)	$O(HL_{TPH}^3)$		
	1 605(0)	2.353(3) Cl(mpahc K N)	1.052(0)	(0.087)	[16]
$[\text{ReO}(L_{\text{три}})\text{Cl}_2] (\text{IV})$	1.093(9)	2.111(11) N(L_{TPH}) 2.433(4) P(L_{TPH}^{3}) 2.438(4) Cl(<i>mpahc</i> κ P) 2.376(4) Cl(<i>mpahc</i> κ N)	$O(L_{три}^3)$	(-0.087)	[10]
$[\operatorname{ReO}(L_{Tp\mu}^{3})\operatorname{Cl}_{2}] \cdot \\ \cdot 0.25\operatorname{CH}_{2}\operatorname{Cl}_{2}(V)$	1.702(12) ± 0.009	$2.123(15) \pm 0.014 \text{ N} (L_{три}^3)$	$1.966(12) \pm 0.005$	(-0.080)	[17]
		2.447(6) \pm 0.005 P(L ³ _{три}) 2.438(6) \pm 0.007 Cl(<i>mpahc</i> κ P) 2.396(6) \pm 0.007 Cl(<i>mpahc</i> κ N)	$O(L_{TPH}^3)$		
$[\text{ReO}(\text{HL}_{\text{три}}^4)\text{Cl}_2] \cdot \\ \cdot \text{MeOH} (\text{VI})$	1.679(4)	2.195(4) N (HL_{TPH}^4)	1.976(3)	(-0.064)	[18]
		2.414(1) P(HL ⁴ _{три}) 2.429(1) Cl(<i>транс</i> к Р) 2.344(1) Cl(<i>транс</i> к N)	$O(HL_{TPH}^4)$		
$[\operatorname{ReO}(L^{5}_{\mathrm{три}})(L^{2}_{\mathrm{6u}})] \cdot \\ \cdot \operatorname{MeOH}(\operatorname{VII})$	1.6680(4)	1.951(4) О(L ⁵ _{три})	2.100(4)	(0.060) 0.149	[19]
		2.025(5) N(L_{TPH}^5)	$O(L^2_{6\mu})$		
		2.471(2) $P(L_{TPH}^5)$			
		2.459 P($L_{6\mu}^2$)			
$\frac{[\text{ReO}(L_{\text{три}}^5)(\text{H}L_{6\mu}^3)]\text{Cl}}{(\text{VIII})}$	1.667 ± 0.004	$1.939 \pm 0.003 \text{ O} \big(L_{_{\rm TPH}}^5 \big)$	2.168(3) ± 0.003	(0.128) 0.229	[19]
		$2.012 \pm 0.017 \text{ N} (\text{L}_{\text{три}}^5)$	$O(L_{dm}^2)$		
		$2.465 \pm 0.017 \ P(L_{_{TPH}}^5)$			
		$2.455 \pm 0.004 P(L_{6\mu}^3)$			

Таблица 1. Основные геометрические параметры (Å) в мономерных октаэдрических комплексах с тридентатнохелатными (O,P,O и O,P,N) лигандами*

СТРОЕНИЕ КОМПЛЕКСОВ С ТРИДЕНТАТНО-ХЕЛАТНЫМ (O,P,N) ЛИГАНДОМ

Известна кристаллическая структура шести моноядерных октэдрических комплексов, содержащих тридентатный *бис*(хелатный) лиганд (O,P,N).

В каждом из этих соединений все три атома однозарядных тридентатно-хелатных (O,P,N) лигандов $L_{\text{три}}^{m}$ (m = 3-5) расположены на общей грани октаэдра атома Re (*fac*-изомер). *Транс*-позицию к кратносвязанному оксолиганду во всех шести структурах занимает фенольный атом кислорода лиганда $L_{\text{три}}^{m}$. При координации с атомом рения лигандов $L_{\text{три}}^{m}$ замыкаются два сочлененных по связи Re–N хелатных цикла, один из которых всегда шестичленный RePC₃N, а второй различается дентатностью (подробнее см. далее).

Строение комплексов [ReO $(L^m_{\text{три}})$ Cl₂)] (m = 3, 4). Определена структура четырех соединений, содержащих однозарядные тридентатные бис(хелатные) лиганды (O,P,N). Во всех комплексах хлоро-лиганды расположены в цис-позициях друг к другу. Комплексные молекулы в трех из них - $[\text{ReOCl}_{2}(\text{HL}_{\text{три}}^{3})]$ (III) [16], $[\text{ReOCl}_{2}(\text{L}_{\text{три}}^{3})]$ (IV) [16] (рис. 2) и [ReOCl₂(L³_{три})] 0.25CH₂Cl₂ (**V**) [17] – имеют близкое строение. В комплексе III атом азота лиганда (2-дифенилфосфинопропиламинометил)фенолято OC_6H_4 -2- $CH_2NH-(CH_2)_3PPh_2(HL_{три}^3)^-$ протонирован и *sp*³-гибридизован, в отличие от *sp*²-гибридизованного атома N лиганда 2-дифенилфосфинопропилиминометил)фенолято OC₆H₄-2-CH=N-(CH₂)₃PPh₂ ($L^3_{_{TPH}}$) в структуре IV, V с двойной связью N=C(1). Длины связей в октаэдpax ReO₂NPCl₂ в трех структурах близки по длине, за одним исключением: связи Re-N(L³_{три}) в IV, V 2.111, 2.123 \pm 0.014 Å (в структуре V – две независимые молекулы) заметно короче, чем 2.224 Å в III. Естественно, что двойная связь N=C(1) в IV, V 1.35(2) 1.305(20) \pm 0.005 Å существенно короче одинарной в III (1.504(14) Å), а углы ReNC1 в IV, V 127.5(11)°, 126.9(13)° ± 2.1° больше, чем в III (111.8(6)°). При координации с атомом Re лиганды $L^3_{\text{три}}$, $HL^3_{\text{три}}$ формируют два шестичленных металлоцикла: RePC₃N и ReOC₃N. Отметим, что во всех трех структурах две независимые связи Re-Cl различаются по длине: Re-Cl(1), транс к Р, длиннее, чем Re-Cl(2), *транс* к N (соответственно 2.438–2.454 и 2.353–2.396 Å), очевидно, из-за более сильного *транс*-влияния атома фосфора. Авторы [17] явно ошибочно приписывают разницу длины двух связей Re-Cl *транс*-эффекту более прочной связи Re–N.

В кристаллической структуре $[ReOCl_2(HL_{три}^4)]$ (VI) [18] (рис. 2) лиганд 2-((2-дифенилфосфино)бензиламино)фенолято $Ph_2PC_6H_4$ -2-CH₂NHC₆H₄O⁻ (HL⁴), координируясь с атомом рения, замыкает два металлоцикла (сопряженных по связи Re–N) – шестичленный RePC₃N и пятичленный ReOC₂N.

Строение комплексов [ReO $(L^5_{_{TPH}})(L^n_{_{GH}})$] с бидентатно-хелатными лигандами (О,Р). Определена кристаллическая структура двух соединений $[\text{ReO}(L_{\text{три}}^{5})(L_{6u}^{n})]$ [19], содержащих двухзарядный 2-(дифенилфосфинил)-N-(2-оксоэтил)бензамидный лиганд $O(CH_2)_2 NC(=O)C_6 H_4 PPh_2 (L_{три}^5)$. Со-единения различаются бидентатно-хелатными (О,Р) лигандами – однозарядный 2-(дифенилфосфанил)бензоато $OC(=O)C_6H_4PPh_2$ ($L_{6и}^n$) в структуре нейтрального комплекса с метанольным сольватом [ReO(L_{TDH}^5)(L_{GH}^n)] · MeOH (VII) и нейтральный 2-(2-(дифенилфосфанил)-N-(2-гидроксиэтил)бензамид OC{NH(CH₂)₂CO₂}C₆H₄PPh₂ (HL³_{6и}) в катионном однозарядном комплексе с противоионом хлором $[ReO(L_{три}^5)(HL_{6u}^3)]Cl$ (VIII) (рис. 2). В обеих структурах комплексы имеют сходное строение. Лиганд $L_{_{TPH}}^5$, имеющий в VII, VIII меридианальную (mer) геометрию, при координации с атомом Re замыкает сочлененные по связи Re-N шести- и пятичленный металлоциклы $RePC_3N$ (A) и $ReOC_2N$ (B). Бидентатно-хелатные лиганды $L_{6\mu}^n$ в структуре VII, VIII образуют с атомами металла пятичленные хелатные циклы ReOC₃P (В). Структура VIII, содержащая две кристаллографические молекулы, определена с невысокой точностью, и ее геометрические параметры в [19] не обсуждаются. В структуке VII шестичленный металлоцикл Α существенно неплоский; максимальное отклонение от средней плоскости (**Δ**_{ср}) составляет 0.223 Å. Пятичленный хелатный цикл Б имеет конформацию N-конверта с отклонением атома азота от средней плоскости ReOC₂ (±0.022 Å) на 0.179 Å. Так же, как и А, металлоциклы В в обоих комплексах структуры VIII существенно неплоские (Д_{ср} 0.341 Å). В транс-позициях к оксолигандам в структуре VII, VIII, в отличие от структуры комплекса II, находятся атомы кислорода бидентатно-хелатных Lⁿ_{би} (а не тридентатно-хелатного L^2_{TDH} , как в II). При этом связи Re–O($L_{6\mu}^n$) в VII, VIII (2.100, 2.168 Å) существенно длиннее, чем $\text{Re-O}(L^m_{TDM})$ в I-VI (1.943-2.047 Å) (подробнее см. далее).

Рис. 2. Строение комплексов: $[\text{ReO}(L_{TDH}^3)\text{Cl}_2]$ (IV); $[\text{ReO}(\text{HL}_{TDH}^4)\text{Cl}_2]$ (VI); $[\text{ReO}(L_{TDH}^5)(\text{HL}_{\delta H}^3)]^+$ (VIII).

ОСОБЕННОСТИ СТРОЕНИЯ МОНОМЕРНЫХ ОКТАЭДРИЧЕСКИХ МОНООКСОКОМПЛЕКСОВ РЕНИЯ(V) С ТРИДЕНТАТНО-ХЕЛАТНЫМИ ЛИГАНДАМИ (О,Р,О И О,Р,N)

В табл. 2 приведены средние значения основных геометрических параметров в структуре I–VIII.

Остановимся на двух особенностях стереохимии октаэдрических монооксокомплексов металлов V–VII групп (в том числе рения).

1. Выбор *транс*-партнера (при наличии конкурирующих лигандов) определяется "принципом самосогласованности" [2]: в *транс*-положении к кратносвязанному лиганду O(оксо) по преиму-

Параметр	Значение, Å*		
Re-O(оксо)	$1.667 - 1.702$ {8} (1.682 ± 0.020)		
$\operatorname{Re-O}(L^n_{\operatorname{Gu}})_{mpahc}$	2.100, 2.168 {2} (2.134 \pm 0.034)		
$\operatorname{Re-O}(L^m_{\mathrm{три}})_{mpahc}$	$1.943 - 2.047$ {6} (2.003 ± 0.060)		
$\operatorname{Re-O}(L^m_{\mathrm{TPH}})_{\mu\mu c}$	1.939-2.050 {4} (1.990 ± 0.060)		
$\Delta\{\text{Re-O}(L^m_{\text{три}})\}$	$0.028, -0.024$ {2} (0.002 ± 0.026)		
(Δ) {Re-O(L ^m _{TPH})}	$-0.0970.064$ {4} (-0.082 ± 0.018)		
(Δ) {Re-O(L ⁿ _{$\delta \mu$})}	$0.149, 0.229$ {2} (0.189 ± 0.040)		
$\operatorname{Re-N}(L^{m}_{\text{три}})_{uuc}$	$2.001 - 2.224$ {6} (2.115 ± 0.109)		
Re-Cl(<i>mpaнc</i> к P)	$2.424-2.454$ {5} (2.437 \pm 0.014)		
Re-Cl(<i>mpaнc</i> к N)	$2.344 - 2.396$ {4} (2.368 ± 0.028)		
$\Delta \{ \text{Re-Cl}(mpahc \ltimes P-mpahc \ltimes N) \}$	$0.042 - 0.101$ {4} (0.072 ± 0.030)		
$\operatorname{Re}-\operatorname{P}(\operatorname{L}^{m}_{\operatorname{три}})$	$2.391 - 2.483$ {8} (2.440 ± 0.049)		
$\operatorname{Re}-\operatorname{P}(\operatorname{L}^{n}_{\operatorname{dr}})$	2.428-2.459 {3} (2.442 ± 0.017)		
Re–P(Ph ₃)	2.424 {1}		

Таблица 2. Основные геометрические параметры (Å) мономерных октаэдрических монооксокомплексов d^2 -Re(V) с тридентатно-хелатными (O,P,O и N,P,O) лигандами

* Приведены интервалы значений, число примеров (в фигурных скобках) и средние значения с их разбросом (в круглых скобках).

ществу располагается наименее поляризуемый нейтральный σ-донорный лиганд (атом), связь с которым легче ослабить, а не отрицательно заряженный (ацидо) лиганд (атом).

2. Связи Re–L, *транс* к O(оксо), удлиняются из-за СПТВ кратносвязанного оксолиганда.

Первое правило не реализуется во всех восьми обсуждаемых в данном обзоре комплексах: в соединениях I-VIII в *транс*-позициях к O(оксо) расположены ацидоатомы кислорода лигандов $L_{\text{три}}, L_{6\mu}$. При этом связи $\text{Re-O}(L_{\text{три}}^m)_{mpahc}$ 1.943-2.047 Å в шести из восьми рассмотренных комплексов I-VI соизмеримы по длине со связями $\text{Re-O}(L^{m}_{\text{три}})_{mc}$ в I, II, VII, VIII: 1.939–2.050 Å [а не длиннее, как Re–O $(L^{n}_{6u})_{mpahc}$ в VII, VIII (на 0.149, 0.229 Å) и в большинстве монооксооктаэдрических комплексов d^2 -Re(V) вследствие СПТВ]. Этот факт, казалось бы, противоречит "принципу самосогласованности" [2]. Однако на самом деле расстояния Re-O(L_{три}) в *транс*-позициях к оксолигандам в соединениях I-VI можно рассматривать как имеющие повышенную кратность, так как они заметно меньше по длине Re-O(CT) 2.04 Å [4]. В данном случае можно говорить о псевдодиоксокомплексах, содержащих два лиганда О(оксо) и O(L)_{транс} повышенной кратности. Напомним, что в диоксокомплексах *d*²-металлов V–VII групп два кратносвязанных лиганда всегда располагаются в *транс*-позициях друг к другу.

Отметим, что в комплексах III–VI два типа связей рений–хлор – в *транс*-позициях к атомам фосфора и азота лигандов $L_{три}^{m}$ – существенно различаются по длине. Первые из них (Re–Cl(1) 2.424–2.454 Å, средн. 2.437 Å) заметно (в среднем на 0.069 Å) длиннее вторых (Re–Cl(2) 2.344–2.396 Å, средн. 2.368 Å).

БЛАГОДАРНОСТИ

Автор признателен А.В. Чуракову за предоставление выборки из КБСД.

СПИСОК ЛИТЕРАТУРЫ

- Порай-Кошиц М.А., Гилинская Э.А. Кристаллохимия. М.: ВИНИТИ. Итоги науки и техники, 1966. С. 126.
- 2. *Порай-Кошиц М.А., Атовмян Л.О. //* Коорд. химия. 1975. Т. 1. С. 1271.
- 3. Griffith F., Wicing C. // J. Chem. Soc. A. 1968. P. 379.
- 4. Порай-Кошиц М.А. // Изв. Югосл. кристаллогр. центра. 1974. Т. 9. С. 19.
- 5. Порай-Кошиц М.А., Атовмян Л.О. Кристаллохимия координационных соединений молибдена. М.: Наука, 1974. 231 с.

- 6. Shustorovich E.M., Porai-Koshits M.A., Buslaev Yu.A. // Coord. Chem. Rev. 1975. V. 17. P. 1.
- Порай-Кошиц М.А., Сергиенко В.С. // Успехи химии. 1990. Т. 59. С. 86.
- 8. Allen F.H. // Acta Crystallogr. B. 2002. V. 58. P. 380.
- Sergienko V.S. // Russ. J. Inorg. Chem. 2018. V. 63. № 14. P. 1757.
- 10. Сергиенко В.С. // Журн. неорган. химии. 2019. V. 64.
- 11. *Сергиенко В.С., Чураков А.В.* // Журн. неорган. химии. 2019. V. 64. № 3. С. 260.
- 12. Сергиенко В.С., Чураков А.В. // Кристаллография. 2014. Т. 59. № 3. С. 341 (Sergienko V.S., Churakov A.V. // Crystallogr. Rep. 2014. V. 59. № 3. Р. 300. doi 10.1134/S1063774514030171).

- Сергиенко В.С., Чураков А.В. // Кристаллография. 2013. Т. 58. № 1. С. 3 (Sergienko V.S., Churakov A.V. // Crystallogr. Rep. 2013. V. 58. № 1. P5. doi 10.1134/ S1063774513010112).
- Cavell R.G., Hilts R.W., Luo H., McDonald R. // Inorg. Chem. 1999. V. 38. P. 897.
- Lao H., Setyawati I., Rettig S.J., Orvig C. // Inorg. Chem. 1995. V. 34. P. 2287.
- 16. Banbery H.J., Hussain W., Hamor T.A. et al. // Polyhedron. 1991. V. 10. P. 243.
- 17. Banbery H.J., Hussain W., Hamor T.A. et al. // Dalton Trans. 1990. P. 657.
- Barandov A., Abram U. // Polyhedron. 2009. V. 28. P. 1355.
- 19. Correia J.D., Domingos A., Paulo A., Santos I. // Dalton Trans. 2000. P. 2477.