УДК 541.4

УТОЧНЕНИЕ МОЛЕКУЛЯРНОЙ СТРУКТУРЫ ПЕНТАХЛОРОАКВАФЕРРАТА АММОНИЯ (NH₄)₂[FeCl₅(H₂O)]

© 2019 г. О. В. Ковальчукова^{1, 2, *}, С. Б. Страшнова^{1, *}, А. Н. Утенышев³, П. В. Страшнов⁴

¹Российский университет дружбы народов, Москва, Россия

²Российский государственный университет им. А.Н. Косыгина, Москва, Россия

³Первый Московский государственный медицинский университет им. И.М. Сеченова, Москва, Россия

⁴Институт элементоорганических соединений им. А.Н. Несмеянова РАН, Москва, Россия

*e-mail: sstrashnova@mail.ru

Поступила в редакцию 26.07.2018 г. После доработки 20.12.2018 г. Принята к публикации 26.12.2018 г.

Уточнена кристаллическая структура пентахлороакваферрата аммония (NH₄)₂[FeCl₅(H₂O)] (CIF file CCDC № 1831198). Показано, что соединения состава (A)_x[FeCl₅(H₂O)], где А – органический или неорганический анион, x = 1-2, кристаллизуются в ромбической сингонии. Геометрия и структурные параметры аниона [FeCl₅(H₂O)]^{2–} практически не зависят от природы противоиона.

Ключевые слова: рентгеноструктурный анализ, комплексные соединения железа, акваферратные комплексы

DOI: 10.1134/S0132344X19060021

Соединения, относящиеся к классу сегнетоэлектриков, проявляющие одновременно сегнетоэлектрические и (анти)ферромагнитные свойства в одной фазе, в последнее время привлекают особое внимание [1–5]. Обычно они имеют сложные неколлинеарные спиновые структуры. В зависимости от силы и направленности магнитного поля в них могут возникать такие явления, как обращение, вращение или подавление электрической поляризации, намагничивание и др., что интересно не только с точки зрения фундаментальной физики, но и как возможность использования подобных материалов для производства систем хранения информации и сенсорных систем.

Традиционно к сегнетоэлектрикам относятся двойные оксиды переходных металлов, например LnMnO₃ (Ln = Tb, Dy), Ni₃V₂O₈, LiCu₂O₂, MnWO₄ и др. [6], а также некоторые неоксидные материалы (CuCl₂, K₃Fe₅F₁₅) [7, 8]. В последние годы сегнетоэлектрические свойства были обнаружены для соединений типа эритрозерита общей формулы A₂[FeX₅(H₂O)], где A – катион щелочного металла или аммония, X – галогенид-ион [1, 9], которые выделяются при щелочном гидролизе преимущественной формой существования катионов железа(III) в подкисленных растворах – тетрахлороферрат-анионов [10]. Высокое спиновое число катиона железа (d^5), как и высокоспиновое состояние центрального иона (S = 5/2) приводит к низкой магнитной анизотропии [11] и привлекает внимание исследователей начиная с 90-х годов прошлого века [12–14] и активно продолжается в наши дни [1, 9, 15].

Впервые пентахлороакваферрат был синтезирован Линдквистом в 1947 г. упариванием растворов, содержащих смесь хлоридов железа(III) и аммония [16], а годом позже [17] были определены параметры кристаллический ячейки и предложено строение соединения. В 1978 г. Фиггис с соавторами [18] расшифровал кристаллическую структуру (NH₄)₂[FeCl₅(H₂O)], впоследствии уточненную в [19]. Однако ссылки на структуру пентахлороакваферрата в структурных базах данных отсутствуют, что дало нам возможность еще раз вернуться к настоящему вопросу.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Пентахлороакваферрат аммония $(NH_4)_2$ [Fe-Cl₅(H₂O)] получали в виде оранжево-красных кристаллов в качестве побочного продукта в синтезе комплексного соединения железа(III) с 4-(2-(1,5-диметил-3-оксо-2-фенилпиразолидинил)гидразоно)-3-метил-1-фенилпиразолоном-5 (HL) медленным смешиванием при нагревании равных объемов эквимолярных спиртовых растворов исходного лиганда и хлорида железа(III). Горячий маточный раствор нейтрализовали 10%-ным вод-

Параметр	Значение			
M	287.20			
Сингония	Ромбическая			
Пр. гр.	Pnma			
a, Å	13.581(3)			
b, Å	9.925(2)			
<i>c</i> , Å	6.9498(14)			
Ζ	4			
ρ(выч.), г/см ³	2.036			
<i>V</i> , Å ³	936.8(3)			
<i>F</i> (000)	572			
Область сканирования, град	2.99-31.42			
Значения индексов	$-19 \le h \le 12, -14 \le k \le 11, -9 \le l \le 4$			
Число измеренных/независимых отражений	3283/1483			
<i>R</i> _{int}	0.0181			
Отражений с <i>I</i> > 2σ(<i>I</i>)	1312			
Число уточняемых параметров	64			
GOOF	1.057			
R_1 , w R_2 для $I \ge 2\sigma(I)$	0.0274, 0.0674			
R_1 , wR_2 по всем данным	0.0322, 0.0719			
Остаточная электронная плотность (min/max), $e \text{\AA}^{-3}$	-1.042/0.479			

Таблица 1. Основные кристаллографические данные и параметры уточнения для соединения І

ным раствором аммиака, охлаждали до комнатной температуры и выдерживали в течение 2 сут, после чего осадок отфильтровывали и под микроскопом отделяли монокристаллы (NH₄)₂[FeCl₅(H₂O)] от поликристаллического комплексного соединения.

Найдено, %: Fe 19.53; N 9.81; Cl 61.98; H 3.48. Для (NH₄)₂[FeCl₅(H₂O)] (*M* = 287.20) вычислено, %: Fe 19.45; N 9.75; Cl 61.72; H 3.51.

PCA оранжево-красных кристаллов $(NH_4)_2[FeCl_5(H_2O)]$ в форме ромбов размером $0.560 \times 0.085 \times 0.50$ мм выполнен на автоматическом дифрактометре КМ4 фирмы KUMA DIF-FRACTION, Польша (λ (Мо K_{α}) = 0.71073 Å, графитовый монохроматор, $\omega/2\theta$ сканирование) при 120.0(1) К. Структуры расшифрованы прямым методом [20]. Позиционные и температурные параметры неводородных атомов уточнены в анизотропном приближении полноматричным МНК [21]. Позиции атомов водорода выявлены из разностных синтезов Фурье и уточнены с наложением ограничений по модели "всадника". Все расчеты выполнены по комплексу программ SHELXTL [22]. Основные кристаллографические данные и характеристики эксперимента для соединения I представлены в табл. 1.

Кристаллографические данные для структуры I депонированы в Кембриджском банке структурных данных (CCDC № 1831198; www.ccdc.cam.ac.uk/ data_request/cif).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Общий вид пентахлороакваферрата аммония представлен на рис. 1. Атом Fe лежит на плоскости *m*. Координационный полиэдр центрального катиона Fe(III) – искаженный октаэдр, в координационную сферу которого входят пять хлориданионов и молекула воды. Длина аксиальных связей Fe–O 2.098(2) Å, Fe–Cl(1) 2.3221(8) Å. Четыре экваториальных связи Fe–Cl неравноценны по длине. Три из них (Fe–Cl(2), Fe–Cl(3) и Fe–Cl(3а)) несколько длиннее (2.3930(8)–2.3919(6) Å), что может быть связано с участием этих атомов в более прочных водородных связях (**BC**) с атомами водорода катионов аммония. Четвертая связь Fe–Cl(4) существенно короче (2.3494(8) Å). Валентные углы между связями в координационном полиэдре

Рис. 1. Молекулярная структура $(NH_4)_2$ [FeCl₅(H₂O)]. Тепловые эллипсоиды приведены с 50%-ной вероятностью.

FeCl₅O лежат в интервале $85.58(1)^{\circ}$ —94.416(13)°, причем углы с участием атомов О и Cl(2) меньше 90°.

Молекула воды участвует в слабой межмолекулярной ВС с атомом Cl(3) (1 - x, -y, 1 - z): O(1)…Cl(3) 3.178(4) H(w)…Cl(3) 2.38 Å, угол O(1)H(w)Cl(3) 177°. Катион аммония участвует в двух слабых межмолекулярных связях с атомами Cl(2) (1 - x, -y, 1 - z) и Cl(4) (x, y, z): N(1)…Cl(2) 3.289(4), H(3)…Cl(2) 2.76 Å, угол N(1)H(3)Cl(2) 132.0° и N(1)…Cl(4) 3.290(4), H(2)…Cl(4) 2.79 Å, угол N(1)H(2)Cl(4) 126.3°. Фрагмент упаковки молекул (NH₄)₂[FeCl₅(H₂O)] с ВС приведен на рис. 2.

В связи с тем что сегнетомагнитные и сегнетоэлектрические свойства образцов могут определяться искажениями кристаллической структуры, представляло интерес сравнить, как изменяются характеристики $[FeCl_5(H_2O)]^{2-}$ аниона и кристаллографические характеристики образцов в зависимости от природы внешнесферного катиона (размера, природы, возможности участия в образовании ВС). Для сравнения были выбраны кристаллические структуры, содержащие пентахлороакваферрат-анион и катионы калия, рубидия, цезия, аммония, гидроксония и диэтилентриаммония (табл. 2).

Как видно из табл. 2, во всех представленных случаях соединения кристаллизуются в ромбической сингонии, симметрия несколько понижается при увеличении размера противоиона. Анализ длин связей и валентных углов в анионе $[FeCl_5(H_2O)]^{2-}$ позволяет утверждать, что его геометрия, структурные параметры и степень искажения практически не зависят от природы противоиона.

Рис. 2. Фрагмент упаковки (NH₄)₂[FeCl₅(H₂O)] в кристалле. Водородные связи показаны штриховыми линиями.

КООРДИНАЦИОННАЯ ХИМИЯ том 45 № 7 2019

Таблица 2. Сравнительные структурные характеристики некоторых соединений, содержащих анион [FeCl₅(H₂O)]²⁻

Соединение І		Параметры кристаллической решетки (<i>a</i> , <i>b</i> , <i>c</i>), Å	Длина связи, Å		-	
	Пр. гр.		Fe-Cl	Fe–O	Валентные углы, град	Литература
$\overline{\mathrm{K}_{2}[\mathrm{FeCl}_{5}(\mathrm{H}_{2}\mathrm{O})]}$	Pnma	13.5862(9)	2.324(1)	2.078(4)	86.5(0)-93.5(0)	[23]
		9.7087(5)	2.392(1)			
		7.0177(5)	2.355(1)			
			2.369(1)			
$Rb_2[FeCl_5(D_2O)]$	Pnma	13.8015(2)	2.321(5)	2.035(7)	85.55(9)-94.45(9)	[23]
		9.9049(1)	2.394(4)			
		7.0783(1)	2.356(4)			
			2.378(2)			
$Cs_2[FeCl_5(H_2O)]$	Стст	7.426(4)	2.379(1)	2.176(7)	85.7(1)-94.3(1)	[24]
		17.306(7)	2.379(1)			
		8.064(2)	2.379(1)			
			2.379(1)			
			2.888(2)			
$(H_3O)_2[FeCl_5(H_2O)]$	Pcmn	7.038(1)	2.352(1)	2.107(4)	85.59(2)-94.41(2)	[25]
		9.926(3)	2.328(1)			
		13.720(8)	2.383(1)			
			2.394(1)			
$(NH_4)_2[FeCl_5(H_2O)]$	Pnma	13.706(2)	2.3828(8)	2.110(4)	85.60(2)-94.40(2)	[18]
		9.924(1)	2.390(1)			
		7.024(1)	2.323(1)			
			2.350(1)			
$(NH_4)_2[FeCl_5(H_2O)]$	Pnma	13.760(1)	2.396(2)	2.119(5)	85.59(4)-94.41(3)	[19]
		9.960(1)	2.333(2)			
		7.060(1)	2.363(2)			
			2.390(1)			
			2.390(1)			
$(NH_4)_2[FeCl_5(H_2O)]$	Pnma	13.581(3)	2.3221(8)	2.098(2)	85.582(14)-94.416(13)	Настоящая
		9.925(2)	2.3494(8)			работа
		6.9498(14)	2.3919(6)			
			2.3930(8)			
(DienH ₃) [FeCl ₅ (H ₂ O)]Cl*	Pna2 ₁	30.0352(6)	2.4037(5)	2.146(2)	80.38(4)-94.13(2)	[9]
		6.2551(1)	2.3460(5)			
		7.4881(1)	2.3257(5)			
			2.4450(5)			
			2.3151(5)			

* Dien = диэтилентриамин.

431

ФИНАНСИРОВАНИЕ

Публикация подготовлена при поддержке Российского университета дружбы народов (проект 5-100).

СПИСОК ЛИТЕРАТУРЫ

- 1. Ackermann M., Brüning D., Lorenz T. et al. // New J. Phys. 2013. V. 15. P. 123001.
- Kimura T., Goto T., Shintani H. et al. // Nature. 2003. V. 426. P. 55.
- 3. Fiebig M. // J. Phys. D. 2005. V. 38. P. R123.
- 4. Spaldin N.A., Fiebig M. // Science. 2005. V. 309. P. 391.
- Cheong S.-W., Mostovoy M. // Nature Mater. 2007. V. 6. P. 13.
- Kimura T., Lawes G., Goto T. et al. // Phys. Rev. B. 2005. V. 71. P. 224425.
- Kimura T., Sekio Y., Nakamura H. et al. // Nature Mater. 2008. V. 7. P. 291.
- Seki S., Kurumaji T., Ishiwata S. et al. // Phys. Rev. B. 2010. V. 82. P. 064424.
- James B.D., Mrozinski J., Klak J. et al. // Z. Anorg. Allg. Chem. 2007. V. 633. P. 974.
- Luter M.D., Wertz D.L. // J. Phys. Chem. 1981. V. 85. P. 3542.
- 11. *Carlin R.L.* Magnetochemistry. Berlin: Springer-Verlag, 1986. 320 p.

- 12. Zora J.A., Seddon K.R., Hitchcock P.B. et al. // Inorg. Chem. 1990. V. 29. P. 3302.
- Shaviv R., Lowe C.B., Zora J.A. et al. // Inorg. Chim. Acta. 1992. V. 198–200. P. 613.
- 14. Shaviv R., Carlin R. L. // Inorg. Chem. 1992. V. 31. P. 710.
- 15. Wyrzykowski D., Warnke Z., Kruszynski R. et al. // Transition Met. Chem. 2006. V. 31. P. 765.
- Lindqvist I. // Arkiv Kemi. Mineral. Geol. A. 1947. V. 24. P. 1.
- 17. Bellanca A. // Period. Mineral. 1948. V. 17. P. 59.
- 18. Figgis B.N., Raston C.L., Sharma R.P., White A.H. // Aust. J. Chem. 1978. V. 31. P. 2717.
- 19. Lacková D., Ondrejkovičová I., Koman M. // Acta Chim. Slovaca. 2013. V. 6. P. 129.
- 20. *Sheldrik G.M.* SHELX-86. Program for the Crystal Structure Determination. Cambridge (England): Univ. of Cambridge, 1986.
- 21. *Sheldrick G.M.* // Acta Crystallogr. 2008. A. V. 64. P. 112.
- 22. *Sheldrick G.M.* SHELXTL. Version 6.14. Structure Determination Software Suite. Madison (WI, USA): Brucker AXS, 2000.
- Gabas M., Palacio F., Rodriguez-Carvajal J., Visser D. // J. Phys.: Condens. Matter. 1995. V. 7. P. 4725.
- 24. Greedan J.E., Hewitt D.C., Faggiani R., Brown I.D. // Acta Crystallogr. B. 1980. V. 36. P. 1927.
- 25. Søtofte I., Nielsen K. // Acta Chem. Scand. A. 1981. V. 35. P. 821.