УДК 541.49:546.289.562:547.47.83

СИНТЕЗ И СТРУКТУРА ПРОДУКТОВ КОМПЛЕКСООБРАЗОВАНИЯ В СИСТЕМЕ GeO₂-ВИННАЯ КИСЛОТА-СuCl₂-1,10-ФЕНАНТРОЛИН

© 2019 г. И. И. Сейфуллина¹, Е. Э. Марцинко^{1,} *, Е. А. Чебаненко¹, Э. В. Афанасенко¹, С. В. Шишкина^{2, 3}, В. В. Льяконенко²

¹Одесский национальный университет им. И.И. Мечникова, Одесса, Украина ²Институт монокристаллов НАН Украины, Харьков, Украина ³Харьковский национальный университет им. В.Н. Каразина, Харьков, Украина *e-mail: lborn@ukr.net Поступила в редакцию 17.12.2018 г. После доработки 21.01.2019 г. Принята к публикации 25.01.2019 г.

Впервые из системы GeO₂-винная кислота (H₄Tart)-CuCl₂-1,10-фенантролин (Phen) выделены катион-анионные координационные соединения на основе комплексов меди(II) с Phen и тартратогерманатных анионов [Cu(Phen)₃]₂[Ge₂(OH)(HTart)(μ -Tart)₂] · 11H₂O (I) и [CuCl(Phen)₂]₄[{Ge₂(OH)₂-(μ -Tart)₂}Cl₂] · 4H₂O (II), различные по составу и строению (CIF files CCDC № 1878102 (I), 1878103 (II)). В структурах I, II присутствуют одинаковые мостиковые тартратные анионы. Особенность I – наличие дополнительного аниона HTart³⁻, который не выполняет функцию мостика, а координируется бисхелатно, вакантными остаются гидроксильная и карбоксильная группы; диссоциация последней приводит к образованию тартратогерманатного аниона с зарядом –4.

Ключевые слова: диоксид германия, винная кислота, 1,10-фенантролин, медь(II), координационные соединения, молекулярная структура, рентгеноструктурный анализ **DOI:** 10.1134/S0132344X19060069

Ранее при исследовании комплексообразования биологически активного германия в системах $GeO_2(GeCl_4)$ -винная кислота (H₄Tart)-соль d-металла-H₂O выделить и структурно охарактеризовать соответствующие гетерометаллические координационные соединения не удалось [1]. В результате замены водной среды 50%-ным раствором СН₃СООН были получены продукты с мольным соотношением M : Ge : Tart = 2 : 2 : 3, где M = Mn^{2+} , Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺ [2]. Методом РСА установлено, что структурными единицами кристаллов комплекса $[Cu_2(H_2O)_{10}Ge_2(\mu-Tart)_3]_n \cdot 3nH_2O$ являются полимерные анионы $[Ge_2(\mu-Tart)_3]_n^{4n-}$, фрагменты Cu(H₂O)₅ и кристаллизационные молекулы воды [3]. В продолжение этих исследований решено было перейти к изучению продуктов комплексообразования в более сложной системе GeO₂-винная кислота-CuCl₂-Phen-H₂O/C₂H₅OH. Основанием для выбора указанного гетероароматического амина в качестве второго лиганда послужила его способность к структурированию сложных гомо- и гетерометаллических разнолигандных координационных соединений [4—9]. При этом Phen, как и тартратогерманатные комплексы Cu(II), относится к биологически активным соединениям [10, 11], представляющим интерес в качестве перспективных субстанций низкотоксичных лекарственных препаратов с широким спектром фармакологического действия [12].

Цель настоящего исследования — определить, в зависимости от концентрации исходных реагентов и их мольных соотношений в рассматриваемой системе, условия выделения продуктов комплексообразования, установить их состав, структуру и сравнить с ранее охарактеризованными тартратогерманатами различных металлов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза комплексов использовали исходные реагенты фирмы Sigma-Aldrich: GeO₂ (99.999%), D-винная кислота C₄H₆O₆ (99%), CuCl₂ · · 2H₂O (99.99%) (\geq 98%) и 1,10-фенантролин (99%).

Элементный анализ выполняли с помощью полуавтоматического C,N,H-анализатора Elemental Analyzer CE-440. Содержание германия и меди определяли методом атомно-эмиссионной спектроскопии с индуктивно-связанной плазмой на приборе Optima 2000 DV фирмы Perkin-Elmer, хлора – меркурометрически [13].

ИК-спектры поглощения (400–4000 см⁻¹) комплексов в виде таблеток с КВг записывали на спектрофотометре Frontier фирмы Perkin Elmer.

Синтез [Cu(Phen)₃]₂[Ge₂(OH)(HTart)(μ -Tart)₂] · 11H₂O (I) проводили при мольном соотношении GeO₂ : H₄Tart = 2 : 3, CuCl₂ : Phen = 2 : 6. Навески GeO₂ (0.5 ммоль) и винной кислоты (0.75 ммоль) растворяли при кипячении в 100 мл воды и упаривали при 50°С до объема 10 мл. К охлажденному до комнатной температуры раствору прибавляли 10 мл 95%-ного этанольного раствора, содержащего Phen (0.75 ммоль) и CuCl₂ (0.25 ммоль). Через сутки получили кристаллический осадок синего цвета. Монокристаллы, пригодные для PCA, отбирали из реакционной среды. Выход 60%.

ИК-спектр (v, см⁻¹): 3061 v_s(C–H), 1667 v_{as}(COO⁻), 1585, 1518 v(C–C_{аром}), 1423 v_s(COO⁻), 1343 v(C–N), 1278 δ (C–OH), 1082 v(C–O), 852 δ (Ge–OH), 651 v(Ge–O).

Найдено, %: С 50.25; Н 3.98; N 8.32; Cu 6.43; Ge 7.34. Для C₈₄H₇₈O₃₀N₁₂Cu₂Ge₂ (I) вычислено, %: С 50.20; Н 3.88; N 8.37; Cu 6.37; Ge 7.23.

Синтез [CuCl(Phen)₂]₄[{Ge₂(OH)₂(μ -Tart)₂}Cl₂] · • 4H₂O (II) проводили по той же методике, как для соединения I, но при мольном соотношении GeO₂ : H₄Tart = 2 : 2, CuCl₂ : Phen = 2 : 4. Кристаллический осадок сине-зеленого цвета образовывался в течение суток и содержал монокристаллы, пригодные для PCA. Выход 70%.

ИК-спектр (v, см⁻¹): 3064 v_s(C–H), 1685 v_{as}(COO⁻), 1583, 1516 v(C–C_{аром}), 1427 v_s(COO⁻), 1342 v(C–N), 1075 v(C–O), 851 δ (Ge–OH), 662 v(Ge–O).

Найдено, %: С 50.94; Н 3.21; N 9.08; Cl 8.63; Cu 10.37; Ge 5.92. Для C₁₀₄H₇₈O₁₈N₁₆Cl₆Cu₄Ge₂ (II) вычислено, %: С 50.89; Н 3.18; N 9.14; Cl 8.69; Cu 10.44; Ge 5.84.

Кристаллы соединения I (M = 2007.84 г/моль) моноклинные, пр. гр. $P2_1$, a = 15.084(1), b = 21.8032(9), c = 15.547(1) Å, $\beta = 116.248(8)^\circ$, V = 4586.1(5) Å³, Z = 2, T = 294.0 K, $\mu(MoK_{\alpha}) = 1.193$ мм⁻¹, $\rho(выч.) = 1.454$ г/см³. Измерено 39488 отражений, 17469 независимых ($R_{int} = 0.091$). Окончательные значения $R_1 = 0.082$ (для 9300 отражений с интенсивностью $I > 2\sigma(I)$, $wR_2 = 0.219$ (для всех отражений), S = 0.955.

Кристаллы соединения II (M = 2451.86 г/моль): моноклинные, пр. гр. C2, a = 30.390(3), b = 14.225(2) Å, c = 15.955(2) Å, $\beta = 116.96(1)^\circ$, V = 6147(1) Å³, Z = 2, T = 100 K, μ (Mo K_{α}) = 1.356 мм⁻¹, ρ (выч.) = 1.325 г/см³. Измерено 23695 отражений, 9703 независимых ($R_{int} = 0.065$). Окончательные значения $R_1 = 0.096$ (для 8276 отражений с интенсивностью $I > 2\sigma(I)$), $wR_2 = 0.254$ (для всех отражений), S = 1.040.

РСА соединений I и II проведен на дифрактометре Xcalibur-3 (Мо K_{α} -излучение, ССD-детектор, графитовый монохроматор, ω -сканирование). Структуры расшифрованы прямым методом и уточнены по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов (SHELXTL) [14, 15]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены по модели "наездника" с $U_{\mu_{30}} = nU_{3KB}$ неводородного атома, связанного с атомом Н (n = 1.5 для молекул воды и n = 1.2 для остальных атомов водорода).

Координаты атомов, а также полные таблицы длин связей и валентных углов депонированы в Кембриджском банке структурных данных (ССDС № 1878102 (I), 1878103 (II); deposit@ccdc.cam.ac.uk).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Данные ИК-спектроскопии комплексов интерпретировали в сравнении с винной кислотой и ранее синтезированными тартратогерманатами [2]. Общим для ИК-спектров І и ІІ является отсутствие полосы 1738 см⁻¹, соответствующей валентным колебаниям v(C=O) винной кислоты, и появление широких интенсивных полос 1667 (I), 1685 см⁻¹ (II) и 1423 (I), 1427 см⁻¹ (II), обусловленные колебаниями $v_{as}(COO^{-})$ и $v_{s}(COO^{-})$ соответственно и свидетельствующие о том, что все карбоксильные группы депротонированы и связаны. Зафиксированы полосы (см⁻¹): 651 (I), $662 (II) v(Ge-O); 852 (I), 851 (II) \delta (Ge-OH); 1082 (I),$ 1075 (II) v(C-O) алкоголятного типа, а также 1585, 1518 (I), 1583, 1516 (II) скелетных колебаний кольца С-С; 3061 (I), 3064 (II) v_s(С-Н_{аром}); 1343 (I), 1342 (II) v(C–N), характерных для Phen.

Особенностью комплекса I является наличие в его составе двух различных форм лиганда: мостикового Tart^{4–} и немостикового бидентатно связанного с атомом германия HTart^{3–}. Это согласуется с присутствием в ИК-спектре I полосы 1278 см⁻¹,

2019

обусловленной колебаниями $\delta(C-OH)$ вакантной гидроксигруппы HTart^{3–} и полосы ионизированной карбоксилатной группы при 1519 см⁻¹, заряд которой компенсирует комплексный катион.

Из данных РСА следует, что I и II представляют собой комплексные соединения катион-анионного типа, в которых роль аниона выполняют [Ge₂(OH)-(HTart)(μ -Tart)₂]^{4–} в I и [{Ge₂(OH)₂(μ -Tart)₂}Cl₂]^{4–} в II, а катионов – два [Cu(Phen)₃]²⁺ в I и четыре [CuCl(Phen)₂]⁺ в II. Анион в структуре II находится в частном положении на оси симметрии второго порядка. Комплексы I и II существуют в кристалле в виде кристаллогидратов состава 1 : 11 (I) или 1 : 4 (II).

Анион [Ge₂(OH)(HTart)(µ-Tart)₂]⁴⁻ в структуре I – комплексное биядерное соединение (рис. 1а). Атомы Ge(1) и Ge(2) в анионе имеют разные типы координации. Координационный полиэдр (**КП**) атома Ge(1) – искаженная тригональная бипирамида, в экваториальной плоскости которой находятся атомы O(19), O(9), O(3), в аксиальных положениях – атомы О(1), О(7). Параметр Аддисона [16] $\tau_5 = 0.81$ (валентные углы в КП приведены в табл. 1). Параметр τ определяется как $\tau = (\alpha - \beta)/60$, $\alpha > \beta$ (α и β – наибольшие углы в КП): $\tau = 1$ для тригональной бипирамиды и $\tau = 0$ для квадратной пирамиды. Значения длин связей Ge(1)-О изменяются в пределах 1.731(9)-1.917(10) Å, значения валентных углов OGe(1)О в аксиальном направлении - в пределах 87.5(5)°-92.2(6)°, в экваториальном направлении — 116.7(6)°-126.3(5)°. Координационный полиэдр атома Ge(2) – искаженный октаэдр, образованный шестью атомами кислорода трех молекул винной кислоты. При этом две молекулы винной кислоты с обеими депротонированными карбоксильными и гидроксильными группами между атомами Ge(1) и Ge(2) мостиковые, третья молекула винной кислоты представляет собой концевой лиганд с депротонированными гидроксильными и одной карбоксильной группой. Длины связей Ge(2)-О в структуре I изменяются в пределах 1.832(11)-1.979(9) Å, валентные углы ОGe(2)О – в пределах 83.5(5)°−93.7(4)°. Такое строение комплекса, а также распределение длин связей и валентных углов в КП согласуется со строением анионов, образованных с участием винной кислоты, описанных ранее [2, 17].

В отличие от структуры I, анион в структуре II представляет собой комплексное биядерное соединение, образованное за счет бидентантной координации атомов Ge двумя депротонированными молекулами винной кислоты. Анион находится в частном положении на оси 2. Координационный полиэдр атома Ge(1) в II – искаженная тригональная бипирамида, в экваториальной плоскости которой находятся атомы O(3), O(7), O(6), в аксиальной позициях – атомы O(1), O(4) (рис. 16). Параметр Аддисона $\tau_5 = 0.9$; значения валентных углов OGeO изменяются в пределах 87.7(4)°– 93.1(6)° и 118.6(5)°–120.9(5)° (табл. 1). Значения длин связей Ge(1)–O изменяются в пределах 1.771(5)–1.929(11) Å; значения валентных углов OGe(1)O – в пределах 87.5(5)°–92.2(6)° и 116.7(6)°–126.3(5)° (табл. 1). Такое строение комплекса II согласуется со строением анионов, описанных ранее [2].

В симметрически независимой части элементарной ячейки структуры I находятся два катиона $[Cu(Phen)_3]^{2+}$: А (Cu(1)) и Б (Cu(2)), в которых атомы меди связаны с тремя молекулами Phen (рис. 2а). Координационные полиэдры катионов меди в структуре I – октаэдры. Длины связей Cu–N в катионах A и Б изменяются в пределах 1.959(9)– 2.001(11) Å, валентные углы NCuN – в пределах 75.9(3)°–99.2(4)° (табл. 1).

В структуре II координационные полиэдры двух симметрически независимых катионов $[Cu(Phen)_2Cl]^+$ – А (Cu(1)) и Б (Cu(2)) – представляет собой искаженную тригональную бипирамиду (рис. 2б). В экваториальной плоскости находятся атомы N(2), N(4), Cl(1) в катионе A и N(5), N(7), Cl(2) в катионе Б, в аксиальных позициях – атомы N(1), N(3) и N(6), N(8) в катионах А и Б соответственно. Параметры Аддисона т₅ равны 0.6 и 0.5 для катионов А и Б соответственно. В аксиальном направлении валентные углы NCuN изменяются в пределах 78.3(2)°-103.1(3)°, NCuCl 91.4(3)°-93.1(2)°. В экваториальном направлении валентные углы NCuN изменяются в $105.2(4)^{\circ} - 107.4(3)^{\circ}$, a NCuCl пределах 110.8(2)°-141.6(3)° (табл. 1). Длины связей Cu(1)-N изменяются в пределах 1.978(9)-2.087(3) Å, Cu-Cl 2.272(4) и 2.264(3) Å для катионов А и Б соответственно (табл. 1).

В кристаллической структуре соединений I и II анионы, катионы, а также кристаллизационные молекулы воды образуют чередующиеся слои, параллельные кристаллографическим плоскостям *ac* и *bc* для I и II соответственно (рис. 3). Образующиеся слои можно разделить на два вида: 1) содержащие анионы и молекулы воды; 2) содержащие катионы типов A и Б. Слои в структуре I объединены межмолекулярными водородными связями O–H…O, в структуре II – слабыми водородными связями C–H…O (табл. 2). (a)

Рис. 1. Молекулярное строение анионов в структуре I (а) и II (б).

Установлено, что введение Phen в реакционную систему приводит к образованию различных катион-анионных комплексов I и II с исходными соотношениями GeO₂ : H_4 Tart = 2 : 3 и 2 : 2 соответственно. Это отличает их от синтезированного ранее координационного полимера постоянного состава [Cu₂(H₂O)₁₀Ge₂(µ-Tart)₃]_n · 3*n*H₂O, выделенного в условиях различных концентраций реагентов [3]. Особенность структуры I: дополнительный тартратный анион не выполняет функцию мостика, а координируется бисхелатно, вакантными остаются гидроксильная и карбоксильная группы, диссоциация последней приводит к образованию тартратогерманатного аниона с зарядом —4. Его компенсация происходит за счет электростатического взаимодействия с двумя кати-

таолица I. ПСКОТС	рыс длины сылы (<i>T</i> () If Dariellindic yin	ы (град) в сосдин		
Связь	d, Å	Связь	<i>d</i> , Å	Связь	$d, \mathrm{\AA}$
$C_{\alpha}(2) = O(12)$	1.020(0)		1 775(0)	$C_{\rm rel}(1)$ N(6)	2 1 4 2 (9)
Ge(2) = O(12)	1.939(9)	Ge(1) = O(9)	1.773(9)	$\operatorname{Cu}(1) - \operatorname{N}(0)$	2.142(8)
Ge(2) = O(15)	1.832(11)	Ge(1) = O(1)	1.91/(10)	Cu(2) = N(8)	2.056(8)
Ge(2) = O(10)	1.829(8)	Ge(1) - O(19)	1./31(9)	Cu(2) - N(12)	2.121(7)
Ge(2) - O(6)	1.917(9)	Cu(1)-N(2)	2.0/0(6)	Cu(2)-N(9)	2.093(7)
Ge(2) - O(4)	1.836(10)	Cu(1)-N(5)	2.082(7)	Cu(2) - N(10)	2.067(7)
Ge(2) - O(13)	1.979(9)	Cu(1) - N(1)	2.151(8)	Cu(2) - N(7)	2.170(9)
Ge(1) - O(3)	1.765(9)	Cu(1)-N(4)	2.177(7)	Cu(2) - N(11)	2.232(8)
Ge(1) - O(7)	1.911(10)	Cu(1)-N(3)	2.168(8)		
$C_{11}(1) = C_{11}(1)$	2 272(4)	I C(2) C1(2)	1 2.2(4(2)		1 702(7)
Cu(1) - Cl(1)	2.2/2(4)	Cu(2) - Cl(2)	2.264(3)	Ge(1) - O(6)	1.783(7)
Cu(1) - N(2)	2.150(10)	Cu(2) - N(5)	2.080(9)	Ge(1) - O(3)	1.771(5)
Cu(1) - N(3)	2.012(11)	Cu(2)-N(6)	1.978(10)	Ge(1)-O(4)	1.872(6)
Cu(1) - N(4)	2.100(9)	Cu(2)-N(8)	1.982(5)	Ge(1) - O(7)	1.802(15)
$\frac{\operatorname{Cu}(1) - \operatorname{N}(1)}{\operatorname{N}(1)}$	1.978(9)	Cu(2)-N(7)	2.177(5)	Ge(1)–O(1)	1.929(11)
Угол	ω, град	Угол	ω, град	Угол	ω, град
O(12)Ge(2)O(13)	89.9(4)	0(3)Ge(1) $0(1)$	87.8(5)	N(3)Cu(1)N(4)	77.0(4)
O(15)Ge(2)O(12)	92.9(4)	O(7)Ge(1)O(1)	175 4(4)	N(6)Cu(1)N(1)	99 2(4)
O(15)Ge(2)O(6)	93.7(4)	O(9)Ge(1)O(7)	87.8(4)	N(6)Cu(1)N(3)	94.0(4)
O(15)Ge(2)O(4)	170.2(4)	O(9)Ge(1)O(1)	90.3(5)	N(8)Cu(2)N(12)	92.9(4)
O(15)Ge(2)O(13)	83.5(5)	O(19)Ge(1)O(3)	116.7(6)	N(8)Cu(2)N(9)	90.8(3)
O(10)Ge(2)O(12)	86.4(4)	O(19)Ge(1)O(7)	92.4(5)	N(8)Cu(2)N(10)	167.4(4)
O(10)Ge(2)O(15)	89.8(4)	O(19)Ge(1)O(9)	117.0(6)	N(8)Cu(2)N(7)	78.7(4)
O(10)Ge(2)O(10)	90.8(4)	O(19)Ge(1)O(1)	92 2(5)	N(8)Cu(2)N(11)	94 7(4)
O(10)Ge(2)O(4)	100 0(4)	N(2)Cu(1)N(1)	77 7(4)	N(12)Cu(2)N(7)	94 1(3)
O(10)Ge(2)O(13)	172 2(4)	N(2)Cu(1)N(4)	924(4)	N(12)Cu(2)N(11) N(12)Cu(2)N(11)	76.0(4)
O(6)Ge(2)O(12)	172.2(1)	N(2)Cu(1)N(3)	92.4(3)	N(9)Cu(2)N(7)	98 3(4)
O(6)Ge(2)O(12)	93 6(5)	N(2)Cu(1)N(6)	96 3(4)	N(9)Cu(2)N(11)	91.9(4)
O(4)Ge(2)O(12)	87.8(4)	N(5)Cu(1)N(1)	94 5(4)	N(10)Cu(2)N(12)	98 4(3)
O(4)Ge(2)O(12)	86 1(4)	N(5)Cu(1)N(4)	94 5(4)	N(10)Cu(2)N(12) N(10)Cu(2)N(9)	79 3(3)
O(4)Ge(2)O(13)	86 7(5)	N(5)Cu(1)N(3)	96 5(4)	N(10)Cu(2)N(7)	94 9(4)
O(3)Ge(1)O(7)	90.0(5)	N(5)Cu(1)N(6)	78 1(4)	N(10)Cu(2)N(11)	$03 \Delta(3)$
O(3)Ge(1)O(7)	126 3(4)	N(1)Cu(1)N(0)	01 1(A))),,())
0(3)00(1)0(3)	120.5(4)	^{14(1)Cu(1)I4(4)} I] 91.1(4) I		
N(2)Cu(1)Cl(1)	114.0(3)	N(5)Cu(2)Cl(2)	141.6(3)	O(6)Ge(1)O(4)	88.1(2)
N(3)Cu(1)Cl(1)	93.0(3)	N(5)Cu(2)N(7)	107.4(3)	O(6)Ge(1)O(7)	118.6(5)
N(3)Cu(1)N(2)	102.0(4)	N(6)Cu(2)Cl(2)	92.9(3)	O(6)Ge(1)O(1)	90.1(4)
N(3)Cu(1)N(4)	80.7(4)	N(6)Cu(2)N(5)	81.8(4)	O(3)Ge(1)O(6)	120.9(3)
N(4)Cu(1)Cl(1)	140.8(3)	N(6)Cu(2)N(8)	172.8(3)	O(3)Ge(1)O(4)	90.2(2)
N(4)Cu(1)N(2)	105.2(4)	N(6)Cu(2)N(7)	103.2(2)	O(3)Ge(1)O(7)	120.5(5)
N(1)Cu(1)Cl(1)	01.4(2)	$N(8)C_{11}(2)C_{12}(2)$	93 1(2)	O(3)Ge(1)O(1)	87.7(4)
N(1)Cu(1)N(2)	91.4(.3)	INTORUZICITZI	/3.112/		
	91.4(3) 81.1(4)	N(8)Cu(2)Cl(2) N(8)Cu(2)N(5)	91.1(3)	O(4)Ge(1)O(1)	176.0(4)
N(1)Cu(1)N(3)	91.4(3) 81.1(4) 173.0(4)	N(8)Cu(2)Cl(2) N(8)Cu(2)N(5) N(8)Cu(2)N(7)	91.1(3) 78.3(2)	O(4)Ge(1)O(1) O(7)Ge(1)O(4)	176.0(4) 90.8(5)

Таблица 1. Некоторые длины связи (Å) и валентные углы (град) в соединениях I и II

Рис. 2. Молекулярное строение катионов (приведены катионы типа *A*) в структуре I (а) и II (б).

онами $[Cu(Phen)_3]^{2+}$. В составе комплекса II присутствуют два вида анионов: димер $[{Ge_2(OH)_2(\mu-Tart)_2}]^{2-}$, подобный $K_4[Ge_2(OH)_2(\mu-Tart)_2]_2 \cdot 9H_2O$ [18], и два хлоридных иона, суммарный заряд которых нейтрализуют четыре однозарядных катиона [CuCl(Phen)₂]⁺. Таким образом, в зависимости

СИНТЕЗ И СТРУКТУРА ПРОДУКТОВ КОМПЛЕКСООБРАЗОВАНИЯ

	Рассто		
D–H···A	Н…А	D…A	– D–HА, град
I		Ι	
O(16)-H(16)····O(12)	2.26	3.062(15)	165
O(19)-H(19A)O(21)	1.93	2.72(3)	162
O(29)-H(29A)···O(30)	2.14	2.81(2)	136
O(29)-H(29 <i>B</i>)···O(23)	1.97	2.82(3)	177
$O(20) - H(20A) \cdots O(5)^{i}$	1.97	2.801(16)	166
O(20)-H(20 <i>B</i>)···O(11)	2.08	2.836(16)	148
O(30)-H(30 <i>B</i>)···O(33)	2.04	2.79(2)	146
O(24)-H(24 <i>B</i>)···O(33)	2.02	2.84(3)	164
O(22)-H(22A)···O(19)	1.97	2.798(16)	163
O(22)-H(22 <i>B</i>)····O(23) ⁱⁱ	2.60	2.72(2)	90
O(32)-H(32A)···O(31)	2.10	2.93(3)	165
O(32)–H(32 <i>B</i>)····O(2) ⁱⁱⁱ	1.97	2.80(2)	161
O(23)-H(23A)····O(22) ^{iv}	2.16	2.72(2)	139
$O(31) - H(31A) \cdots O(11)^{v}$	2.20	2.99(2)	152
$O(31) - H(31B) \cdots O(17)^{v}$	1.97	2.82(3)	168
O(28)-H(28A)····O(18) ^v	2.15	3.00(3)	170
O(28)-H(28 <i>B</i>)····O(24) ^{vi}	2.01	2.85(3)	165
O(25)-H(25A)····O(16) ^{vii}	2.19	3.01(3)	160
O(25)-H(25 <i>B</i>)····O(20) ^{vii}	2.02	2.86(3)	165
O(21)-H(21A)···O(28)	2.39	3.12(5)	145
O(26)-H(26A)···O(27)	2.11	2.95(4)	164
$O(26) - H(26B) \cdots O(15)^{v}$	2.03	2.87(2)	163
$O(27) - H(27A) \cdots O(18)^{v}$	1.76	2.57(3)	157
O(27)–H(27 <i>B</i>)····O(22)	2.01	2.87(3)	179
I		II	1
C(16)-H(16)···O(5)	2.16	3.089(14)	167
$O(7)-H(7A)\cdots O(9)^{viii}$	2.07	2.78(2)	141
O(8)-H(8A)···O(5)	2.11	2.923(17)	159

Таблица 2. Геометрические характеристики водородных связей в соединениях I и II

Коды симметрии: ⁱ – x + 3, y – 1/2, –z + 2; ⁱⁱ –x + 2, y + 1/2, –z + 1; ⁱⁱⁱ –x + 2, y – 1/2, –z + 2; ^{iv} –x + 2, y – 1/2, –z + 1; ^v x – 1, y, z; ^{vi} –x + 2, y + 1/2, –z + 2; ^{vii} x – 1, y, z – 1; ^{viii} x + 1/2, y – 1/2, z.

КООРДИНАЦИОННАЯ ХИМИЯ том 45 № 7 2019

Рис. 3. Кристаллическое строение соединений I (а) и II (б). Вид вдоль кристаллографической оси с.

от комплексного аниона в I, II формируются различные по составу комплексные катионы Cu с 1,10-фенантролином.

СПИСОК ЛИТЕРАТУРЫ

- 1. Амбросов И.В., Алешин С.В., Алимбарова Л.М. и др. // Разработка и регистрация лекарственных средств. 2015. № 2. С. 144.
- Сейфуллина И.И., Марцинко Е.Э. Координационные соединения германия(IV) с анионами лимонной, винной и ксиларовой кислот. Одесса: ОНУ, 2015. 148 с.
- Сейфуллина И.И., Илюхин А.Б., Марцинко Е.Э. и др. // Журн. неорган. химии. 2014. Т. 59. № 4. С. 452 (Seifullina I.I., Ilyukhin A.B., Martsinko E.E. et al. // Russ.

J. Inorg. Chem. 2014. V. 59. P. 298. doi 10.1134/ S0036023614040172).

- 4. Seifullina I.I, Martsinko E.E, Chebanenko E.A. et al. // Chem. J. Moldova. 2017. V. 12. № 2. P. 52.
- 5. Huan-Yu L., Fen-Ying W., Guo-Yong W. et al. // Acta Crystallogr. E. 2006. V. 62. P. m111.
- Yang-Yang H., Li-Na X., Yan W. et al. // Polyhedron. 2013. V. 56. P. 152.
- Vreshch O.V., Nesterova O.V., Kokozay V.N. et al. // Z. Anorg. Allg. Chem. 2009. V. 635. P. 2316.
- 8. *Rusanova J.A., Kozachuka O.V., Dyakonenko V.V. //* Acta Crystallogr. E. 2013. V. 69. P. m391.
- 9. Polyanskaya T.M., Drozdova M.K., Volkov V.V. // J. Struct. Chem. 2010. V. 51. № 6. P. 1139.
- 10. Seifullina, I.I., Martsinko, E.E., Afanasenko E.V. // Visn. Odes. nac. univ. Him. 2015. V. 20. № 4. P. 6.

КООРДИНАЦИОННАЯ ХИМИЯ том 45 № 7 2019

- 11. *Hamdani H.E, Amane M.E., Atmani Z., Haddad M. //* J. Mater. Environ. Sci. 2016. V. 7. № 9. P. 3100.
- 12. *Менчиков Л.*Г., *Игнатенко М.А.* // Хим.-фарм. журн. 2012. Т. 46. № 11. С. 3.
- 13. Ключников Н.Г. Руководство по неорганическому синтезу. М.: Химия, 1965. 104 с.
- 14. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
- 15. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
- 16. *Addison A.W., Rao N., Reedijk J. et al.* // Dalton Trans. 1984. № 7. P. 1349.
- Марцинко Е.Э., Сейфуліна И.И., Чебаненко Е.А. и др. // Вестник Одесского нац. ун-та. Химия. 2018. Т. 23. № 1. С. 6.
- Миначева Л.Х., Сейфуллина И.И., Илюхин А.Б. и др. // Коорд. химия. 2013. Т. 39. № 11. С. 643 (Minacheva L.K., Seifullina I.I., Ilyukhin A.B. et al. // Russ. J. Coord. Chem. 2013. V. 39. № 11. Р. 751. doi 10.1134/S1070328413110043).