УДК 548.736+546.57

СИНТЕЗ, КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА МОЛЕКУЛЯРНОГО КОМПЛЕКСА ТРИФТОРАЦЕТАТА КАДМИЯ(II) С ТРИФЕНИЛФОСФИНОМ

© 2019 г. Ю. В. Кокунов¹, В. В. Ковалев^{1, *}, Ю. Е. Горбунова¹, А. В. Чураков¹, С. А. Козюхин¹

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия

**e-mail: kovavlad@igic.ras.ru* Поступила в редакцию 03.12.2018 г. После доработки 29.01.2019 г. Принята к публикации 11.02.2019 г.

Синтезировано соединение кадмия $[Cd(CF_3COO)_2(Ph_3P)_2]$ и определена его кристаллическая структура. Кристаллы моноклинные: пр. гр. C2/c, a = 20.318(4), b = 10.432(2), c = 18.661(4) Å, $\beta = 104.18(1)^\circ$, V = 3834.8(13) Å³, Z = 4, $\rho(выч.) = 1.495$ г/см³. Атом Cd, расположенный на кристаллографической оси второго порядка, имеет искаженную октаэдрическую координацию за счет четырех атомов кислорода кристаллографически эквивалентных лигандов трифторацетата и двух атомов фосфора трифенилфосфина. Атомы фтора трифторацетатных групп статистически разупорядочены по трем равновероятным позициям каждый. Соединение обладает люминесцентными свойствами.

Ключевые слова: трифторацетат кадмия, трифенилфосфин, структура, люминесценция **DOI:** 10.1134/S0132344X19070041

Фосфиновые лиганды продолжают играть большую роль в координационной и элементорганической химии переходных *d*-металлов, которые широко используются в катализе [1]. Элементы главных подгрупп также образуют комплексные соединения с фосфинами, хотя их исследования встречаются заметно реже [2]. Фосфиновые комплексы Zn(II), Cd(II) и Hg(II) известны давно. Однако более поздние работы в основном касались соединений Zn(II) и Hg(II). Основные типы комплексов кадмия с фосфинами были установлены ранее, но только небольшое число работ появилось в последнее время [2]. Из-за широкого применения кадмия в промышленных изделиях и его токсических свойств удалению Cd из водных сред уделяется большое внимание, в частности с использованием органофосфорных производных [3]. С этими лигандами соли кадмия образуют как дискретные, так и димерные соединения с тетраэдрическим и пятикоординационным окружением Cd(II) [4-10].

Известно, что состав и строение фосфиновых комплексов Cd(II) зависят от природы противоионов и объемных характеристик фосфинов. Галогенидные комплексы имеют, как правило, составы CdHal₂(Ph₃P)₂ и Cd₂Hal₄(Ph₃P)₂ с искаженным тетраэдрическим окружением иона металла. Ион Cd²⁺ имеет октаэдрическое строение в Cd[P(*цикло*-C₆H₁₁)₃]₂(NO₃)₂ · CH₂Cl₂ с алифатическим фосфином и NO₃-группой. Полимерное строение наблюдается в соединении Cd-Cl₂(PhMe₂P) с мостиковыми атомами хлора и пятикоординационным окружением центрального атома в форме тригональной бипирамиды. При использовании хелатного аниона в соединении $Cd(Et_2NCS_2)_2PEt_3$ у иона Cd^{2+} реализуется искаженная тетрагональная пирамида. Сведения о комплексах Cd(II), содержащих одновременно трифенилфосфин и карбоксилатные группы ограничены только данными о синтезе и структуре $[Cd(CF_3COO)_2(Ph_3P)]_2$ – димерного соединения благодаря мостиковой функции трифторацетатных анионов [11, 12]. Известно, что характер координации карбоксилатных анионов зависит от природы донорных лигандов, сосуществующих во внутренней сфере металла. Можно полагать, что изменение условий реакции трифторацетата Cd(II) с PPh₃ приведет к образованию комплекса с другим типом координации трифторацетатных анионов.

Соединение $[Cd(CF_3COO)_2(Ph_3P)]_2$ получали в среде этилового спирта при эквимолярном соотношении трифторацетата кадмия и Ph_3P [11, 12]. В настоящей работе взаимодействием трифторацетата кадмия с Ph_3P в среде ацетонитрила при соотношении Cd(II) : PPh_3 = 1 : 2 синтезирован комплекс $[Cd(CF_3COO)_2(Ph_3P)_2]$ (I), изученный методами PCA и фотолюминесценции (ФЛ).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали гидроокись кадмия. трифенилфосфин квалификации "х. ч." И 99%-ную трифторуксусную кислоту фирмы Merck. Трифторацетат кадмия получали нагреванием на водяной бане суспензии Cd(OH)₂ с СF₃СООН (соотношение 1 : 2) в водно-спиртовом растворе (1:1) до растворения гидроокиси с последующей фильтрацией и упариванием фильтрата до консистенции сиропа. После охлаждения последнего закристаллизованный продукт растирали, нагревали в вакууме при 110-120°С в течение часа и затем анализировали. Полученное соединение отвечает составу $Cd(CF_3CO_2)_2$ · 0.25H₂O (найдено, %: С 14.08; вычислено, %: C 14.08).

Синтез I. Растворяли 0.30 г (0.88 ммоль) трифторацетата в 10 мл ацетонитрила и 0.46 г (1.75 ммоль) трифенилфосфина в 10 мл CH₃CN, растворы смешивали и выдерживали смесь в течение 1.5 ч. Затем декантацией отделяли от раствора первую порцию выделившейся твердой фазы, которую в дальнейшем не изучали из-за непригодности для проведения PCA. Из маточника при медленном испарении растворителя получали кристаллы, отделяли их от раствора, промывали ацетонитрилом и высушивали на воздухе. Выход I 40%. Кристаллы отвечают составу [Cd(CF₃COO)₂(Ph₃P)₂].

Найдено, %:	C 55.74;	Н 3.57.			
Для C ₄₀ H ₃₀ F ₆ O ₄ P ₂ Cd (I)					
вычислено, %:	C 55.55;	Н 3.49.			

РСА І получен на автоматическом дифрактометре Enraf-Nonius CAD-4. Структура расшифрована прямым методом (SHELXS-97) [13] и уточнена МНК в полноматричном анизотропном приближении для всех неводородных атомов (SHELXL-97) [14]. Позиции атомов водорода рассчитаны геометрически и включены в уточнение по модели "наездника" с фиксированными изотропными температурными параметрами. Основные характеристики эксперимента и параметры элементарной ячейки приведены в табл. 1, основные длины связей и валентные углы – в табл. 2.

Кристаллографические данные структуры I депонированы в Кембриджском банке структурных данных: (CCDC № 1879877; deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk/data_request/cif).

Спектры ФЛ соединения I записывали при комнатной температуре на спектрометре PE LS-55 (разрешение 0.5 нм, щель варьировали в диапазоне от 7 до 10 нм) с использованием приставки для твердотельных образцов.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В структуре I атом Cd, расположенный на кристаллографической оси второго порядка, имеет октаэдрическую координацию за счет четырех атомов кислорода эквивалентных хелатных лигандов трифторацетата и двух кристаллографически эквивалентных атомов фосфора трифенилфосфина $(Cd(1)-O(1) 2.293(1), Cd(1)-O(1)^{#1}$ 2.293(1), Cd(1)-O(2) = 2.613(4), $Cd(1) - O(2)^{\#1}$ 2.613(4), Cd(1)-P(1) 2.590(1), Cd(1)-P(1)^{#1} 2.590(1), углы при атоме Cd(II) – табл. 2). В результате такого взаимодействия лигандов образуется искаженный октаэдрический комплекс I (рис. 1). Атомы фтора трифторацетата статистически разупорядочены по трем позициям каждый (C(20)-F_{средн.} 1.35 ± 0.01 Å). Отметим также, что трифторацетатный ион слабо связан с ионами Cd²⁺ (Cd-O(2) 2.613(4) Å). Минимальный угол O(1)Cd(1)O(2) 52.5(1)°, максимальный – P(1)Cd(1)O(2)^{#1} 146.18(9)° (табл. 2). Вероятно, такая ориентация лигандов вызывает заметное искажение координационного полиэдра (**КП**) иона Cd²⁺.

Отметим, что структура I с ароматическим фосфином и Cd[P(c-C₆H₁₁)₃]₂(NO₃)₂ · CH₂Cl₂ (II) с алифатическим, несмотря на различный состав, имеют сходные кристаллографические характеристики и строение КП иона Cd²⁺. В II ион Cd²⁺ также расположен на кристаллографической оси второго порядка и имеет октаэдрическое окружение за счет четырех атомов О двух эквивалентных бидентатных нитрат-ионов (Cd–O(1) 2.575(8) Å и Cd–O(2) 2.405(9) Å) и двух эквивалентных атомов Р алифатических фосфинов (Cd–P 2.602(2) Å). Расстояния Cd–P имеют близкие значения 2.590(1) Å (I) и 2.602(2) Å (II). Углы PCdP 122.12(5)° (I) и 139.56(9)° (II).

Спектр ФЛ соединения I имеет интенсивный пик при 485 нм, обусловленный электронными переходами внутри трифенилфосфинового лиганда (рис. 2). Свободный PPh₃ люминесцирует при 500 [15], 447 нм [16]. При координации PPh₃ к ионам металлов в спектрах ФЛ Ag(PPh₃)₂L (L = *n*-толуолсульфонат) [16], Au(PPh₃)₂L [15] и Cd(PPh₃)₂Cl₂ [17] появляются полосы при 487, 513 и 455 нм соответственно.

Таким образом, мы получили второе соединение кадмия, содержащее во внутренней сфере одновременно карбоксилатный анион и трифенилфосфин состава $[Cd(CF_3COO)_2(Ph_3P)_2]$ (Cd : P = 1 : 2). В этом соединении карбоксилатный анион проявляет хелатные свойства в отличие от $[Cd(CF_3COO)_2(Ph_3P)]_2$ (Cd : P = 1 : 1) [11, 12], где карбоксилатный анион – мостиковый лиганд.

389

Параметр	Значение	
M	862.98	
Цвет, габитус	Желтый, блок	
Размер кристалла, мм	0.18 imes 0.16 imes 0.09	
Сингония; пр. гр.	Моноклинная; С2/с	
Параметры ячейки:		
a, Å	20.318(4)	
b, Å	10.432(2)	
c, Å	18.661(4)	
β, град	104.18(3)	
<i>V</i> , Å ³	3834.8(13)	
Ζ	4	
ρ(выч.), г/см ³	1.495	
μ_{Mo} , mm ⁻¹	0.722	
<i>F</i> (000)	1736	
Т, К	293(2)	
Излучение (λ, Å)	MoK_{α} (1.71073)	
Тип сканирования	ω	
Область θ, град	2.07-26.96	
Интервалы индексов	$-24 \le h \le 24, -12 \le k \le 1, -22 \le l \le 1$	
Общее число отражений/независимых (<i>R</i> _{int})	4588/3768 (0.0291)	
Полнота по $\theta = 26^{\circ}$, %	100	
Число отражений с <i>I</i> ≥ 2σ(<i>I</i>)	2362	
Поправка на поглощение	Полуэмпирическая, по эквивалентам	
T_{\min}/T_{\max}	0.8811/0.9313	
Число уточняемых параметров	252	
GOOF по F^2	1.031	
$R\left(I \ge 2\sigma(I)\right)$	$R_1 = 0.0356, wR_2 = 0.0899$	
<i>R</i> (все данные)	$R_1 = 0.0917, wR_2 = 0.1053$	
Остаточная электронная плотность (max/min), $e/Å^3$	0.612, -0.548	

Таблица 1. Кристаллографические данные и основные характеристики эксперимента для структуры I

Таблица 2. Основные длины связей (Å) и валентные углы (град) в структуре І*

Связь	<i>d</i> , Å	Связь	d, Å	
Cd(1)–O(1)	2.293(3)	Cd(1)–O(2)	2.613(4)	
Cd(1)–P(1)	2.590(1)			
Угол	ω, град	Угол	ω, град	
O(1)Cd(1)O(1) ^{#1}	139.6(2)	P(1)Cd(1)O(2) ^{#1}	146.18(9)	
O(1)Cd(1)P(1) ^{#1}	97.64(9)	O(1)Cd(1)O(2)	52.50(12)	
O(1)Cd(1)P(1)	101.61(9)	$P(1)^{#1}Cd(1)O(2)$	146.18(9)	
$P(1)^{#1}Cd(1)P(1)$	122.12(5)	P(1)Cd(1)O(2)	83.54(10)	
O(1)Cd(1)O(2) ^{#1}	95.52(13)	$O(2)^{#1}Cd(1)O(2)$	84.15(18)	

* Симметрические преобразования эквивалентных атомов: $^{\#1}$ –*x* + 1, *y*, –*z* + 1/2.

КООРДИНАЦИОННАЯ ХИМИЯ том 45 № 7 2019

Рис. 1. Строение молекулярного комплекса [Cd(CF₃COO)₂(Ph₃P)₂.

Рис. 2. Спектр ФЛ [Cd(CF₃COO)₂(Ph₃P)₂ при $\lambda_{BO36} = 230$ нм.

ФИНАНСИРОВАНИЕ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Grabtree R.H.* The Organometallic Chemistry of the Transition Metals. John Willey and Sons, 2005.
- 2. Bart J., Levason W., Reid G. // Coord. Chem. Rev. 2014. V. 260. P. 65.
- Parus A., Wieszczycka K., Olszanowski A. // Hydrometallurgy. 2011. V. 105. P. 284.
- Kessler J.M., Reeder J.H., Vac R. et al. // Magn. Reson. Chem. 1991. V. 29. P. 94.
- Dakternieks D., Hoskins B., Rolls C., Tielink E. // Aust. J. Chem. 1986. V. 39. P. 713.
- Cameron A.F., Forrest K.P., Ferguson G. // J. Chem. Soc. A. 1971. P. 1286.

КООРДИНАЦИОННАЯ ХИМИЯ том 45 № 7 2019

- Bell N.A., Dee T.D., Goldstein M., Nowell I.W. // Inorg. Chim. Acta. 1980. V. 38. P. 191.
- Zeng D., Hampden-Smith M.J., Alam T.M., Rheingold A.L. // Polyhedron. 1994. V. 13. P. 2715.
- 9. Darensbourg D.J., Rainey P., Larkins D.L., Reibenspies H. // Inorg. Chem. 2000. V. 39. P. 473.
- 10. Goel R.G., Henry W.P., Oliver M.J., Beauchamp A.L. // Inorg. Chem. 1981. V. 20. P. 3924.
- 11. Goel R.G., Jha N.K. // Can. J. Chem. 1981. V. 59. P. 3267.
- 12. Allman T., Goel R.G., Jha N.K., Beauchamp A.L. // Inorg. Chem. 1984. V. 23. № 7. P. 914.

- 13. *Sheldrick G.M.* SHELXS-97. Program for the Solution of Crystal Structures. Göttingen (Germany): Univ. of Göttingen, 1997.
- 14. *Sheldrick G.M.* // SHELXL-97. Program for the Refinement of Structures. Göttingen (Germany): Univ. of Göttingen, 1997.
- 15. King C., Khan M.N.I., Staples R.J., Facker J.P. // Inorg.Chem. 1992. V. 31. P. 3236.
- Li F.-F., Ma J.-F., Yang J. et al. // J. Mol. Strct. 2006. V. 787. P. 106.
- 17. Prida E., Bonometti E., Rabezzana R. et al. // Inorg. Chem. Commun. 2016. V. 70. P. 35.