УДК 546.562+547.288.3+544.175

КОМПЛЕКСЫ НИКЕЛЯ(II) И ЦИНКА(II) С ПРОИЗВОДНЫМИ БЕНЗОИЛУКСУСНОГО АЛЬДЕГИДА

© 2019 г. М. А. Турсунов^{1, *}, К. Г. Авезов¹, Б. Б. Умаров¹

¹Бухарский государственный университет, Бухара, Узбекистан *e-mail: tursunovma@mail.ru Поступила в редакцию 26.02.2018 г. После доработки 29.01.2019 г. Принята к публикации 11.02.2019 г.

Синтезированы комплексы Ni(II) и Zn(II) состава $[M(L^n)A]$ (n = 1-3, $A = NH_3$, Py) на основе продуктов конденсации бензоилуксусного альдегида с гидразидами ароматических кислот $(H_2L^1 - H_2L^3)$. Полученные комплексы изучены методами элементного анализа, ИК- и ПМР-спектроскопии. Строение комплекса $[Ni(L^2)Py]$ определено методом PCA (CIF file CCDC № 1508698).

Ключевые слова: кетоальдегид, ацилгидразин, ароилгидразон, пяти- и шестичленная псевдоароматическая система металлоциклов, рентгеноструктурный анализ

DOI: 10.1134/S0132344X19070089

Производные ароилгидразонов с 1.3-дикарбонильными соединениями типа кетоальдегидов представляют большой интерес как источник потенциально прототропных кольчато-цепочечных равновесных форм [1-3]. Это обусловило выбор ароилгидразонов в качестве нуклеофилов в рассматриваемой работе. Мы синтезировали комплексные соединения $[M(L^n)NH_3]$ (M = Ni, Zn; n = 1-3) на основе H_2L^1 = бензоилгидразона, $H_2L^2 = napa$ -метилбензоилгидразона и $H_2L^3 =$ = орто-оксибензоилгидразона бензоилуксусного альдегида соответственно. Полученные соединения диамагнитны, растворимы в хлороформе, бензоле, пиридине и практически нерастворимы в воде. Данные ИК- и ПМР-спектров указывают на квадратное строение комплексов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали лиганды $H_2L^1-H_2L^3$, синтезированные согласно методике [3, 4], ацетаты никеля(II), цинка(II), концентрированный аммиак (все "х. ч."), пиридин ("ч. д. а."), а также растворители EtOH, диэтиловый эфир ("х. ч.", перегнанные).

Синтез комплекса [Ni(L¹)NH₃]. К раствору 1.33 г (0.005 моль) H_2L^1 в 20 мл EtOH постепенно добавляли горячий раствор 1.25 г (0.005 моль) ацетата никеля(II) в 15 мл концентрированного аммиака. Через 5–10 мин выпадали поликристаллы красного цвета, которые отфильтровывали, промывали водой, этиловым спиртом и высушивали в вакуум-эксикаторе над P_2O_5 ("х. ч."). Выход комплекса [Ni(L¹)NH₃] 1.23 г (86%).

Аналогично синтезировали комплексы $[Zn(L^1)NH_3]$, $[Ni(L^2)NH_3]$, $[Ni(L^3)NH_3]$. Аммиачные комплексы хорошо растворяются в органических растворителях и нерастворимы в воде.

При растворении комплекса $[Ni(L^1)NH_3]$ в минимальном количестве Ру с последующим высаливанием диэтиловым эфиром получен комплекс $[Ni(L^1)Py]$ [4, 5]. Выпавший осадок красного цвета отфильтровывали, промывали спиртом, эфиром и высушивали на воздухе. Выход комплекса $[Ni(L^1)Py]$ 0.66 г (74%).

Аналогично синтезировали комплексы $[Ni(L^2)Py]$ и $[Zn(L^2)Py]$.

Результаты элементного анализа и выходы полученных соединений Ni(II) и Zn(II) приведены в табл. 1.

Перекристаллизацией [Ni(L²)Py] из смеси этанол—хлороформ (1 : 1) получили монокристаллы $C_{22}H_{19}N_3O_2Ni$, пригодные для PCA.

РСА [Ni(L²)Ру] проведен на автоматическом дифрактометре Xcalibur (Cu K_{α} -излучение, $\lambda = 1.54184$ Å, графитовый монохроматор, ω -сканиравание, $2\theta_{max} = 75.9^{\circ}$). Структура расшифрована прямым методом и уточнена МНК в анизотропном приближении для неводородных атомов. Атомы водорода локализованы из карт электронной плотности разностного синтеза Фурье и уточнены в изотропном приближении.

Соединение	Брутто- формула	Выход, %	<i>Т</i> _{пл} , °С	Найдено/вычислено, %			
				М	С	Н	Ν
[Ni(L ¹)NH ₃]	C ₁₆ H ₁₅ N ₃ O ₂ Ni	86	158	17.21/17.26	56.54/56.52	4.41/4.45	12.39/12.36
$[Ni(L^1)Py]$	$\mathrm{C}_{21}\mathrm{H}_{17}\mathrm{N}_{3}\mathrm{O}_{2}\mathrm{Ni}$	74	166	14.56/14.60	62.69/62.73	4.23/4.26	10.48/10.45
$[Ni(L^2)NH_3]$	$C_{17}H_{17}N_3O_2Ni$	58	178	16.53/16.58	57.62/57.67	4.79/4.84	11.90/11.87
[Ni(L ²)Py]	$\mathrm{C}_{22}\mathrm{H}_{19}\mathrm{N}_{3}\mathrm{O}_{2}\mathrm{Ni}$	56	182	14.07/14.11	63.46/63.50	4.56/4.60	10.13/10.10
$[Ni(L^3)NH_3]$	$\mathrm{C}_{17}\mathrm{H}_{17}\mathrm{N}_{3}\mathrm{O}_{4}\mathrm{Ni}$	76	193	15.15/15.20	52.83/52.89	4.39/4.44	10.93/10.89
$[Zn(L^1)NH_3]$	$C_{16}H_{15}N_3O_2Zn$	63	172	18.82/18.86	55.38/55.43	4.31/4.36	12.14/12.12
$[Zn(L^2)Py]$	$\mathrm{C_{16}H_{15}N_{3}O_{2}Zn}$	68	185	15.36/15.40	65.47/65.56	4.48/4.50	9.98/9.95

Таблица 1. Выходы и результаты элементного анализа комплексных соединений Ni(II) и Zn(II)

Координаты атомов и другие параметры структуры NiL² · Ру депонированы в Кембриджском банке структурных данных (№ 1508698); deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk/ data request/cif).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В настоящей работе обсуждаются строение и свойства комплексных соединений, полученных на основе продуктов конденсации бензоилуксусного альдегида с гидразидами *пара*- и *орто*-замещенных ароматических кислот.

Взаимодействием водно-аммиачного раствора ацетатов металлов со спиртовыми растворами эквимолярного количества лигандов H_2L синтезировали комплексы состава [M(Lⁿ)A] (M²⁺ = Ni, Zn; n = 1-3; A = NH₃, Py) (I) [1–3]. По результатам ИК- и ПМР-спектров комплексов с квадратным полиэдром приписано строение I (схема 1).

Схема 1.

На основании данных элементного анализа (табл. 1), ИК- и ПМР-спектроскопии, а также РСА комплекса [Ni(L²)Py] установлены состав и строение полученных комплексов.

В ИК-спектрах комплексов наблюдаются полосы поглощения в области 3375–3380, 3320–3330, 3240–3250 и 3150 см⁻¹, которые следует отнести к симметричным и антисимметричным валентным колебаниям координированной молекулы NH₃ [1, 6]. В ИК-спектре комплекса NiL¹ · Ру появляется полоса около 1600 см⁻¹, отнесенная к v(C=N) Ру,

и отсутствует полоса выше 1640 см^{-1} , отвечающая валентным колебаниям карбонильной группы. Обнаружены также полосы поглощения средней и сильной интенсивности в областях 1580-1585, 1530-1540, 1470-1480, 1420-1430, $1395-1400 \text{ см}^{-1}$, обусловленных валентными и деформационными колебаниями сопряженной системы связей пяти- и шестичленного металлоциклов. Частота валентных колебаний связи С–О понижается на $15-25 \text{ см}^{-1}$, в то же время значение частоты, характерной для связи С=N, повышается на $5-10 \text{ см}^{-1}$,

КОМПЛЕКСЫ НИКЕЛЯ(II) И ЦИНКА(II)

Соединение	δ, м.д.						
	сигналы протонов R	H-C=N	-CH=	сигналы протонов R ¹	сигналы протонов NH ₃ или Ру		
[Ni(L ¹)NH ₃]	7.29 м; 7.66 м	5.95	5.86	7.29 м; 7.66 м	**		
$[Ni(L^1)Py]$	7.34 м; 7.66 м	6.04	5.98	7.34 м; 7.66 м	7.74 м; 8.08 м; 8.95 м		
$[Zn(L^1)NH_3]$	7.25 м; 7.72 м	6.38	5.32	7.25 м; 7.72 м; 7.95 м	1.75		
$[Ni(L^2)NH_3]$	7.23 м; 7.69 м	6.35	5.34	7.23 м; 7.70 м; 7.93 м	1.77		
$[Ni(L^2)Py]$	7.34 м; 7.66 м	6.04	5.98	7.34 м; 7.66 м	7.74 м; 8.08 м; 8.95 м		
$[Zn(L^2)Py]$	7.32 м; 7.64 м	6.03	5.97	7.35 м; 7.67 м	7.75 м; 8.09 м; 8.94 м		
$[Ni(L^3)NH_3]$	7.25 м; 7.48 м*	6.34	5.28	7.25 м; 7.48 м	1.86		

Таблица 2. Параметры спектров ПМР комплексов Ni(II) и Zn(II) в растворе ДМСО-d₆

* Сигналы протонов двух ароматических колец перекрываются, приведены центры сигналов.

** Сигналы не наблюдаются из-за обмена координированного аммиака молекулами растворителя.

что свидетельствует о координации лиганда к металлу через атомы кислорода [7–9].

Параметры спектров ПМР растворов комплексов Ni(II) в ДМСО-d₆ приведены в табл. 2. Для однозначного подтверждения сделанных выводов о квадратном строении комплексов Ni(II) и Zn(II) (по результатам ИК- и ПМР-спектроскопии), также были выращены монокристаллы NiL² · Ру, полученные перекристаллизацией их из смеси EtOH–CHCl₃. Основные кристаллографические данные и результаты уточнения структуры NiL² · Ру приведены в табл. 3.

Дважды депротонированный остаток лиганда H₂L² координирован атомом Ni(II) через два атома кислорода и атом азота гидразонной части молекулы. Четвертое место в координационном квадрате занимает атом N донорной молекулы Ру (рис. 1а).

Длины связей Ni-O(1) 1.826(2), Ni-O(2) 1.835(2), Ni-N(1) 1.823(3), Ni-N(3) 1.926(3) Å в кристалле комплекса [Ni(L²)Py] близки к найденным в координационных полиэдрах кристаллов Ni(II) с бензоилгидразонами этилового эфира 5,5-диметил-2,4-диоксогексановой кислоты [4, 5, 10, 11], метилового эфира 5,5-диметил-2,4-диоксогексановой кислоты [12-20] и трифторацетилацетона [7, 8, 12, 16-20]. Большая разница между валентными углами O(1)NiN(1) (95.76(12)°) и N(1)NiO(2) (83.76(13)°) объясняется, на наш взгляд, наличием и размерами сопряженных пяти- и шестичленного металлоциклов вокруг ионакомплексообразователя, что согласуется с данными [8, 9, 14, 15, 17-20]. Атомы полиэдра NiO₂N₂, NiO(1)O(2)N(1)N(3), лежат в одной плоскости с

Рис. 1. Кристаллическая структура комплексного соединения [Ni(L²)Py] (а) и молекулярная упаковка ячейки (б).

КООРДИНАЦИОННАЯ ХИМИЯ том 45 № 7 2019

Параметр	Значение			
Μ	416.11			
Температура, К	293			
Сингония	Триклинная			
Пр. гр.	$P\overline{1}$			
<i>a</i> , Å	9.3151(9)			
<i>b,</i> Å	10.5675(11)			
<i>c,</i> Å	11.9266(7)			
α, град	112.030(7)			
β, град	92.227(6)			
ү, град	115.341(10)			
<i>V</i> , Å ³	955.33(17)			
Ζ	2			
ρ(выч.), г/см ³	1.446			
μ, мм ⁻¹	1.649			
Размеры кристалла, мм	0.5 imes 0.4 imes 0.3			
Область сканирования по θ, град	4.1-75.9			
Область индексов h, k, l	$-11 \le h \le 11,$			
	$-13 \le k \le 13,$			
	$-14 \le l \le 8$			
Собрано отражений	6440			
Независимых отражений	3836			
<i>R</i> _{int}	0.036			
Отражений с <i>I</i> > 2σ(<i>I</i>)	2607			
Число уточняемых параметров	255			
GOOF (F^2)	0.975			
$R[F^2 > 2\sigma(F^2)], wR(F^2)$	0.045, 0.106			
S	0.98			
$\Delta \rho_{\min} / \Delta \rho_{\max}, e \text{ Å}^{-3}$	-0.24/0.33			

Таблица 3. Основные кристаллографические данные и параметры уточнения структуры [Ni(L²)Py]

точностью ± 0.02 Å. Копланарные металлоциклы — пятичленный (NiO(2)C(10)N(2)N(1)) и шестичленный (NiO(1)C(7)C(8)C(9)N(1)) — сопряжены и плоские 0.003—0.022 Å.

Упаковка структурных единиц в кристалле молекулы NiL² · Ру показана на рис. 16. Один из атомов водорода координированной молекулы пиридина участвует в водородных связях: внутримолекулярной (**BMBC**) C(18)–H(18)···O(2) (C···O 2.937(4) Å), угол C(18)H(18)O(2) 102°, C(18)– H(18) 0.93, H(18)···O(2) 2.60 Å и межмолекулярной C(18)–H(18)···N(2) (C···N 3.437(4) Å); последняя приводит к образованию центросимметричного димера. Молекулы расположены по центрированному мотиву таким образом, что пяти- и шестичленные металлоциклы образуют друг с другом псевдостопки. В молекуле имеется еще одна BMBC C(22)–H(22)···O(1) (C···O 2.861(3) Å), угол C(22)H(22)O(1) 104°, C(22)–H(22) 0.93, H(22)···O(1) 2.48 Å.

СПИСОК ЛИТЕРАТУРЫ

- 1. Пакальнис В.А., Зерова И.В., Якимович С.И., Алексеев В.В. // Химия гетероцикл. соед. 2013. № 3. С. 440.
- 2. *Якимович С.И., Зерова И.В.* // Журн. орган. химии. 1991. Т. 27. № 5. С. 959.
- 3. Умаров Б.Б., Тошев М.Т., Саидов С.О. и др. // Коорд. химия. 1992. Т. 18. № 9. С. 980.
- 4. *Умаров Б.Б.* Дис. ... докт. хим. наук. Ташкент: ИУ АН РУ3, 1996. 351 с.
- 5. Парпиев Н.А., Умаров Б.Б., Авезов К.Г. Производные перфторалькильных дикетонов и их комплексов. Ташкент: Dizayn-Press, 2013. 340 с.

КООРДИНАЦИОННАЯ ХИМИЯ том 45 № 7 2019

- Zelenin K.N., Yakimovich S.I. // Chem. Prop. Ital. Soc. Chem. 1998. V. 2. P. 207.
- 7. Тошев М.Т., Дустов Х.Б., Саидов С.О. и др. // Коорд. химия. 1992. Т. 18. № 12. С. 1184.
- Тошев М.Т., Юсупов В.Г., Дустов Х.Б. Парпиев Н.А. Кристаллохимия комплексов металлов с гидразидами и гидразонами. Ташкент: Фан, 1994. 266 с.
- Умаров Б.Б., Авезов К.Г., Абдурахмонов С.Ф. и др. Комплексные соединения Ni(II) и Cu(II) на основе бензоилгидразонов ароилтрифторацетилметанов // Тез. докл. III Междунар. конф. по молекулярной спектроскопии. Самарканд: СамГУ, 2006. С. 105.
- Парпиев Н.А., Юсупов С.И., Якимович С.И., Шарипов Х.Т. Ацилгидразоны и их комплексы с переходными металлами. Ташкент: Фан, 1988. 161 с.
- Умаров Б.Б., Авезов К.Г., Турсунов М.А. и др. // Коорд. химия. 2014. Т. 40. № 7. С. 415 (Umarov B.B., Avezov K.G., Tursunov M.A. et al. // Russ. J. Coord. Chem. 2014. V. 40. № 7. Р. 474. doi 10.1134/ S1070328414070094).
- 12. Agrawal A., Sharma K.M., Prasad R.N. // Pol. J. Chem. 2007. V. 81. № 12. P. 2081.
- 13. *Авезов К.Г.* Дис. ... канд. хим. наук. Ташкент: НУУз, 2018. 120 с.

- Tursunov M.A., Avezov K.G., Umarov B.B., Parpiev N.A. // Russ J. Coord. Chem. 2017. V. 43. № 2. P. 93. doi 10.1134/S1070328417020087
- Гайбуллаев Х.С., Пумпор К.Б., Якимович С. и др. // Тез. докл. III Нац. конф. по применению рентгеновского, синхротронного излучений нейтронов и электронов "РСНЭ-2001". М.: ИК РАН, 2001. С. 58.
- Коган В.А., Зеленцов В.В., Ларин Г.М., Луков В.В. Комплексы переходных металлов с гидразонами. Физико-химические свойства и строение. М.: Наука, 1990. 112 с.
- 17. *Умаров Б.Б., Турсунов М.А., Авезов К.Г.* // Научный вестник БухГУ. 2014. № 1. С. 11.
- Умаров Б.Б., Турсунов М.А., Минин В.В. Комплексы с производными кетоальдегидов и кетоэфиров. Ташкент: Нишон-ношир, 2016. 350 с.
- 19. Ревенко М.Д., Симонов Ю.А., Дука Г.Г. и др. // Журн. неорган. химии. 2009. Т. 54. № 5. С. 756 (*Revenco M.D., Simonov Yu.A., Duca G.G. et al. // Russ. J. Inorg. Chem.* 2009. V. 54. по. 5. Р. 698. doi 10.1134/S0036023609050076).
- 20. Avezov K.G., Yakimovich S.I., Umarov B.B. et al. // Russ. J. Coord. Chem. 2011. V. 37. № 4. P. 275. doi 10.1134/S1070328411030018