УДК 543.442+544.18+547.1

ПРИРОДА КОНФОРМАЦИОННОГО ПОЛИМОРФИЗМА В КРИСТАЛЛАХ КОМПЛЕКСА Ph₃Sb(O₂CCH₂-CH=CH₂)₂

© 2019 г. Г. К. Фукин^{1, *}, Е. В. Баранов¹, А. В. Черкасов¹, Р. В. Румянцев¹

¹Институт металлоорганической химии им. Г.А. Разуваева РАН, Нижний Новгород, Россия *e-mail: gera@iomc.ras.ru

> Поступила в редакцию 27.12.2018 г. После доработки 01.02.2019 г. Принята к публикации 14.03.2019 г.

В процессе кристаллизации комплекса Ph₃Sb(O₂CCH₂−CH=CH₂)₂ при быстром испарении растворителя (бензол) образуются моноклинные кристаллы (I), тогда как при медленном – триклинные (II). Кроме того, моноклинные кристаллы в течение полугода самопроизвольно трансформируются в триклинные. Показано, что наличие пустот около одного из карбоксилатных лигандов в моноклинной фазе комплекса Ph₃Sb(O₂CCH₂−CH=CH₂)₂ приводит к уменьшению энергии межмолекулярных взаимодействий и, как следствие, к изменению его конформации с заметным понижением энергии кристаллической решетки. Другими словами, наличие пустот в кристалле моноклинной фазы позволяет реализовать более термодинамически выгодную конформацию молекул в кристалле. Определено несколько структурных моделей комплекса Ph₃Sb(O₂CCH₂−CH=CH₂)₂ (CIF files № 1887561 (I_{IAM}) – модель невзаимодействующих атомов, 1887564 (II) – мультипольная модель).

Ключевые слова: комплекс трифенилсурьмы с винилуксусной кислотой, прецизионный PCA, конформационные полиморфы, теория Р. Бейдера "Атомы в молекулах"

DOI: 10.1134/S0132344X19080024

Карбоксилатные комплексы триарилсурьмы проявляют противоопухолевую активность [1-8], что потенциально важно при лечении онкологических заболеваний. Однако существуют и побочные эффекты, основным из которых является высокая токсичность таких препаратов. Поэтому большинство исследований карбоксилатных производных Sb(V) направлены на изучение взаимосвязи химических и фармакологических свойств этих соединений с целью минимизации побочных эффектов и повышения их эффективности. Широкий практический интерес представляют работы по использованию карбоксилатных комплексов триарилсурьмы в полимеризации [9–11], реакциях кросс-сочетания [12–14], а также при создании фоторезистов в микроэлектронике [15]. В свою очередь, мы обнаружили, что в процессе кристаллизации комплекса $Ph_3Sb(O_2CCH_2-CH=CH_2)_2$ (I) при быстром испарении растворителя (бензол) образуются моноклинные кристаллы, тогда как при медленном – триклинные. Моноклинные кристаллы в течение полугода самопроизвольно трансформируются в триклинные.

Настоящее исследование посвящено причинам самопроизвольной трансформации моноклинных кристаллов комплекса $Ph_3Sb(O_2CCH_2-CH=CH_2)_2$ (I) в триклинные.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез винилуксусного комплекса трифенилсурьмы(V) I проводили по известной методике, описанной в [16].

Прецизионный РСА комплекса І и его конформационной полиморфной модификации (II) при 100 К проведен на автоматических дифрактометрах (графитовые монохроматоры, МоКα-излучение, $\lambda = 0.71073$ Å) Oxford Xcalibur (Eos детектор) для I и Bruker D8 QUEST (CMOS детектор) для II. Экспериментальные наборы интенсивностей интегрированы с помощью программ CrysAlisPro [17] и SAINT [18]. Программы SCALE3 ABSPACK [19] и SADABS [20] использованы для введения поправок на поглощение. Структуры расшифрованы прямым методом и уточнены полноматричным МНК по F^2 (SHELXTL) [21]. Все неводородные атомы уточнены в анизотропном приближении. Атомы водорода помещены в геометрически рассчитанные положения и уточнены изотропно в модели "наездника".

Паланала	Значение			
Параметр	Ι	II		
Брутто-формула	$C_{26}H_{25}O_4Sb$	C ₂₆ H ₂₅ O ₄ Sb		
Μ	523.216	523.216		
Сингония	Моноклинная	Триклинная		
Пр. гр.	$P2_1/c$	$P\overline{1}$		
<i>a</i> , Å	12.4174(2)	8.1823(3)		
<i>b</i> , Å	22.1246(4)	8.8194(3)		
<i>c</i> , Å	8.8020(2)	17.9141(7)		
α, град	90	77.880(1)		
β, град	104.647(2)	89.821(1)		
ү, град	90	62.885(1)		
V, Å ³	2339.59(8)	1118.62(7)		
Ζ	4	2		
ρ(выч.), г см ⁻³	1.486	1.554		
μ, мм ⁻¹	1.208	1.263		
<i>F</i> (000)	1056	528		
Размер кристалла, мм	$0.45 \times 0.35 \times 0.20$	$0.46 \times 0.18 \times 0.16$		
Область θ, град	3.02-51.42	2.34-51.43		
Число собранных/независимых отражений	971802/25476	336077/28905		
$R_1/wR_2 \ (I \ge 2\sigma(I))$	0.0394/0.0314	0.0177/0.0144		
GOOF	0.993	0.998		
Остаточная электронная плотность, $e \text{\AA}^{-3}$	0.320/-0.449	0.311/-0.856		

Таблица 1. Основные кристаллографические характеристики и параметры прецизионного РСА для мультипольной модели уточнения в комплексах I и II

Мультипольное уточнение комплексов I и II проведено в рамках модели Хансена—Коппенса [22] с использованием программного пакета Мо-Рго [23]. Все атомы водорода в прецизионном РСА перед мультипольным уточнением нормализованы на идеальные нейтронографические расстояния [24]. Уровень мультипольного разложения был гексадекапольным для атома сурьмы, октапольным для всех неводородных атомов и дипольным для всех неводорода. Все связанные пары атомов удовлетворяют тесту Хиршфельда [25]. Топологический анализ экспериментальной функции $\rho(\mathbf{r})$ проведен при помощи программного пакета WINXPRO [26].

Наличие разупорядоченного аллильного фрагмента в II приводит к некоторым отклонениям от стандартной схемы мультипольного уточнения, в которой координаты атомов, их тепловые и мультипольные параметры уточняются последовательно. Здесь мы "разбили" молекулу на два блока. Первый содержал атомы комплекса со 100- и 80%-ной заселенностью позиций, а второй блок только с 20%-ной. Сначала уточняли одинаковые параметры в одном блоке (100%-ная + 80%-ная заселенность позиций), а затем (20%-ная заселенность позиций) в другом и так для каждого уточняемого параметра. Кроме того, разупорядоченность аллильного фрагмента привела к тому, что мы отдельно использовали программу WINXPRO для анализа топологии электронной плотности двух различных конформаций II (**IIa** и **II6**). Заселенности позиций для каждого разупорядоченного аллильного фрагмента в этом случае были равны единице.

Основные кристаллографические характеристики и параметры РСА для мультипольной модели уточнения в комплексах I и II приведены в табл. 1.

Структуры депонированы в Кембриджском банке структурных данных (**КБСД**) (\mathbb{N} 1887561 (I_{IAM}) – модель невзаимодействующих атомов, 1887562 (I) – мультипольная модель, 1887563 (II_{IAM}) – модель невзаимодействующих атомов, 1887564 (II) – мультипольная модель; http://www.ccdc.cam.ac.uk/data_request/cif).

Рис. 1. Молекулярное строение $Ph_3Sb(O_2CCH_2-CH=CH_2)_2$: а – молекула моноклинной фазы (I); б – молекула триклинной фазы (II). Один из карбоксилатных лигандов в триклинной фазе разупорядочен по двум положениям с заселенностью позиций 80% (фрагмент C(6)C(7)C(8), соединение IIa) и 20% (фрагмент C(6')C(7')C(8'), соединение IIб). Тепловые эллипсоиды приведены с 30%-ной вероятностью. Атомы водорода для наглядности не показаны.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

С целью изучения самопроизвольного фазового перехода моноклинных кристаллов I в триклинные II были проведены их прецизионные PCA. Молекулярное строение комплексов представлено на рис. 1. Координационное окружение центрального атома Sb в комплексах I и II промежуточное между тригонально-бипирамидальным и тетрагонально-пирамидальным. Параметр т для обоих комплексов равен 0.50 [27]. Комплексы I и II имеют *цис*-расположение карбоксилатных групп. Основные расстояния Sb(1)–O(1, 3), Sb(1)–O(2, 4) и Sb(1)–C(Ph) в комплексах I и II лежат в диапазонах 2.1196(3)–2.1512(8), 2.7778(9)–2.9816(4) и 2.1063(4)–2.1190(3) Å соответственно. Анализ КБСД [28] показывает, что такие расстояния характерны для карбоксилатных комплексов трифенилсурьмы(V). Следует отметить, что трансформация моноклинных кристаллов I в триклинные II приводит к появлению двух конформеров

• 1	3 . 2 2	2, 2	-	-		
Связь	Расстояние, Å	v(r), a.e.	ρ(r), a.e.	$\nabla^2 \rho(\mathbf{r})$, a.e.	$h_{\rm e}(\mathbf{r})$, a.e.	
Моноклинная фаза (I)						
Sb(1)-O(1)	2.1255(9)	-0.102	0.077	0.272	-0.017	
Sb(1)-O(3)	2.1512(8)	-0.092	0.071	0.257	-0.014	
Sb(1)O(2)	2.8384(10)	-0.017	0.024	0.068	0.0001	
Sb(1)O(4)	2.7778(9)					
Sb(1)-C(9)	2.1166(11)	-0.205	0.137	-0.040	-0.108	
Sb(1)-C(15)	2.1102(12)	-0.166	0.117	0.063	-0.075	
Sb(1)-C(21)	2.1081(12)	-0.191	0.128	0.055	-0.089	
Триклинная фаза (II)						
Sb(1)-O(1)	2.1196(3)	-0.138	0.099	0.198	-0.044	
Sb(1)-O(3)	2.1277(3)	-0.128	0.094	0.205	-0.039	
Sb(1)O(2)	2.8021(4)					
Sb(1)O(4)	2.9816(4)					
Sb(1)-C(9)	2.1190(3)	-0.147	0.105	0.161	-0.053	
Sb(1)-C(15)	2.1089(3)	-0.161	0.113	0.116	-0.066	
Sb(1)-C(21)	2.1063(4)	-0.174	0.121	0.058	-0.080	

Таблица 2. Расстояния и основные топологические параметры в $KT(3, -1)^*$ в координационной сфере атома сурьмы в комплексе $Ph_3Sb(O_2CCH_2-CH=CH_2)_2$ в моноклинной и триклинной фазах

* КТ(3, -1) - критическая точка (3, -1).

вследствие разупорядочения одного из аллильных фрагментов карбоксилатного лиганда в II с заселенностью позиций 80% (IIa) и 20% (IIб) (рис. 1б). Разупорядоченные фрагменты в триклинной фазе II приближенно связаны между собой зеркальной плоскостью, проходящей через карбоксилатную группу О(3)О(4)С(5). Суперпозиция молекул комплекса $Ph_3Sb(O_2CCH_2-CH=CH_2)_2$ для моноклинной (I) и триклинной (IIa, IIб) фаз представлена на рис. 2. Наибольшие конформационные различия в структуре молекул комплекса I наблюдаются между фрагментами C(6)C(7)C(8) моноклинной (I) и триклинной (IIa) фаз (рис. 2a), а также фрагментами C(6)C(7)C(8) и C(6')C(7')C(8') в I и IIб (рис. 2б). Аллильный фрагмент C(6)C(7)C(8) винилуксусного лиганда (80%-ная заселенность позиций) в IIa развернут относительно аналогичного фрагмента C(6)C(7)C(8) в I вокруг оси C_2 , проходящей вдоль связей C(5)–C(6) на ~170° (рис. 2а). В свою очередь, фрагмент С(6')С(7')С(8') винилуксусного лиганда (20%-ная заселенность позиций) в IIб и C(6)C(7)C(8) в I приблизительно связаны между собой зеркальной плоскостью. Таким образом, самопроизвольная трансформация моноклинных кристаллов I приводит к образованию двух конформационных изомеров в триклинной фазе.

Для изучения природы химических связей в координационной сфере атомов Sb в I и II, мы использовали теорию Бейдера [29], согласно которой связи Sb(1)–O(1, 3) и Sb(1)–C(15, 21) в I относятся к типу промежуточных взаимодействий $(\nabla^2 \rho(\mathbf{r}) > 0, h_e(\mathbf{r}) < 0)$, тогда как связь Sb(1)–C(9) является взаимодействием обобществленного типа $(\nabla^2 \rho(\mathbf{r}) < 0, h_e(\mathbf{r}) < 0)$ (табл. 2). В II все взаимодействия в координационной сфере атома сурьмы промежуточные. Отметим, что в ранее исследованных дикарбоксилатных комплексах трифенилсурьмы связи Sb–C(Ph) характеризовались как взаимодействия промежуточного типа [30, 31], так и обобществленные [32].

Для изучения природы конформационного полиморфизма в кристаллах Ph₃Sb(O₂CCH₂-CH= CH₂)₂ были найдены все взаимодействия между молекулами комплекса в моноклинной I и триклинной II фазах и оценена их энергия по корреляции Эспинозы-Моллинса-Лекомта [33]. Интересно отметить, что энергия межмолекулярных контактов лиганда O(1, 2)C(1-4) в моноклинной фазе I (-9.41 ккал/моль) практически совпадает с аналогичным значением энергии для этого лиганда в триклинной фазе II (-9.49 ккал/моль). Это согласуется с относительно небольшими конформационными изменениями

Рис. 2. Суперпозиция молекул комплекса $Ph_3Sb(O_2CCH_2-CH=CH_2)_2$ в моноклинной (I) и триклинной (IIa (a) и II6 (б)) фазах. Связи в молекулах моноклинной фазы представлены сплошными линиями, а в триклинной – контурными. Тепловые эллипсоиды приведены с 30%-ной вероятностью. Атомы водорода для наглядности не показаны.

лиганда O(1.2)C(1-4) при переходе в триклинную фазу II. В свою очередь, лиганд O(3, 4)C(5-8) при переходе из моноклинной фазы I в триклинную II подвержен существенно бо́лышим конформационным изменениям. Энергия межмолекулярных контактов этого лиганда в I составляет -8.01 ккал/моль, что меньше, чем в IIa (-10.25 ккал/моль) и IIб (-8.42 ккал/моль). В результате фазового перехода энергия кристаллической решетки понижается на ~5 ккал/моль в IIa и ~3.5 ккал/моль в IIб, а также уменьшаются объемы молекул и, как следствие, возрастает плотность и коэффициент упаковки (табл. 3). Следует отметить, что объем аллильного фрагмента C(6)C(7)C(8) в I с учетом атомов водорода, полученный как сумма объемов атомных бассейнов, составляет 76.3 Å³, что заметно превышает объем аналогичного фрагмента в II (73.9 Å³ в IIa и 72.9 Å³ в IIб). Такое различие можно интерпретировать наличием пустот около аллильного фрагмента C(6)C(7)C(8) в I, что позво-

Рис. 3. Расположение пустот в моноклинной фазе I комплекса $Ph_3Sb(O_2CCH_2-CH=CH_2)_2$.

теристики комплекса $Ph_3Sb(O_2CCH_2-CH=CH_2)_2$				
Моноклинная фаза (I)	Триклинная фаза (II)*			
Энергия всех межмолекулярных контактов, ккал/моль				
-40.04	-45.72/-43.50			
Плотность, г/см ³				
1.486	1.554			
Коэффициент упаковки, %				
70.2	73.3/73.1			
Объем молекулы (сумма объемов полиэдров				
Вороного-Дирихле), Å ³				
596.2	565.5			
Объем молекулы (сумма объемов атомных бассейнов), Å ³				
582.8	557.3			

Таблица 3. Энергетические и кристаллические харак-

* Через слэш приведены значения для Пб.

ляет изменять ему свою конформацию без разрушения кристалла (рис. 3).

Таким образом, наличие пустот около одного из карбоксилатных лигандов в моноклинной фазе I комплекса $Ph_3Sb(O_2CCH_2-CH=CH_2)_2$ приводит к уменьшению энергии межмолекулярных взаимодействий и, как следствие, к возможности изменения его конформации с заметным понижением энергии кристаллической решетки. Другими словами, наличие пустот в кристалле моноклинной фазы I позволяет реализовать более термодинамически выгодную конформацию молекул в кристалле.

БЛАГОДАРНОСТИ

В работе использовано научное оборудование Центра коллективного пользования "Аналитический центр ИМХ РАН".

ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 17-03-01257).

- Bajpai K., Singhal R., Srivastava R.C. // Indian J. Chem. A. 1979. V. 18. P. 73.
- Singhal K., Rastogi R., Raj. P. // Indian J. Chem. A. 1987. T. 26. P. 146.
- 3. *Ma Y., Li J., Xuan Z., Liu R.* // J. Organomet. Chem. 2001. V. 620. № 1–2. P. 235.
- 4. *Liu R.-C., Ma Y.-Q., Yu L. et al.* // Appl. Organomet. Chem. 2003. V. 17. № 9. P. 662.
- 5. *Yu L., Ma Y.-Q., Liu R.-C. et al.* // Polyhedron. 2004. V. 23. № 5. P. 823.
- 6. *Yu L., Ma Y.-Q., Wang G.-C. et al.* // Heteroat. Chem. 2004. V. 15. № 1. P. 32.
- Hadjikakou S.K., Ozturk I.I., Banti C.N. et al. // J. Inorg. Biochem. 2015. V. 153. P. 293.
- Islam A., Rodrigues B.L., Marzano I.M. et al. // Eur. J. Med. Chem. 2016. V. 109. P. 254.
- US Patent № 3.287.210 (C1 167–30). November 22. 1966. Appl. December 26. 1967. V. 66. № 19. 85070.
- 10. Карраер Ч., Морган М. Металлоорганические полимеры. М.: Мир, 1981. С. 121.
- 11. *Котон М.М.* Металлоорганические соединения и радикалы. Наука, 1985. С. 13.
- 12. Gushchin A.V., Moiseev D.V., Dodonov V.A. // Russ. Chem. Bull. 2001. V. 50. № 7. P. 1291.
- 13. *Moiseev D.V., Gushchin A.V., Shavirin A.S. et al.* // J. Organomet. Chem. 2003. V. 667. № 1–2. P. 176.
- 14. *Qin W., Yasuike S., Kakusawa N. et al.* // J. Organomet. Chem. 2008. V. 693. № 17. P. 2949.
- Passarelli J., Murphy M., Del Re R. et al. // SPIE Advanced Lithography. 2015. V. 9425. P. 94250T.
- Гущин А.В., Шарутин Д.В., Прыткова Л.К. и др. // Журн. общ. химии. 2011. Т. 81. № 3. С. 397.
- Data Collection. Reduction and Correction Program. CrysAlis Pro-Software Package. Agilent Technologies, 2012.

- SAINT. Data Reduction and Correction Program. Version 8.27B. Madison (WI, USA): Bruker AXS Inc., 2012.
- 19. SCALE3 ABSPACK: Empirical Absorption Correction. CrysAlis Pro-Software Package. Agilent Technologies, 2012.
- 20. *Sheldrick G.M.* SADABS-2012/1. Bruker/Siemens Area Detector Absorption Correction Program. Madison (WI, USA): Bruker AXS Inc., 2012.
- 21. *Sheldrick G.M.* SHELXTL. V.6.14. Structure Determination Software Suite. Madison (WI, USA): Bruker AXS, 2003.
- 22. *Hansen N.K., Coppens P.* // Acta Crystallogr. A. 1978. V. 34. № 6. P. 909.
- 23. Jelsch C., Guillot B., Lagoutte A. et al. // J. Appl. Crystallogr. 2005. V. 38. № 1. P. 38.
- 24. Allen F.H., Kennard O., Watson D.G. et al. // Perkin Trans. 2. 1987. № 12. P. S1.
- 25. *Hirshfeld F.* // Acta Crystallogr. A. 1976. V. 32. № 2. P. 239.
- Stash A., Tsirelson V. // J. Appl. Crystallogr. 2002. V. 35. № 3. P. 371.
- 27. *Addison A.W., Rao T.N., Reedijk J. et al.* // Dalton Trans. 1984. № 7. P. 1349.
- 28. *Groom C.R., Bruno I.J., Lightfoot M.P. et al.* // Acta Crystallogr. 2016. V. 72. № 2. P. 171.
- 29. *Bader R.F.W.* Atoms in Molecules A Quantum Theory. Oxford: Oxford Univ. Press, 1990.
- 30. Fukin G.K., Samsonov M.A., Kalistratova O.S. et al. // Struct. Chem. 2016. V. 27. № 1. P. 357.
- Fukin G.K., Samsonov M.A., Arapova A.V. et al. // J. Solid State Chem. 2017. V. 254. P. 32.
- 32. Фукин Г.К., Самсонов М. А., Баранов Е. В. и др. // Коорд. химия. 2018. Т. 44. № 5. С. 325 (Fukin G.K., Samsonov M.A., Baranov E.V. et al. // Russ. J. Coord. Chem. 2018. V. 44. № 10. Р. 626. doi 10.1134/ S1070328418100020).
- 33. *Espinosa E., Molins E., Lecomte C.* // Chem. Phys. Lett. 1998. V. 285. № 3–4. P. 170.