УЛК 546.271-386

СИНТЕЗ И СТРОЕНИЕ КОМПЛЕКСА [Ag(PPh₃)₄][2-B₁₀H₉NH₃ · 2DMF]

© 2019 г. А. П. Жданов^{1, *}, В. В. Воинова¹, И. Н. Клюкин¹, Г. А. Бузанов¹, М. С. Григорьев², К. Ю. Жижин^{1, **}, Н. Т. Кузнецов¹

 1 Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия 2 Институт физической химии и электрохимии им. А.Н. Фрумкина РАН, Москва, Россия

*e-mail: zhdanov@igic.ras.ru **e-mail: zhizhin@igic.ras.ru Поступила в редакцию 12.12.2018 г. После доработки 18.02.2019 г. Принята к публикации 14.03.2019 г.

Изучен процесс образования комплексной соли состава $[Ag(PPh_3)_4][2-B_{10}H_9NH_3\cdot 2DMF]$ (I) при взаимодействии солей аниона $[2-B_{10}H_9NH_3]^-$ с $[Ag(PPh_3)_4]NO_3$. Обнаружено, что анионная часть комплекса I представляет собой устойчивый сольват, соединенный водородными связями двух типов. Соединение I идентифицировано методами ИК-спектроскопии, элементного, рентгенофазового и рентгеноструктурного анализов (CIF file CCDC № 1884451).

Ключевые слова: клозо-декаборатный анион, аммонио-клозо-декаборат, диводородные связи

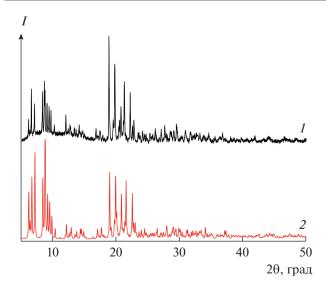
DOI: 10.1134/S0132344X19080097

Кластерные анионы бора — уникальные молекулярные платформы, которые могут выступать как строительные блоки в получении новых бионеорганических систем [1-3]. Особое внимание уделяется производным клозо-декаборатного аниона, содержащим экзо-полиэдрические связи бор-азот, бор-кислород, бор-сера [4-7]. Координационная химия клозо-боратных анионов также активно развивается в последнее время [8, 9]. Изучено множество подходов к получению координационных соединений на основе клозо-боратных анионов. Возможны различные типы координации металла к борному остову. В литературе описано много примеров координационных соединений, в которых кластерные анионы бора находились во внешней сфере [10-12]. Однако координационные соединения, в которых в качеиспользуют лиганда замещенные производные клозо-боратных анионов, практически неизвестны [13]. В то же время данные соединения, благодаря наличию атома металла и экзополиэдрической функциональной группы, позволяют создавать молекулярные платформы для синтеза комплексов с заданным набором свойств.

На данный момент существует много методов получения производных *клозо*-декаборатного аниона с *экзо*-полиэдрической связью бор—азот [14, 15]. Для получения подобного рода производного используют различные методы, основанные

на реакциях электрофильного и нуклеофильного замещения. Известны производные, содержащие в качестве *экзо*-полиэдрического заместителя нитрилиевую, нитро, диазогруппы [16—18]. Особый интерес представляют производные, содержащие аммониевые группы, которые могут являться элементоорганическими аналогами органических аминов.

В настоящей работе предложен подход к получению комплексной соли *клозо*-декаборатного аниона (Ag(PPh₃)₄)[B₁₀H₉NH₃ · 2DMF] (I), основанный на взаимодействии (Ag(PPh₃)₄)NO₃ с (Bu₄N)[2-B₁₀H₉NH₃] в диметилформамиде, а также изучены физико-химические свойства I.


ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали растворители и реагенты (Химмед, Sigma-Aldrich) квалификации "х. ч." без дополнительной очистки.

Синтез І. К раствору $(N^n Bu_4)[2-B_{10}H_9NH_3]$ (0.37 г, 0.98 ммоль), полученного по методике [19], в ДМФА (10 мл) добавляли [Ag(PPh₃)₄]NO₃ (1.19 г, 0.98 ммоль) и перемешивали полученную реакционную массу в атмосфере аргона при 60°С до полного растворения всех компонентов смеси, затем охлаждали до комнатной температуры и кристаллизовали продукт. Образующиеся кри-

Таблица 1. Кристаллографические данные и параметры уточнения структуры I

Параметр	Значение		
M	1437.34		
Излучение (λ, Å)	$MoK_{\alpha} (\lambda = 0.71073)$		
Сингония; пр. гр.	Триклинная; $P\overline{1}$		
a, Å	13.7878(4)		
$b, ext{Å}$	14.5300(5)		
c, Å	19.3842(6)		
α, град	104.892(2)		
β, град	100.220(2)		
γ, град	93.924(2)		
V, Å ³	3666.74		
Z	2		
ρ (выч.), г/мм $^{-3}$	1.302		
μ , mm^{-1}	0.411		
F(000)	1496		
Интервал сканирования θ , град	4.087-29.999		
Тип сканирования	ω		
Число измеренных отражений	44876		
Число независимых отражений (N_1)	21157		
$R_{\rm int}$	0.0583		
Число отражений с $I > 2\sigma(I)$ (N_2)	14548		
Число уточняемых параметров	888		
GOOF (F^2)	1.033		
R_1 πο N_2	0.0521		
wR_2 по N_1	0.1118		
$\Delta \rho_{\text{max}}/\Delta \rho_{\text{min}}$, $e \mathring{A}^{-3}$	1.706/-0.925		

Рис. 1. Данные РФА (*1*) и теоретически предсказанная дифрактограмма (*2*) для соединения [Ag(PPh₃)₄][2-B₁₀H₉NH₃ · 2DMF].

сталлы отфильтровывали и промывали Et_2O (2 раза по 5 мл). Выход I 1.10 г (74%).

Найдено, %: С 65.27; Н 6.09; N 2.99; В 7.4. Для $C_{78}H_{86}B_{10}N_3O_2P_4Ag$ вычислено, %: С 65.18; Н 6.03; N 2.92; В 7.5.

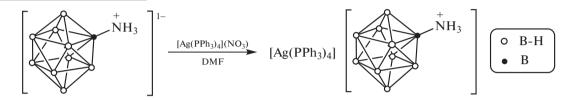
ИК-спектр (КВr; v, см⁻¹): 3440, 3246, 3203 v(NH); 2538, 2516, 2453, 2422 v(BH).

Элементный анализ на C, H и N осуществляли на автоматическом газовом анализаторе CHNS-3 FA 1108 Elemental Analyser (CarloErba). Бор определяли методом ICPMS на атомно-эмиссионном спектрометре с индуктивно связанной плазмой iCAP 6300 Duo (ЦКП НИЦ "Курчатовский институт" — ИРЕА).

ИК-спектры соединений записывали на ИК-Фурье-спектрофотометре Инфралюм Φ T-08 (НП Φ АП Люмекс) в области 4000—600 см $^{-1}$ с разрешением 1 см $^{-1}$. Образцы готовили в виде таблеток с KBr.

Рентгенофазовый анализ (РФА) проводили на рентгеновском дифрактометре Bruker D8 Advance (CuK_{α} -излучение, Ni-фильтр, детектор LYNXEYE, геометрия на отражение) в кюветах из ориентированного монокристаллического кремния в диапазоне углов $2\theta = 5^{\circ}-70^{\circ}$ с шагом 0.01125° . Непосредственно перед регистрацией дифрактограмм исследуемые образцы тщательно растирали в агатовой ступке.

PCA I выполнен на автоматическом четырехкружном дифрактометре с двумерным детектором Bruker KAPPA APEX II (излучение MoK_{α}) [20] при 100(2) К. Параметры ячейки уточнены по всему массиву данных [21]. Структура расшифрована прямым методом [22], уточнена полноматричным методом наименьших квадратов [23] по F^2 по всем данным в анизотропном приближении для всех неводородных атомов (кроме разупорядоченных, если такие имеются). Атомы Н боргидридного фрагмента локализованы из разностного синтеза электронной плотности и уточнены изотропно без каких-либо ограничений. Атомы Н органических фрагментов размещены в геометрически вычисленных позициях и уточнены с изотропными температурными параметрами, равными $1.2U_{_{\rm ЭКВ}}$ атома N или C для NH, CH, CH₂ и $1.5U_{3KB}$ атома С для СН₃. Кристаллографические характеристики, детали рентгеновского дифракционного эксперимента и уточнение структуры I приведены в табл. 1.


Координаты атомов и кристаллографические данные для соединения I депонированы в Кембриджском банке структурных данных (CCDC N 1884451; deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk/data_request/cif).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для оценки реакционной способности в условиях процессов комплексообразования мы изучили взаимодействие аниона $[2-B_{10}H_9NH_3]^-$ с соединением серебра І. Известно множество комплексных соединений серебра, в которых *клозо*декаборатный анион выступает в качестве внутри- или внешнесферного лиганда. Так, при попытке получения соли $Ag[B_{10}H_9NH_3]$ из водных растворов наблюдали окисление борного кластера. Очевидно, это связано со снижением устойчивости к окислению замещенных *клозо*-декабора-

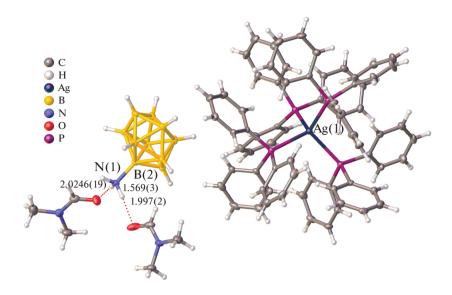
тов относительно исходного аниона $[B_{10}H_{10}]^{2-}$. При получении серебряной соли аммонио- κ лозодекабората в среде органических растворителей также наблюдали постепенное окисление борного кластера. Введение в реакционную массу дополнительных количеств лиганда, например трифенилфосфина, приводит к образованию комплексных солей с замещенным κ лозо-декаборатом во внешней сфере.

В чистом виде данный комплекс получили при взаимодействии $(N^nBu_4)[2-B_{10}H_9NH_3]$ с $[Ag(PPh_3)_4]NO_3$ в среде DMF согласно схемы:

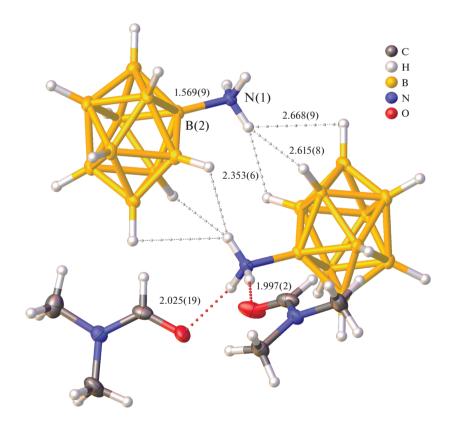
Изотермической кристаллизацией продукта реакции выделили комплекс I, состав и строение которого подтверждены данными РСА и РФА.

По данным РФА, исследуемый образец достаточно хорошо кристаллизован; на дифрактограмме отсутствуют рефлексы соединений-прекурсоров. Хорошее совпадение кривых, полученных экспериментально (рис. 1, I) и рассчитанных по данным РСА монокристаллов (рис. 1, 2), также свидетельствует о чистоте и однородности полученного продукта.

Структура комплекса I, по данным PCA, построена из катионов $[Ag(PPh_3)_4]^+$ и замещенных аммонио-*клозо*-декаборатных анионов, содержащих заместитель в экваториальном положении (рис. 2)¹. Экзополиэдрическое расстояние боразот составляет 1.569 Å, что соответствует одинарной связи (табл. 2). Характерной особенностью является наличие сольватных молекул DMF, соединенных водородными связями между протонами аммониевого заместителя и атомами кислорода молекул растворителя (O-O 1.997–2.025 Å). Сольват I сохраняет свой состав при длительном хранении на воздухе или выдерживании в эксикаторе над оксидом фосфора(V).


Третий протон аммониевого заместителя участвует в межмолекулярной диводородной связи с соседним кластером бора, при этом анионы образуют центросимметричные димеры (рис. 3). Координация происходит по одной из апикальных граней. Расстояния О···О в диводородных связях лежат в диапазоне 2.353—2.668 Å (табл. 3).

Наличие водородных связей подтверждается также данными ИК-спектроскопии поглощения. Так, в спектрах полученного комплекса I (рис. 4а) наблюдается смещение полос поглощения связи азот—водород в область меньших волновых чи-


Таблица 2. Некоторые значения длин связей для соединения I

Связь	d, Å	Связь	d, Å	
$\overline{\text{Ag}(1)-\text{P}(1)}$	2.6056(8)	B(5)-B(6)	1.827(4)	
Ag(1)-P(2)	2.6082(8)	B(5)-B(9)	1.818(4)	
Ag(1)-P(3)	2.6337(8)	B(6)-B(7)	1.840(5)	
Ag(1)-P(4)	2.5945(6)	B(6)-B(1)	1.690(4)	
B(2)-N(1)	1.568(3)	B(6)-B(9)	1.828(3)	
B(1)-B(2)	1.675(4)	B(7)-B(8)	1.829(3)	
B(1)-B(3)	1.698(5)	B(7)-B(1)	1.694(4)	
B(1)-B(4)	1.698(4)	B(8)-B(9)	1.843(5)	
B(1)-B(5)	1.703(4)	B(8)-B(1)	1.702(4)	
B(2)-B(3)	1.822(4)	B(9)-B(1)	1.696(4)	
B(2)-B(5)	1.825(4)	O(1)–C(1)	1.234(3)	
B(2)-B(6)	1.803(4)	N(2)-C(1)	1.329(3)	
B(2)-B(7)	1.799(4)	N(2)-C(2)	1.455(3)	
B(3)-B(4)	1.832(4)	N(2)-C(3)	1.451(4)	
B(3)-B(7)	1.822(4)	O(2)-C(4)	1.223(4)	
B(3) - B(8)	1.820(4)	N(3)-C(4)	1.332(4)	
B(4) - B(5)	1.833(4)	N(3)-C(5)	1.459(4)	
B(4) - B(8)	1.823(4)	N(3)-C(6)	1.460(3)	
B(4)-B(9)	1.830(4)			

¹ Рисунки 2 и 3 выполнены с помощью программного пакета OLEX2 [24].

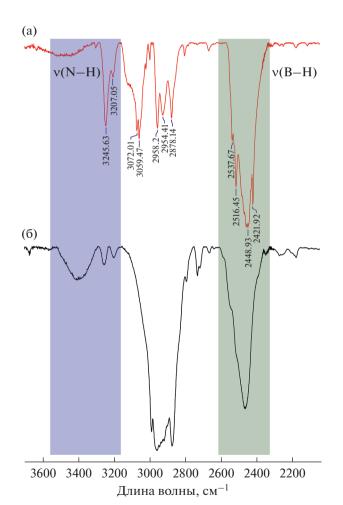
Рис. 2. Строение комплекса [$Ag(PPh_3)_4$][$2-B_{10}H_9NH_3 \cdot 2DMF$] по данным PCA монокристаллов.

Рис. 3. Супрамолекулярные взаимодействия в кристаллах соединения [Ag(PPh₃)₄][2-B₁₀H₉NH₃ · 2DMF].

сел, а также уменьшение интенсивности одной из мод колебаний. В области поглощения валентных колебаний бор—водород также наблюдается расщепление полосы поглощения, что указывает на участие борного остова в образовании диводородных связей.

БЛАГОДАРНОСТИ

Анализ на бор выполнен в ЦКП НИЦ "Курчатовский институт" – ИРЕА; РФА и РСА – с использованием оборудования ЦКП ФМИ ИОНХ РАН, функционирующего в рамках государственного


Таблица 3. Некоторые геометрические параметры водородных связей для соединения I

D–H···A	Расстояние, Å			Угол
	D–H	H···A	DA	DHA, град
N(1)- $H(1C)$ ···O(1)	0.910	2.025	2.910	164
$N(1)-H(1B)\cdots O(2)$	0.910	1.997	2.906	176
$B(6)-H(6)\cdots H(1D)$	1.120	2.354	2.720	97
$B(7)-H(7)\cdots H(1D)$	1.119	2.615	2.851	90
$B(10) {-} H(10) {\cdots} H(1D)$	1.120	2.668	2.798	85

задания ИОНХ РАН в области фундаментальных научных исследований.

ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке Российского научного фонда (грант № 18-13-00459).

Рис. 4. Фрагмент ИК-спектров поглощения комплекса I (а) и исходной соли $(N^n Bu_4)[2-B_{10}H_9NH_3]$ (б).

СПИСОК ЛИТЕРАТУРЫ

- Sivaev I.B., Bregadze V.V. // Eur. J. Inorg. Chem. 2009.
 V. 11. P. 1433.
- Bayer M.J., Hawthorne M.F. // Inorg. Chem. 2004. V. 43. P. 2018.
- 3. *Olid D., Núñez R., Viñas C., Teixidor F.* // Chem. Soc. Rev. 2013. V. 42. P. 3318.
- Klyukin I.N., Kubasov A.S., Limarev I.P. et al. // Polyhedron. 2015. V. 101. P. 215.
- 5. Zhizhin K.Y., Mustyatsa V.N., Matveev E.Y. et al. // Russ. J. Inorg. Chem. 2003. V. 48. P. 671.
- Zhizhin K.Y., Zhdanov A.P., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2010. V. 55. P. 2089. doi 10.1134/S0036023610140019
- 7. Zhizhin K.Y., Mustyatsa V.N., Malinina E.A. et al. // Russ. J. Coord. Chem. 2001. V. 27. № 9. P. 619. https://doi.org/10.1023/A:1017989219486
- Avdeeva V.V., Malinina E.A., Kuznetsov N.T. // Polyhedron. 2016. V. 105. P. 205.
- 9. Avdeeva V.V., Polyakova I.N., Vologzhanina A.V. et al. // Polyhedron. 2017. V. 123. P. 396.
- Malinina E.A., Kochneva I.K., Polyakova I.N. et al. // Inorg. Chim. Acta. 2018. V. 479. P. 249.
- Kochneva I.K., Polyakova I.N., Avdeeva V.V. et al. // Dokl. Chem. 2017. V. 474. P. 137.
- 12. Zhizhin K.Y., Mustyatsa V.N., Malinina E.A. et al. // Russ. J. Inorg. Chem. 2004. V. 49. P. 180.
- 13. Safronova E.F., Avdeeva V.V., Polyakova I.N. et al. // Dokl. Chem. 2013. V. 452. P. 240.
- 14. Burianova V.K., Mikherdov A.S., Bolotin D.S. et al. // J. Organomet. Chem. 2018. V. 870. P. 97.
- 15. Mindich A.L., Bokach N.A., Kuznetsov M.L. et al. // Chempluschem. 2012. V. 77. P. 1075.
- 16. Bragin V.I., Sivaev I.B., Bregadze V.I., Votinova N.A. // J. Organomet. Chem. 2005. V. 690. P. 2847.
- Naoufal D., Assi Z., Abdelhai E. et al. // Inorg. Chim. Acta. 2012. V. 383. P. 33.
- 18. Kubasov A.S., Matveev E.Y., Turyshev E.S. et al. // Dokl. Chem. 2017. V. 477. P. 257.
- Hertler W.R., Raasch M.S. // J. Am. Chem. Soc. 1964.
 V. 86. № 18. P. 3661.
- 20. SAINT-Plus (version 7.23). Madison (WI, USA): Bruker AXS Inc., 2007.
- SADABS. Madison (WI, USA): Bruker AXS Inc., 2008.
- Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112. https://doi.org/10.1107/S0108767307043930
- 23. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
- 24. *Dolomanov O.V., Bourhis L.J., Gildea R.J. et al.* // J. Appl. Cryst. 2009.V. 42. P. 339.