УДК 546.865+547.564.32+547.53.024+548.312.5

µ₂-ОКСО-*бис*[(2,5-ДИНИТРОФЕНОКСО)ТРИАРИЛСУРЬМА]. СИНТЕЗ, СТРОЕНИЕ, РЕАКЦИИ С ПЕНТААРИЛСУРЬМОЙ

© 2020 г. В. В. Шарутин^{1,} *, О. К. Шарутина¹, А. Н. Ефремов¹

¹Южно-Уральский государственный университет, Челябинск, Россия *e-mail: vvsharutin@rambler.ru Поступила в редакцию 03.04.2019 г. После доработки 18.07.2019 г. Принята к публикации 22.07.2019 г.

Окислением триарилсурьмы *трет*-бутилгидропероксидом в присутствии 2,5-динитрофенола получены ароксиды сурьмы [Ph₃SbOC₆H₃(NO₂)₂-2,5]₂O (I) и [(4-MeC₆H₄)₃SbOC₆H₃(NO₂)₂-2,5]₂O (II). Фрагменты SbOSb в I и II изогнуты (соответствующие углы составляют 139.70(10)° и 142.32(12)°). Длины связей Sb $-O_{moet}$ (1.973(3), 1.980(3) Å в I; 1.975(2), 1.977(2) Å в II) существенно короче, чем Sb $-O_{терм}$ (2.211(3), 2.213(3) и 2.191(2), 2.191(2) Å в I и II соответственно). Из Ar₅Sb и I, II в присутствии кислорода и углекислого газа воздуха образуются ароксиды Ar₄SbOC₆H₃(NO₂)₂-2,5, Ar = Ph (III), 4-MeC₆H₄ (IV) и карбонаты (Ar₄Sb)₂CO₃, Ar = Ph (V), 4-MeC₆H₄ (VI). В тригонально-бипирамидальных молекулах III и IV аксиальные углы CSbO составляют 175.80(7)° и 176.86(10)° (Sb-O 2.290(2) и 2.342(2) Å соответственно). Один из атомов сурьмы в V и двух типах кристаллографически независимых молекул VI пентакоординирован (связи Sb $-O_{acc}$ 2.245(6) Å в V и 2.263(3), 2.263(3) Å в VIa, VIb), а второй атом сурьмы – гексакоординирован (Sb-O 2.249(6), 2.273(5) Å в V и 2.216(2), 2.251(2) Å; 2.217(2), 2.251(2) Å в VIa, VIb). CIF files CCDC № 1890704 (I), 1890706 (II), 1890713 (III), 1890714 (IV), 994519 (V), 994177 (VI).

Ключевые слова: 2,5-динитрофеноксиды три- и тетраарилсурьмы, синтез, дифракционные исследования

DOI: 10.31857/S0132344X19120065

В настоящее время интерес исследователей вызывают арильные соединения сурьмы из-за их биологической [1, 2] и фотокаталитической активности [3], а также эффективного использования в тонком органическом синтезе [4]. Наиболее известные сурьмаорганические соединения производные сурьмы Ar₃SbX₂ и (Ar₃SbX)₂O, получаемые, в основном окислением триарилсурьмы. Известно, что синтез соединений Ar₃Sb(OAr)₂ или (Ar₃SbOAr)₂O имеет место при добавлении пероксида к смеси триарилсурьмы, кислоты НХ и диэтилового эфира [5, 6], однако в некоторых случаях образуются только мостиковые соединения. Так, трифенилсурьма реагирует с пикриновой кислотой и пероксидом водорода до соединения сурьмы с фрагментом SbOSb [7]. Невозможность синтеза Ph₃Sb(OAr)₂ обусловлена, по-видимому, стерическими затруднениями, вызываемыми присутствием при центральном атоме двух больших по объему ароксильных заместителей. В этой связи исследование синтеза производных сурьмы, содержащих группировку Sb-O-Sb, весьма актуально.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез μ_2 -оксо-*бис*[(2,5-динитрофеноксо)трифенилсурьмы] (I) проводили по методике, описанной в [5]. Выход красно-коричневых кристаллов 92%, $T_{пл} = 172^{\circ}$ С. ИК-спектр (v, см⁻¹): 3072, 3055 (Ar), 1533, 1346 (NO₂), 1280 (С–О), 734, 690 (Ph), 463 (Sb–C).

Найдено, %:	C 52.67;	H 3.54.
Для C ₄₈ H ₃₆ N ₄ O ₁₁ Sb ₂		
вычислено, %:	C 52.94;	H 3.31.

Аналогично получали соединение μ_2 -оксо*бис*[(2,5-динитрофеноксо)три-*пара*-толилсурьмы] (**II**). Выход красно-коричневых кристаллов 89%, $T_{\text{разл}} = 217^{\circ}$ С. ИК-спектр (v, см⁻¹): 3107, 3018 (Ar), 2922 (Me), 1533, 1346 (NO₂), 1298 (С–О), 734, 698 (Ph), 486 (Sb–C).

Найдено, %:	C 55.02;	H 4.13.
Для C ₅₄ H ₄₈ N ₄ O ₁₁ Sb ₂		
вычислено, %:	C 55.29;	H 4.09.

Синтез Ar₄SbOC₆H₃(NO₂)₂-2,5 (III) и (Ar₄Sb)₂CO₃ (V) проводили из реакционной смеси, содержащей пентафенилсурьму (101 мг, 0.2 ммоль), соединение I (109 мг, 0.2 ммоль) и 10 мл бензола, дробной кристаллизацией из раствора бензолоктан (2 : 1 объемн.). Выход красно-коричневых кристаллов 88 мг (72%), $T_{пл} = 199^{\circ}$ С. ИК-спектр (v, см⁻¹): 3078, 3066 (Ar), 1530, 1346(NO₂), 1288 (C–O), 733, 690 (Ph), 457 (Sb–C).

Найдено, %:	C 58.66;	H 3.82.
Для $C_{54}H_{48}N_4O_{11}Sb_2$		
вычислено, %:	C 58.73;	Н 3.75.

Вторым продуктом реакции являлись бесцветные кристаллы V (60 мг, 65%), $T_{\rm пл} = 227^{\circ}$ С. ИК-спектр (v, см⁻¹): 3433, 3138, 3062, 3049, 2987, 2951, 2902, 2837, 2640, 2596, 2519, 1953, 1886, 1815, 1631, 1577, 1479, 1471, 1433, 1429, 1382, 1332, 1305, 1263, 1186, 1157, 1099, 1066, 1022, 997, 972, 918, 850, 831, 729, 692, 663, 653, 464, 457, 449.

Найдено, %:	C 63.85;	H 4.46.
Для C ₄₉ H ₄₀ O ₃ Sb ₂		
вычислено, %:	C 63.91;	Н 4.35.

Аналогично получали соединения **IV** и **VI**: IV (68%), красно-коричневые кристаллы, $T_{пл} = 185^{\circ}$ С. ИК-спектр (v, см⁻¹): 3078, 3066 (Ar), 1530, 1346 (NO₂), 1302 (С–О), 733, 691 (Ph), 486 (Sb–C).

Найдено, %:	C 60.81;	H 4.74.
Для C ₄₉ H ₄₀ O ₃ Sb ₂		
вычислено, %:	C 60.99;	H 4.63.

VI (65%), $T_{\Pi\Pi} = 236^{\circ}$ C. ИК-спектр (v, см⁻¹): 3431, 3064, 3028, 3008, 2962, 2918, 2864, 2729, 2605, 2524, 2077, 1909, 1809, 1743, 1641, 1593, 1562, 1492, 1473, 1394, 1311, 1261, 1211, 1188, 1143, 1114, 1099, 1058, 1039, 1016, 989, 966, 947, 831, 796, 750, 702, 684, 636, 582, 572, 487, 408.

Найдено, %:	C 66.13;	Н 5.52.
Для C ₅₇ H ₅₆ O ₃ Sb ₂		
вычислено, %:	C 66.28;	H 5.43.

ИК-спектры комплексов I–VI записывали на ИК-Фурье спектрометре Shimadzu IR Affinity-1S в таблетках KBr в области 4000-400 см⁻¹.

РСА кристаллов I–VI проведен на дифрактометре D8 Quest фирмы Bruker (Мо K_{α} -излучение, $\lambda = 0.71073$ Å, графитовый монохроматор) при 293 К. Сбор, редактирование данных и уточнение параметров элементарной ячейки, а также учет поглощения проведены по программам SMART и SAINT-Plus [8]. Все расчеты по определению и уточнению структур выполнены по программам SHELXL/PC [9] и OLEX2 [10]. Структуры определены прямым методом и уточнены методом наименьших квадратов в анизотропном приближении для неводородных атомов. Основные кристаллографические данные и результаты уточнения структур I–VI приведены в табл. 1, основные длины связей и валентные углы – в табл. 2.

Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных (ССDС № 1890704 (I), 1890706 (II), 1890713 (III), 1890714 (IV), 994519 (V), 994177 (VI); deposit@ccdc. cam.ac.uk; http://www.ccdc.cam.ac.uk).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В литературе описан ряд соединений сурьмы, содержащих группировку Sb–O–Sb, в которых концевые лиганды – органосульфонатные [11–14], диметилфосфинатные [15], нитро- [16], карбоксилатные [17, 18] и другие органические группы [19–21].

В настоящей работе продолжено изучение окислительного синтеза оксо-ароксидов триарилсурьмы. Установлено, что независимо от соотношения исходных реагентов, продуктами реакции трифенил- и три-(*пара*-толил)сурьмы с 2,5-динитрофенолом в присутствии *трет*-бутилгидропероксида в диэтиловом эфире являются биядерные соединения сурьмы [Ar₃SbOC₆H₃(NO₂)₂-2,5]₂O, Ar = Ph (I), 4-MeC₆H₄ (II).

 $2Ar_{3}Sb + 2HOC_{6}H_{3}(NO_{2})_{2} - 2, 5 + 2 mpem-BuOOH \rightarrow [Ar_{3}SbOC_{6}H_{3}(NO_{2})_{2} - 2, 5]_{2}O,$ Ar = Ph(I), 4-MeC₆H₄(II)

После перекристаллизации продуктов реакции из смеси бензол—октан получали устойчивые на воздухе красно-коричневые кристаллы.

Пентакоординированные атомы сурьмы в I и II связаны между собой через атомы кислорода (рис. 1). Углы $O_{akc}SbO_{akc}$ (175.31(8)°, 176.80(8)° в I и 178.17(9)°, 177.51(10)° в II) мало различаются. Выходы атомов сурьмы из плоскостей [C₃] к центральным атомам кислорода составляют 0.136,

0.155 Å в I и 0.171, 0.176 Å в II. Фрагменты Sb–O–Sb молекул I и II изогнуты (углы SbOSb 139.70(10)° и 142.32(12)°), что близко к величине аналогичного угла в μ_2 -оксо-*бис*[(2,4,6-тринитро-фенолято)трифенилсурьме] (142.5(8)°) [7]. Расстояния Sb–C изменяются в интервалах 2.093(3)–2.109(3) и 2.104(3)–2.115(4) Å в I и II соответственно, при этом их средние значения в фенильных производных меньше, чем в толиль-

III IV	613.25 669.36 920.	иоклинная Моноклинная Ромбичест	P2 ₁ /c P2 ₁ /c P5 ₆	10.858(4) 10.090(8) 20.5819(16)	14.490(6) 18.101(11) 11.4595(8)	17.086(8) 18.204(12) 34.417(3)	90.00 90.00 90.00	95.78(2) 103.90(3) 90.00	90.00 90.00 90.00	2674.5(19) 3228(4) 8117.6(11)	4 4 8	1.523 1.378 1.506	1.074 0.896 1.372	1232.0 1360.0 3680.0	$1 \times 0.2 \times 0.12$ $1 \times 0.51 \times 0.32$ $0.47 \times 0.26 \times 0.11$	5.4-56.68 5.68-71.38 3.12-26.4	$14 \le h \le 14, \qquad -16 \le h \le 16, \qquad -25 \le h \le 25,$	$19 \le k \le 19, \qquad -29 \le k \le 29, \qquad -14 \le k \le 11, \\ -22 \le l \le 22 \qquad -29 \le l \le 29 \qquad -43 \le l \le 42$	43963 133239 86607	.42 (0.0250) 14847 (0.0491) 8258 (0.0834)	6642 14847 5198	343 383 487	1.108 1.114 1.087	$_{1}^{1} = 0.0256, \qquad R_{1} = 0.0649, \qquad R_{1} = 0.0642,$	$R_2 = 0.0604 \qquad wR_2 = 0.1325 \qquad wR_2 = 0.1557$	$R_1 = 0.0338$, $R_1 = 0.1222$, $R_1 = 0.1147$,
II	1172.46	Моноклинная Мон	$P2_1/c$	15.005(8) 1(14.320(6) 14	25.684(13) 15	90.00	102.66(3) 9	90.00	5385(5) 26	4	1.446	1.064	2360.0	$0.52 \times 0.51 \times 0.31$ 0.44 :	5.8-65.22 6.	$-22 \le h \le 22, \qquad -14$	$-21 \le k \le 21, -19$ $-38 \le l \le 38 -2$	247088	19466 (0.0459) 664	19466	646	1.163	$R_1 = 0.0494, R_1 = R_1$	$wR_2 = 0.0848$ wR_2	$R_1 = 0.0886, R_1 = R_1$
Ι	1088.31	Триклинная	$\overline{P1}$	12.675(10)	13.436(16)	15.462(12)	105.92(4)	98.65(4)	112.57(4)	2239(4)	2	1.614	1.273	1084.0	$0.22\times0.19\times0.07$	6.28-65.34	$-19 \le h \le 19,$	$-20 \le k \le 20,$ $-23 \le l \le 23$	112727	16320 (0.0540)	16320	586	1.018	$R_1 = 0.0387,$	$wR_2 = 0.0855$	$R_1 = 0.0732,$
Параметр	W	Сингония	Пр. группа	<i>a</i> , Å	$b, m \AA$	<i>c</i> , Å	α, град	β, град	ү, град	$V, Å^3$	Z	р(выч.), г/см ³	μ_{Mo}, mm^{-1}	F(000)	Размер кристалла, мм	20, град	Интервалы индексов	отражений	Всего отражений	Независимых отражений (R _{int})	Число отражений с $F^2 > 2 \sigma(F^2)$	Число уточняемых параметров	GOOF	<i>R</i> -факторы	no $F^2 > 2\sigma(F^2)$	<i>R</i> -факторы по всем отражениям

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структур I-VI

µ2-ОКСО-бис[(2,5-ДИНИТРОФЕНОКСО)ТРИАРИЛСУРЬМА]

47

ШАРУТИН и др.

Таблица 2. Основные межатомные расстояния и валентные углы в структурах I–VI

Image: Second	Связь	d, Å	Угол	ω, град
Sh(1)-O(1) 1.973(3) O(1)Sh(1)O(2) 175.31(8) Sb(1)-O(2) 2.211(3) O(1)Sh(1)C(1) 93.67(1) Sb(1)-C(1) 2.109(3) O(1)Sh(1)C(1) 94.58(12) Sh(1)-C(1) 2.093(3) O(1)Sh(1)C(2) 92.90(12) Sh(1)-C(1) 1.980(2) C(1)Sh(1)O(2) 81.63(12) Sh(2)-O(1) 1.980(2) C(1)Sh(1)O(2) 81.63(12) Sh(2)-C(1) 2.107(3) C(1)Sh(1)O(2) 87.48(12) Sh(2)-C(6) 2.102(3) C(2)Sh(1)O(2) 87.48(12) Sh(2)-C(61) 2.101(3) C(2)Sh(1)O(2) 87.48(12) Sh(2)-C(4) 2.101(3) C(2)Sh(1)O(2) 87.48(12) Sh(2)-C(4) 1.312(4) O(1)Sh(2)O(7) 176.80(8) O(2)-C(3) 1.337(3) O(1)Sh(2)O(7) 82.54(12) C(73)-N(4) 1.475(5) O(1)Sh(2)C(4) 97.31(12) C(3)-N(2) 1.435(4) O(1)Sh(2)C(5) 11.537(13) O(3)-N(1) 1.219(5) C(61)Sh2(2)C(7) 82.04(12) O(4)-N(4) 1.205(4) C(41			Ι	
8h(1)-O(2) $2.211(3)$ $O(1)Sh(1)C(1)$ $94.58(12)$ $8h(1)-C(1)$ $2.093(3)$ $O(1)Sh(1)C(1)$ $94.58(12)$ $8h(1)-C(1)$ $2.093(3)$ $O(1)Sh(1)C(2)$ $92.90(12)$ $8h(1)-C(1)$ $2.093(3)$ $C(1)Sh(1)O(2)$ $8h(3)(12)$ $8h(2)-O(1)$ $1.280(2)$ $C(1)Sh(1)O(2)$ $8h(3)(12)$ $8h(2)-O(7)$ $2.213(3)$ $C(1)Sh(1)O(2)$ $87.48(12)$ $8h(2)-C(4)$ $2.107(3)$ $C(1)Sh(1)O(2)$ $87.48(12)$ $8h(2)-C(4)$ $2.101(3)$ $C(2)Sh(1)O(2)$ $87.48(12)$ $8h(2)-C(4)$ $2.101(3)$ $C(2)Sh(1)O(2)$ $87.48(12)$ $8h(2)-C(4)$ $2.101(3)$ $C(2)Sh(1)C(1)$ $115.99(12)$ $O(7)-C(7)$ $1.312(4)$ $O(1)Sh(2)C(5)$ $92.52(1)$ $O(7)-C(7)$ $1.435(4)$ $O(1)Sh(2)C(5)$ $92.52(1)$ $C(7)-N(4)$ $1.475(5)$ $C(5)Sh(2)O(7)$ $82.6(11)$ $N(3)-O(8)$ $1.219(5)$ $C(6)Sh(2)C(5)$ $113.47(13)$ $O(1)-N(4)$ $1.205(4)$ $C(41)Sh(2)C(5)$	Sb(1)-O(1)	1.973(3)	O(1)Sb(1)O(2)	175.31(8)
Sh(1)-C(1) 2.109(3) O(1)Sh(1)C(1) 94.58(12) Sh(1)-C(1) 2.093(3) O(1)Sh(1)O(2) 92.90(12) Sh(1)-C(2) 2.097(3) C(1)Sh(1)O(2) 90.36(11) Sh(2)-C(1) 1.980(2) C(1)Sh(1)O(2) 81.63(12) Sh(2)-C(1) 2.13(3) C(1)Sh(1)O(2) 81.63(12) Sh(2)-C(5) 2.107(3) C(1)Sh(1)O(2) 87.48(12) Sh(2)-C(6) 2.102(3) C(2)Sh(1)O(2) 87.48(12) Sh(2)-C(6) 2.101(3) C(2)Sh(1)O(2) 87.48(12) Sh(2)-C(4) 2.101(3) C(1)Sh(2)O(7) 17.680(8) O(7)-C(7) 1.312(4) O(1)Sh(2)C(51) 92.54(12) O(7)-C(7) 1.453(4) O(1)Sh(2)C(7) 85.61(11) N(3)-O(8) 1.219(5) C(5)Sh(2)O(7) 85.61(11) N(3)-O(8) 1.219(5) C(6)Sh(2)C(51) 113.59(12) O(0)-N(3) 1.205(4) C(4)Sh(2)C(51) 131.28(12) O(6)-N(2) 1.205(4) C(4)Sh(2)C(51) 131.28(12) O(6)-N(2) 1.205(4) C(4)	Sb(1)-O(2)	2.211(3)	O(1)Sb(1)C(1)	93.67(11)
Sh(1)-C(11) 2.093(3) O(1)Sb(1)C(21) 92.90(12) Sb(1)-C(21) 2.097(3) C(1)Sb(1)O(2) 90.36(11) Sb(2)-O(1) 1.980(2) C(11)Sb(1)O(2) Sl.65(12) Sb(2)-O(7) 2.213(3) C(11)Sb(1)C(1) 112.87(11) Sb(2)-C(61) 2.107(3) C(11)Sb(1)C(2) 87.48(12) Sb(2)-C(61) 2.102(3) C(21)Sb(1)O(2) 87.48(12) Sb(2)-C(61) 2.103(3) C(21)Sb(1)C(1) 115.99(12) O(7)-C(7) 1.312(4) O(1)Sb(2)C(51) 92.52(11) O(2)-C(31) 1.37(3) O(1)Sb(2)C(51) 92.52(12) C(75)-N(4) 1.475(5) C(51)Sb(2)O(7) 90.59(12) C(35)-N(2) 1.475(5) C(51)Sb(2)O(7) 85.61(11) N(3)-O(8) 1.209(5) C(61)Sb(2)O(7) 85.61(11) N(3)-O(8) 1.205(4) C(41)Sb(2)C(51) 113.47(13) O(6)-N(2) 1.205(4) C(41)Sb(2)C(51) 13.47(13) O(1)-O(2) 2.191(2) O(1)Sb(1)C(1) 96.15(11) Sb(1)-O(1) 1.12(3)	Sb(1)-C(1)	2.109(3)	O(1)Sb(1)C(11)	94.58(12)
Sh(1)-C(21) 2.097(3) C(1)Sb(1)O(2) 80.3(1) Sb(2)-O(1) 1.980(2) C(11)Sb(1)O(2) 81.63(12) Sb(2)-O(7) 2.213(3) C(11)Sb(1)C(1) 112.87(11) Sb(2)-C(51) 2.107(3) C(11)Sb(1)C(2) 129.87(12) Sb(2)-C(4) 2.101(3) C(21)Sb(1)C(1) 115.99(12) O(7)-C(71) 1.312(4) O(1)Sb(2)C(51) 92.54(12) O(7)-C(71) 1.437(5) O(1)Sb(2)C(61) 92.52(11) C(72)-N(3) 1.435(4) O(1)Sb(2)C(41) 97.31(2) C(35)-N(2) 1.475(5) C(51)Sb(2)C(7) 90.59(12) C(35)-N(2) 1.475(5) C(61)Sb(2)C(7) 85.61(11) N(3)-O(8) 1.205(4) C(41)Sb(2)C(51) 113.59(12) O(9)-N(4) 1.205(4) C(41)Sb(2)C(7) 82.04(12) O(1)-N(4) 1.205(4) C(41)Sb(2)C(61) 131.28(12) O(3)-N(1) 1.215(4) Sb(1)O(1)Sb(2) 139.70(10) T T T Sb(1)-O(1) 113.71(7) Sb(1)-O(1) 1.975(2)	Sb(1)-C(11)	2.093(3)	O(1)Sb(1)C(21)	92.90(12)
sb(2)-O(1) $1.980(2)$ $C(11)Sb(1)O(2)$ $81.63(12)$ $sb(2)-O(7)$ $2.213(3)$ $C(11)Sb(1)C(1)$ $112.87(11)$ $sb(2)-C(61)$ $2.107(3)$ $C(11)Sb(1)C(21)$ $129.87(12)$ $sb(2)-C(61)$ $2.102(3)$ $C(21)Sb(1)C(2)$ $87.48(12)$ $sb(2)-C(61)$ $2.102(3)$ $C(21)Sb(1)C(1)$ $15.99(12)$ $O(7)-C(7)$ $1.312(4)$ $O(1)Sb(2)C(51)$ $92.54(12)$ $O(7)-C(7)$ $1.432(4)$ $O(1)Sb(2)C(4)$ $97.31(12)$ $C(2)-N(4)$ $1.475(5)$ $C(51)Sb(2)O(7)$ $85.61(11)$ $C(2)-N(4)$ $1.475(5)$ $C(61)Sb(2)O(7)$ $82.04(12)$ $C(3)-N(1)$ $1.459(4)$ $C(61)Sb(2)O(7)$ $82.04(12)$ $O(0)-N(3)$ $1.205(4)$ $C(41)Sb(2)C(51)$ $113.47(13)$ $O(0)-N(4)$ $1.206(5)$ $C(41)Sb(2)C(51)$ $113.47(13)$ $O(0)-N(4)$ $1.205(4)$ $C(1)Sb(1)O(2)$ $178.7(9)$ $Sb(1)-O(1)$ $2.191(2)$ $O(1)Sb(1)C(1)$ $96.16(11)$ $Sb(1)-O(1)$ $2.197(2)$ $O(1)S$	Sb(1)-C(21)	2.097(3)	C(1)Sb(1)O(2)	90.36(11)
Sb(2)-O(7) 2.213(3) C(11)Sb(1)C(1) 112.87(1) Sb(2)-C(51) 2.107(3) C(11)Sb(1)C(21) 129.87(12) Sb(2)-C(61) 2.102(3) C(21)Sb(1)O(2) 87.48(12) Sb(2)-C(41) 2.101(3) C(21)Sb(1)C(1) 115.99(12) O(7)-C(7) 1.312(4) O(1)Sb(2)C(51) 92.54(12) O(7)-C(7) 1.475(5) O(1)Sb(2)C(61) 92.52(11) C(75)-N(4) 1.475(5) O(1)Sb(2)C(7) 85.61(11) C(32)-N(1) 1.4459(4) C(61)Sb(2)O(7) 85.61(11) N(3)-O(8) 1.219(5) C(61)Sb(2)O(7) 85.61(11) N(3)-O(8) 1.205(4) C(41)Sb(2)O(7) 82.04(12) O(10)-N(4) 1.206(5) C(41)Sb(2)C(51) 113.47(13) O(6)-N(2) 1.205(4) C(41)Sb(2)C(61) 131.28(12) O(3)-N(1) 1.215(4) Sb(1)O(1)Sb(1)C(1) 96.15(11) Sb(1)-O(2) 2.191(2) O(1)Sb(1)C(1) 96.15(11) Sb(1)-C(1) 2.112(3) O(1)Sb(1)C(1) 96.46(11) Sb(1)-C(1) 2.113(3)	Sb(2)-O(1)	1.980(2)	C(11)Sb(1)O(2)	81.63(12)
sbc2-c(51) $2.107(3)$ $C(11)Sb(1)C(2)$ $129.87(12)$ $sbc2-c(61)$ $2.102(3)$ $C(21)Sb(1)O(2)$ $87.48(12)$ $Sbc2-c(41)$ $2.101(3)$ $C(21)Sb(1)C(1)$ $115.99(12)$ $O(7)-C(71)$ $1.312(4)$ $O(1)Sbc2)O(7)$ $176.80(8)$ $O(2)-C(31)$ $1.307(3)$ $O(1)Sbc2)C(51)$ $92.54(12)$ $C(75)-N(4)$ $1.475(5)$ $O(1)Sbc2)C(41)$ $97.31(12)$ $C(35)-N(2)$ $1.475(5)$ $C(51)Sbc2)O(7)$ $90.59(12)$ $C(32)-N(1)$ $1.459(4)$ $C(61)Sbc2)O(7)$ $85.6f(11)$ $N(3)-O(8)$ $1.29(5)$ $C(61)Sbc2)O(7)$ $82.04(12)$ $O(9)-N(3)$ $1.205(4)$ $C(41)Sbc2)O(7)$ $82.04(12)$ $O(10)-N(4)$ $1.206(5)$ $C(41)Sbc2)O(7)$ $82.04(12)$ $O(10)-N(4)$ $1.206(5)$ $C(41)Sbc2)C(51)$ $113.47(13)$ $O(6)-N(2)$ $1.205(4)$ $C(41)Sbc2)C(51)$ $113.47(13)$ $O(6)-N(2)$ $1.205(4)$ $C(41)Sbc1)C(1)$ $96.15(11)$ $Sb(1)-O(2)$ $2.191(2)$ $O(1)Sb(1)C(2)$ $96.46(1)$ $Sb(1)-O(1)$ $1.975(2)$ $O(1)Sb(1)C(1)$ $96.35(11)$ $Sb(1)-C(1)$ $2.113(3)$ $C(1)Sb(1)C(1)$ $96.36(1)$ $Sb(1)-C(1)$ $2.113(3)$ $C(1)Sb(1)C(1)$ $96.36(1)$ $Sb(2)-C(6)$ $2.111(3)$ $C(2)Sb(1)C(1)$ $18.10(12)$ $Sb(2)-C(1)$ $1.977(2)$ $C(1)Sb(1)C(1)$ $18.10(12)$ $Sb(2)-C(4)$ $2.104(3)$ $C(2)Sb(1)C(1)$ $18.30(1)$ $Sb(2)-C(4)$ $2.111(3)$ $C(1)Sb(1)C(1)$ 1	Sb(2)-O(7)	2.213(3)	C(11)Sb(1)C(1)	112.87(11)
Sb(2)-C(61) 2.102(3) C(21)Sb(1)C(1) 87.48(12) Sb(2)-C(41) 2.101(3) C(21)Sb(1)C(1) 115.99(12) O(7)-C(71) 1.312(4) O(1)Sb(2)C(51) 92.54(12) C(75)-N(4) 1.475(5) O(1)Sb(2)C(61) 92.52(11) C(72)-N(3) 1.453(4) O(1)Sb(2)C(61) 97.31(12) C(35)-N(2) 1.475(5) C(61)Sb(2)O(7) 90.59(12) C(32)-N(1) 1.459(4) C(61)Sb(2)O(7) 85.61(11) N(3)-O(8) 1.219(5) C(61)Sb(2)O(7) 82.04(12) O(0)-N(3) 1.205(4) C(41)Sb(2)O(7) 82.04(12) O(10)-N(4) 1.206(5) C(41)Sb(2)C(51) 113.47(13) O(6)-N(2) 1.205(4) C(41)Sb(2)C(61) 131.28(12) O(3) 1.205(4) C(41)Sb(1)C(1) 96.45(11) Sb(1)-O(1) 1.975(2) O(1)Sb(1)C(1) 96.15(11) Sb(1)-C(1) 2.112(3) O(1)Sb(1)C(1) 96.45(11) Sb(1)-C(1) 2.105(3) O(1)Sb(1)C(1) 90.97(11) Sb(1)-C(1) 2.103(3)	Sb(2)-C(51)	2.107(3)	C(11)Sb(1)C(21)	129.87(12)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Sb(2)-C(61)	2.102(3)	C(21)Sb(1)O(2)	87.48(12)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Sb(2)-C(41)	2.101(3)	C(21)Sb(1)C(1)	115.99(12)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(7)-C(71)	1.312(4)	O(1)Sb(2)O(7)	176.80(8)
$\begin{array}{ccccc} C(75)-N(4) & 1.475(5) & O(1)Sb(2)C(61) & 92.52(11) \\ C(72)-N(3) & 1.453(4) & O(1)Sb(2)C(41) & 97.31(12) \\ C(35)-N(2) & 1.475(5) & C(51)Sb(2)O(7) & 85.61(11) \\ N(3)-O(8) & 1.219(5) & C(61)Sb(2)O(7) & 85.61(11) \\ N(3)-O(8) & 1.219(5) & C(61)Sb(2)O(7) & 82.04(12) \\ O(9)-N(3) & 1.205(4) & C(41)Sb(2)O(7) & 82.04(12) \\ O(10)-N(4) & 1.206(5) & C(41)Sb(2)C(51) & 113.47(13) \\ O(6)-N(2) & 1.205(4) & C(41)Sb(2)C(61) & 131.28(12) \\ O(3)-N(1) & 1.215(4) & Sb(1)O(1)Sb(2) & 139.70(10) \\ \hline \\ & \\ Sb(1)-O(2) & 2.191(2) & O(1)Sb(1)O(2) & 178.17(9) \\ Sb(1)-O(1) & 1.975(2) & O(1)Sb(1)C(21) & 96.46(11) \\ Sb(1)-C(1) & 2.112(3) & O(1)Sb(1)C(21) & 96.46(11) \\ Sb(1)-C(1) & 2.113(3) & C(1)Sb(1)O(2) & 85.68(11) \\ Sb(2)-O(1) & 1.977(2) & C(1)Sb(1)O(2) & 85.68(11) \\ Sb(2)-O(1) & 1.977(2) & C(1)Sb(1)O(2) & 82.41(10) \\ Sb(2)-O(1) & 2.191(2) & C(21)Sb(1)O(2) & 82.41(10) \\ Sb(2)-C(61) & 2.111(3) & C(21)Sb(1)O(2) & 82.41(10) \\ Sb(2)-C(61) & 2.111(3) & C(21)Sb(1)O(1) & 113.92(12) \\ Sb(2)-C(51) & 2.115(4) & C(11)Sb(1)O(2) & 88.17(10) \\ O(2)-C(31) & 1.303(4) & O(1)Sb(2)O(7) & 177.51(10) \\ O(7)-C(71) & 1.317(4) & O(1)Sb(2)C(51) & 92.94(11) \\ C(75)-N(4) & 1.495(5) & O(1)Sb(2)C(51) & 92.34(12) \\ C(35)-N(2) & 1.481(5) & C(61)Sb(2)O(7) & 88.46(11) \\ C(35)-N(2) & 1.481(5) & C(61)Sb(2)O(7) & 88.46(11) \\ C(35)-N(2) & 1.204(4) & C(41)Sb(2)C(51) & 116.60(14) \\ O(3)-N(2) & 1.204(4) & C(41)Sb(2)C(51) & 16.60(14) \\ O(3)-N(2) & 1.204(4) & S(1)Sb(2)C(51) & 16.50(14) \\ O(3)-N(2) & 1.204(4) & S(1)Sb(2)C(51) & 16.50(12) \\ O(1)-N(4) & 1$	O(2)-C(31)	1.307(3)	O(1)Sb(2)C(51)	92.54(12)
$\begin{array}{ccccc} C(22)-N(3) & 1.453(4) & O(1)Sb(2)C(41) & 97.31(12) \\ C(35)-N(2) & 1.475(5) & C(51)Sb(2)O(7) & 90.59(12) \\ C(32)-N(1) & 1.459(4) & C(61)Sb(2)O(7) & 85.61(11) \\ N(3)-O(8) & 1.219(5) & C(61)Sb(2)C(51) & 113.59(12) \\ O(9)-N(3) & 1.205(4) & C(41)Sb(2)O(7) & 82.04(12) \\ O(10)-N(4) & 1.206(5) & C(41)Sb(2)C(51) & 113.47(13) \\ O(6)-N(2) & 1.205(4) & C(41)Sb(2)C(51) & 113.47(13) \\ O(3)-N(1) & 1.215(4) & Sb(1)O(1)Sb(2) & 139.70(10) \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	C(75)-N(4)	1.475(5)	O(1)Sb(2)C(61)	92.52(11)
$\begin{array}{c ccccc} C(35)-N(2) & 1.475(5) & C(51)Sb(2)O(7) & 90.59(12) \\ C(32)-N(1) & 1.459(4) & C(61)Sb(2)O(7) & 85.61(11) \\ N(3)-O(8) & 1.205(4) & C(61)Sb(2)O(7) & 82.04(12) \\ O(9)-N(3) & 1.205(4) & C(41)Sb(2)O(7) & 82.04(12) \\ O(10)-N(4) & 1.206(5) & C(41)Sb(2)O(7) & 131.28(12) \\ O(3)-N(1) & 1.205(4) & C(41)Sb(2)C(51) & 113.47(13) \\ O(6)-N(2) & 1.205(4) & C(41)Sb(2)C(61) & 131.28(12) \\ O(3)-N(1) & 1.215(4) & Sb(1)O(1)Sb(2) & 139.70(10) \\ \hline \\ & \\ Sb(1)-O(2) & 2.191(2) & O(1)Sb(1)O(2) & 178.17(9) \\ Sb(1)-O(1) & 1.975(2) & O(1)Sb(1)C(1) & 96.15(11) \\ Sb(1)-C(1) & 2.112(3) & O(1)Sb(1)C(1) & 96.46(11) \\ Sb(1)-C(1) & 2.112(3) & O(1)Sb(1)C(11) & 90.97(11) \\ Sb(1)-C(1) & 2.113(3) & C(1)Sb(1)O(2) & 82.68(11) \\ Sb(2)-O(7) & 2.191(2) & C(1)Sb(1)O(2) & 82.41(10) \\ Sb(2)-O(7) & 2.191(2) & C(2)Sb(1)C(11) & 118.10(12) \\ Sb(2)-C(61) & 2.111(3) & C(21)Sb(1)O(2) & 82.41(10) \\ Sb(2)-C(41) & 2.104(3) & C(21)Sb(1)C(11) & 113.92(12) \\ Sb(2)-C(51) & 2.115(4) & C(11)Sb(1)O(2) & 88.17(10) \\ O(7)-C(71) & 1.317(4) & O(1)Sb(2)O(7) & 177.51(10) \\ O(7)-C(71) & 1.317(4) & O(1)Sb(2)C(61) & 92.94(11) \\ C(75)-N(4) & 1.495(5) & O(1)Sb(2)C(51) & 92.34(12) \\ C(32)-N(1) & 1.477(5) & O(1)Sb(2)C(51) & 92.34(12) \\ C(32)-N(1) & 1.477(5) & O(1)Sb(2)C(51) & 92.34(12) \\ C(32)-N(1) & 1.481(5) & C(61)Sb(2)O(7) & 88.46(11) \\ C(35)-N(2) & 1.204(4) & C(41)Sb(2)O(7) & 82.27(10) \\ O(3)-N(2) & 1.204(4) & C(41)Sb(2)C(51) & 116.60(14) \\ O(3)-N(4) & 1.206(5) & C(41)Sb(2)C(51) & 16.60(13) \\ O(0)-N(4) & 1.206(5) & C(41)Sb(2)C(7) & 85.19(12) \\ O(4)-N(2) & 1.220(4) & Sb(1)O(1)Sb(2) & 42.23(12) \\ \end{array}$	C(72)-N(3)	1.453(4)	O(1)Sb(2)C(41)	97.31(12)
$\begin{array}{c cccc} C(32)-N(1) & 1.459(4) & C(61)Sb(2)C(7) & 85.61(1) \\ N(3)-O(8) & 1.219(5) & C(61)Sb(2)C(51) & 113.59(12) \\ O(9)-N(3) & 1.205(4) & C(41)Sb(2)C(7) & 82.04(12) \\ O(10)-N(4) & 1.206(5) & C(41)Sb(2)C(51) & 113.47(13) \\ O(6)-N(2) & 1.205(4) & C(41)Sb(2)C(61) & 131.28(12) \\ O(3)-N(1) & 1.215(4) & Sb(1)O(1)Sb(2) & 139.70(10) \\ \hline \\ $	C(35)-N(2)	1.475(5)	C(51)Sb(2)O(7)	90.59(12)
N(3)-O(8)1.219(5) $C(61)Sb(2)C(51)$ $113.59(12)$ $O(9)-N(3)$ 1.205(4) $C(41)Sb(2)O(7)$ $82.04(12)$ $O(10)-N(4)$ 1.206(5) $C(41)Sb(2)C(51)$ $113.47(13)$ $O(6)-N(2)$ 1.205(4) $C(41)Sb(2)C(61)$ $131.28(12)$ $O(3)-N(1)$ 1.215(4) $Sb(1)O(1)Sb(2)$ $139.70(10)$ IISb(1)-O(2)2.191(2) $O(1)Sb(1)O(2)$ $178.17(9)$ Sb(1)-O(1)1.975(2) $O(1)Sb(1)C(21)$ $96.46(11)$ Sb(1)-C(1)2.112(3) $O(1)Sb(1)C(21)$ $96.46(11)$ Sb(1)-C(1)2.113(3) $C(1)Sb(1)O(2)$ $85.68(11)$ Sb(1)-C(1)2.113(3) $C(1)Sb(1)O(2)$ $85.68(11)$ Sb(2)-O(1)1.977(2) $C(1)Sb(1)O(2)$ $82.41(10)$ Sb(2)-O(1)1.977(2) $C(1)Sb(1)O(2)$ $82.41(10)$ Sb(2)-O(1)1.977(2) $C(1)Sb(1)C(11)$ $113.92(12)$ Sb(2)-C(41)2.104(3) $C(21)Sb(1)C(1)$ $126.00(13)$ Sb(2)-C(41)2.104(3) $C(21)Sb(1)C(11)$ $113.92(12)$ Sb(2)-C(51)2.115(4) $C(11)Sb(1)O(2)$ $88.17(10)$ O(7)2.115(4) $C(11)Sb(2)C(61)$ $92.94(11)$ O(7)2.115(4) $C(1)Sb(2)C(51)$ $92.34(12)$ C(7) $84.6(11)$ O(7) $84.6(11)$ O(7) $84.6(11)$ O(1) $1.477(5)$ $O(1)Sb(2)C(51$	C(32)-N(1)	1.459(4)	C(61)Sb(2)O(7)	85.61(11)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(3)-O(8)	1.219(5)	C(61)Sb(2)C(51)	113.59(12)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O(9)-N(3)	1.205(4)	C(41)Sb(2)O(7)	82.04(12)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O(10)-N(4)	1.206(5)	C(41)Sb(2)C(51)	113.47(13)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O(6)-N(2)	1.205(4)	C(41)Sb(2)C(61)	131.28(12)
IISb(1)-O(2)2.191(2)O(1)Sb(1)O(2)178.17(9)Sb(1)-O(1)1.975(2)O(1)Sb(1)C(1)96.15(11)Sb(1)-C(1)2.112(3)O(1)Sb(1)C(21)96.46(11)Sb(1)-C(21)2.105(3)O(1)Sb(1)C(11)90.97(11)Sb(1)-C(11)2.113(3)C(1)Sb(1)O(2)85.68(11)Sb(2)-O(1)1.977(2)C(1)Sb(1)C(11)118.10(12)Sb(2)-O(7)2.191(2)C(21)Sb(1)O(2)82.41(10)Sb(2)-C(61)2.111(3)C(21)Sb(1)C(11)113.92(12)Sb(2)-C(41)2.104(3)C(21)Sb(1)C(11)113.92(12)Sb(2)-C(51)2.115(4)C(11)Sb(1)O(2)88.17(10)O(2)-C(31)1.303(4)O(1)Sb(2)C(61)92.94(11)C(75)-N(4)1.495(5)O(1)Sb(2)C(51)92.34(12)C(32)-N(1)1.477(5)O(1)Sb(2)C(51)92.34(12)C(32)-N(1)1.236(4)C(41)Sb(2)O(7)88.27(10)O(3)-N(2)1.234(4)C(41)Sb(2)O(7)82.27(10)O(5)-N(1)1.236(4)C(41)Sb(2)C(51)116.60(14)O(3)-N(3)1.231(5)C(51)Sb(2)C(51)125.23(14)O(4)-N(2)1.220(4)Sb(1)O(1)Sb(2)142.32(12)	O(3)-N(1)	1.215(4)	Sb(1)O(1)Sb(2)	139.70(10)
Sb(1)-O(2)2.191(2)O(1)Sb(1)O(2)178.17(9)Sb(1)-O(1)1.975(2)O(1)Sb(1)C(1)96.15(11)Sb(1)-C(1)2.112(3)O(1)Sb(1)C(21)96.46(11)Sb(1)-C(21)2.105(3)O(1)Sb(1)C(11)90.97(11)Sb(1)-C(11)2.113(3)C(1)Sb(1)O(2)85.68(11)Sb(2)-O(1)1.977(2)C(1)Sb(1)C(11)118.10(12)Sb(2)-O(7)2.191(2)C(21)Sb(1)O(2)82.41(10)Sb(2)-C(61)2.111(3)C(21)Sb(1)C(11)113.92(12)Sb(2)-C(41)2.104(3)C(21)Sb(1)O(2)88.17(10)O(2)-C(31)1.303(4)O(1)Sb(2)O(7)177.51(10)O(7)-C(71)1.317(4)O(1)Sb(2)C(61)92.94(11)C(72)-N(4)1.495(5)O(1)Sb(2)C(51)92.34(12)C(32)-N(1)1.460(5)C(61)Sb(2)O(7)88.46(11)C(35)-N(2)1.204(4)C(41)Sb(2)O(7)82.27(10)O(5)-N(1)1.236(4)C(41)Sb(2)C(51)116.09(13)O(10)-N(4)1.206(5)C(41)Sb(2)C(7)82.27(10)O(4)-N(2)1.220(4)Sb(1)O(1)Sb(2)42.32(12)			II	
Sb(1)-O(1) $1.975(2)$ O(1)Sb(1)C(1) $96.15(11)$ Sb(1)-C(1) $2.112(3)$ O(1)Sb(1)C(21) $96.46(11)$ Sb(1)-C(21) $2.105(3)$ O(1)Sb(1)C(11) $90.97(11)$ Sb(1)-C(11) $2.113(3)$ C(1)Sb(1)O(2) $85.68(11)$ Sb(2)-O(1) $1.977(2)$ C(1)Sb(1)O(2) $82.41(10)$ Sb(2)-O(7) $2.191(2)$ C(21)Sb(1)O(2) $82.41(10)$ Sb(2)-C(61) $2.111(3)$ C(21)Sb(1)C(11) $113.92(12)$ Sb(2)-C(41) $2.104(3)$ C(21)Sb(1)C(11) $113.92(12)$ Sb(2)-C(51) $2.115(4)$ C(11)Sb(1)O(2) $88.17(10)$ O(2)-C(31) $1.303(4)$ O(1)Sb(2)O(7) $177.51(10)$ O(7)-C(71) $1.317(4)$ O(1)Sb(2)C(61) $92.94(11)$ C(72)-N(4) $1.495(5)$ O(1)Sb(2)C(51) $92.34(12)$ C(32)-N(1) $1.447(5)$ C(61)Sb(2)O(7) $88.46(11)$ C(35)-N(2) $1.204(4)$ C(41)Sb(2)O(7) $82.27(10)$ O(5)-N(1) $1.236(4)$ C(41)Sb(2)C(51) $116.09(13)$ O(10)-N(4) $1.206(5)$ C(41)Sb(2)O(7) $85.19(12)$ O(4)-N(2) $1.220(4)$ Sb(1)O(1)Sb(2) $42.32(12)$	Sb(1)-O(2)	2.191(2)	O(1)Sb(1)O(2)	178.17(9)
Sb(1)-C(1)2.112(3) $O(1)Sb(1)C(21)$ 96.46(11)Sb(1)-C(21)2.105(3) $O(1)Sb(1)C(11)$ 90.97(11)Sb(1)-C(11)2.113(3) $C(1)Sb(1)O(2)$ 85.68(11)Sb(2)-O(1)1.977(2) $C(1)Sb(1)C(11)$ 118.10(12)Sb(2)-O(7)2.191(2) $C(21)Sb(1)O(2)$ 82.41(10)Sb(2)-C(61)2.111(3) $C(21)Sb(1)C(11)$ 126.00(13)Sb(2)-C(41)2.104(3) $C(21)Sb(1)C(11)$ 113.92(12)Sb(2)-C(51)2.115(4) $C(11)Sb(1)O(2)$ 88.17(10) $O(2)-C(31)$ 1.303(4) $O(1)Sb(2)O(7)$ 177.51(10) $O(7)-C(71)$ 1.317(4) $O(1)Sb(2)C(61)$ 92.94(11) $C(75)-N(4)$ 1.495(5) $O(1)Sb(2)C(51)$ 92.34(12) $C(32)-N(1)$ 1.460(5) $C(61)Sb(2)O(7)$ 88.46(11) $C(35)-N(2)$ 1.204(4) $C(41)Sb(2)C(51)$ 116.60(14) $O(3)-N(2)$ 1.204(4) $C(41)Sb(2)C(51)$ 116.09(13) $O(10)-N(4)$ 1.206(5) $C(51)Sb(2)O(7)$ 82.27(10) $O(4)-N(2)$ 1.221(5) $C(51)Sb(2)O(7)$ 85.19(12) $O(4)-N(2)$ 1.220(4) $Sb(1)O(1)Sb(2)$ 142.32(12)	Sb(1)-O(1)	1.975(2)	O(1)Sb(1)C(1)	96.15(11)
Sb(1)-C(21) $2.105(3)$ $O(1)Sb(1)C(11)$ $90.97(11)$ Sb(1)-C(11) $2.113(3)$ $C(1)Sb(1)O(2)$ $85.68(11)$ Sb(2)-O(1) $1.977(2)$ $C(1)Sb(1)C(11)$ $118.10(12)$ Sb(2)-O(7) $2.191(2)$ $C(21)Sb(1)O(2)$ $82.41(10)$ Sb(2)-C(61) $2.111(3)$ $C(21)Sb(1)C(1)$ $126.00(13)$ Sb(2)-C(41) $2.104(3)$ $C(21)Sb(1)C(11)$ $113.92(12)$ Sb(2)-C(51) $2.115(4)$ $C(11)Sb(1)O(2)$ $88.17(10)$ $O(2)-C(31)$ $1.303(4)$ $O(1)Sb(2)O(7)$ $177.51(10)$ $O(7)-C(71)$ $1.317(4)$ $O(1)Sb(2)C(61)$ $92.94(11)$ $C(75)-N(4)$ $1.495(5)$ $O(1)Sb(2)C(41)$ $98.93(11)$ $C(72)-N(3)$ $1.477(5)$ $O(1)Sb(2)C(51)$ $92.34(12)$ $C(32)-N(1)$ $1.481(5)$ $C(61)Sb(2)O(7)$ $88.46(11)$ $C(35)-N(2)$ $1.204(4)$ $C(41)Sb(2)O(7)$ $82.27(10)$ $O(5)-N(1)$ $1.236(4)$ $C(41)Sb(2)C(51)$ $116.09(13)$ $O(1)-N(4)$ $1.206(5)$ $C(41)Sb(2)O(7)$ $85.19(12)$ $O(4)-N(2)$ $1.220(4)$ $Sb(1)O(1)Sb(2)$ $142.32(12)$	Sb(1)-C(1)	2.112(3)	O(1)Sb(1)C(21)	96.46(11)
Sb(1)-C(11)2.113(3)C(1)Sb(1)O(2) $85.68(11)$ Sb(2)-O(1)1.977(2)C(1)Sb(1)C(11)118.10(12)Sb(2)-O(7)2.191(2)C(21)Sb(1)O(2) $82.41(10)$ Sb(2)-C(61)2.111(3)C(21)Sb(1)C(11)126.00(13)Sb(2)-C(41)2.104(3)C(21)Sb(1)C(11)113.92(12)Sb(2)-C(51)2.115(4)C(11)Sb(1)O(2) $88.17(10)$ O(2)-C(31)1.303(4)O(1)Sb(2)O(7)177.51(10)O(7)-C(71)1.317(4)O(1)Sb(2)C(61)92.94(11)C(75)-N(4)1.495(5)O(1)Sb(2)C(41)98.93(11)C(72)-N(3)1.477(5)O(1)Sb(2)C(51)92.34(12)C(32)-N(1)1.460(5)C(61)Sb(2)O(7)88.46(11)C(35)-N(2)1.204(4)C(41)Sb(2)O(7)82.27(10)O(5)-N(1)1.236(4)C(41)Sb(2)C(51)116.60(14)O(3)-N(2)1.204(4)C(41)Sb(2)C(51)125.23(14)O(8)-N(3)1.231(5)C(51)Sb(2)O(7)85.19(12)O(4)-N(2)1.220(4)Sb(1)O(1)Sb(2)142.32(12)	Sb(1)-C(21)	2.105(3)	O(1)Sb(1)C(11)	90.97(11)
Sb(2)-O(1) $1.977(2)$ C(1)Sb(1)C(11) $118.10(12)$ Sb(2)-O(7) $2.191(2)$ C(21)Sb(1)O(2) $82.41(10)$ Sb(2)-C(61) $2.111(3)$ C(21)Sb(1)C(1) $126.00(13)$ Sb(2)-C(41) $2.104(3)$ C(21)Sb(1)C(11) $113.92(12)$ Sb(2)-C(51) $2.115(4)$ C(11)Sb(1)O(2) $88.17(10)$ O(2)-C(31) $1.303(4)$ O(1)Sb(2)O(7) $177.51(10)$ O(7)-C(71) $1.317(4)$ O(1)Sb(2)C(61) $92.94(11)$ C(75)-N(4) $1.495(5)$ O(1)Sb(2)C(51) $92.34(12)$ C(32)-N(1) $1.460(5)$ C(61)Sb(2)O(7) $88.46(11)$ C(35)-N(2) $1.204(4)$ C(41)Sb(2)O(7) $82.27(10)$ O(5)-N(1) $1.236(4)$ C(41)Sb(2)C(51) $116.60(14)$ O(8)-N(3) $1.231(5)$ C(51)Sb(2)O(7) $85.19(12)$ O(4)-N(2) $1.220(4)$ Sb(1)O(1)Sb(2) $142.32(12)$	Sb(1)-C(11)	2.113(3)	C(1)Sb(1)O(2)	85.68(11)
Sb(2)-O(7) $2.191(2)$ $C(21)Sb(1)O(2)$ $82.41(10)$ $Sb(2)-C(61)$ $2.111(3)$ $C(21)Sb(1)C(1)$ $126.00(13)$ $Sb(2)-C(41)$ $2.104(3)$ $C(21)Sb(1)C(11)$ $113.92(12)$ $Sb(2)-C(51)$ $2.115(4)$ $C(11)Sb(1)O(2)$ $88.17(10)$ $O(2)-C(31)$ $1.303(4)$ $O(1)Sb(2)O(7)$ $177.51(10)$ $O(7)-C(71)$ $1.317(4)$ $O(1)Sb(2)C(61)$ $92.94(11)$ $C(75)-N(4)$ $1.495(5)$ $O(1)Sb(2)C(41)$ $98.93(11)$ $C(72)-N(3)$ $1.477(5)$ $O(1)Sb(2)C(51)$ $92.34(12)$ $C(32)-N(1)$ $1.460(5)$ $C(61)Sb(2)O(7)$ $88.46(11)$ $C(35)-N(2)$ $1.481(5)$ $C(61)Sb(2)O(7)$ $82.27(10)$ $O(3)-N(2)$ $1.204(4)$ $C(41)Sb(2)C(51)$ $116.60(14)$ $O(3)-N(1)$ $1.236(4)$ $C(41)Sb(2)C(51)$ $125.23(14)$ $O(8)-N(3)$ $1.231(5)$ $C(51)Sb(2)O(7)$ $85.19(12)$ $O(4)-N(2)$ $1.220(4)$ $Sb(1)O(1)Sb(2)$ $142.32(12)$	Sb(2)-O(1)	1.977(2)	C(1)Sb(1)C(11)	118.10(12)
Sb(2)-C(61) $2.111(3)$ $C(21)Sb(1)C(1)$ $126.00(13)$ $Sb(2)-C(41)$ $2.104(3)$ $C(21)Sb(1)C(11)$ $113.92(12)$ $Sb(2)-C(51)$ $2.115(4)$ $C(11)Sb(1)O(2)$ $88.17(10)$ $O(2)-C(31)$ $1.303(4)$ $O(1)Sb(2)O(7)$ $177.51(10)$ $O(7)-C(71)$ $1.317(4)$ $O(1)Sb(2)C(61)$ $92.94(11)$ $C(75)-N(4)$ $1.495(5)$ $O(1)Sb(2)C(41)$ $98.93(11)$ $C(72)-N(3)$ $1.477(5)$ $O(1)Sb(2)C(51)$ $92.34(12)$ $C(32)-N(1)$ $1.460(5)$ $C(61)Sb(2)O(7)$ $88.46(11)$ $C(35)-N(2)$ $1.481(5)$ $C(61)Sb(2)O(7)$ $82.27(10)$ $O(3)-N(2)$ $1.204(4)$ $C(41)Sb(2)O(7)$ $82.27(10)$ $O(10)-N(4)$ $1.206(5)$ $C(41)Sb(2)C(51)$ $116.09(13)$ $O(10)-N(4)$ $1.220(4)$ $Sb(1)O(1)Sb(2)$ $142.32(12)$	Sb(2)-O(7)	2.191(2)	C(21)Sb(1)O(2)	82.41(10)
Sb(2)-C(41) $2.104(3)$ $C(21)Sb(1)C(11)$ $113.92(12)$ Sb(2)-C(51) $2.115(4)$ $C(11)Sb(1)O(2)$ $88.17(10)$ $O(2)-C(31)$ $1.303(4)$ $O(1)Sb(2)O(7)$ $177.51(10)$ $O(7)-C(71)$ $1.317(4)$ $O(1)Sb(2)C(61)$ $92.94(11)$ $C(75)-N(4)$ $1.495(5)$ $O(1)Sb(2)C(41)$ $98.93(11)$ $C(72)-N(3)$ $1.477(5)$ $O(1)Sb(2)C(51)$ $92.34(12)$ $C(32)-N(1)$ $1.460(5)$ $C(61)Sb(2)O(7)$ $88.46(11)$ $C(35)-N(2)$ $1.481(5)$ $C(61)Sb(2)C(51)$ $116.60(14)$ $O(3)-N(2)$ $1.204(4)$ $C(41)Sb(2)C(61)$ $116.09(13)$ $O(10)-N(4)$ $1.236(4)$ $C(41)Sb(2)C(51)$ $125.23(14)$ $O(8)-N(3)$ $1.231(5)$ $C(51)Sb(2)O(7)$ $85.19(12)$ $O(4)-N(2)$ $1.220(4)$ $Sb(1)O(1)Sb(2)$ $142.32(12)$	Sb(2)-C(61)	2.111(3)	C(21)Sb(1)C(1)	126.00(13)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Sb(2)-C(41)	2.104(3)	C(21)Sb(1)C(11)	113.92(12)
$\begin{array}{c ccccc} O(2)-C(31) & 1.303(4) & O(1)Sb(2)O(7) & 177.51(10) \\ O(7)-C(71) & 1.317(4) & O(1)Sb(2)C(61) & 92.94(11) \\ C(75)-N(4) & 1.495(5) & O(1)Sb(2)C(41) & 98.93(11) \\ C(72)-N(3) & 1.477(5) & O(1)Sb(2)C(51) & 92.34(12) \\ C(32)-N(1) & 1.460(5) & C(61)Sb(2)O(7) & 88.46(11) \\ C(35)-N(2) & 1.481(5) & C(61)Sb(2)C(51) & 116.60(14) \\ O(3)-N(2) & 1.204(4) & C(41)Sb(2)O(7) & 82.27(10) \\ O(5)-N(1) & 1.236(4) & C(41)Sb(2)C(61) & 116.09(13) \\ O(10)-N(4) & 1.206(5) & C(41)Sb(2)C(51) & 125.23(14) \\ O(8)-N(3) & 1.231(5) & C(51)Sb(2)O(7) & 85.19(12) \\ O(4)-N(2) & 1.220(4) & Sb(1)O(1)Sb(2) & 142.32(12) \\ \end{array}$	Sb(2)-C(51)	2.115(4)	C(11)Sb(1)O(2)	88.17(10)
$\begin{array}{c ccccc} O(7)-C(71) & 1.317(4) & O(1)Sb(2)C(61) & 92.94(11) \\ C(75)-N(4) & 1.495(5) & O(1)Sb(2)C(41) & 98.93(11) \\ C(72)-N(3) & 1.477(5) & O(1)Sb(2)C(51) & 92.34(12) \\ C(32)-N(1) & 1.460(5) & C(61)Sb(2)O(7) & 88.46(11) \\ C(35)-N(2) & 1.481(5) & C(61)Sb(2)C(51) & 116.60(14) \\ O(3)-N(2) & 1.204(4) & C(41)Sb(2)O(7) & 82.27(10) \\ O(5)-N(1) & 1.236(4) & C(41)Sb(2)C(61) & 116.09(13) \\ O(10)-N(4) & 1.206(5) & C(41)Sb(2)C(51) & 125.23(14) \\ O(8)-N(3) & 1.231(5) & C(51)Sb(2)O(7) & 85.19(12) \\ O(4)-N(2) & 1.220(4) & Sb(1)O(1)Sb(2) & 142.32(12) \\ \end{array}$	O(2)-C(31)	1.303(4)	O(1)Sb(2)O(7)	177.51(10)
C(75)-N(4) $1.495(5)$ $O(1)Sb(2)C(41)$ $98.93(11)$ $C(72)-N(3)$ $1.477(5)$ $O(1)Sb(2)C(51)$ $92.34(12)$ $C(32)-N(1)$ $1.460(5)$ $C(61)Sb(2)O(7)$ $88.46(11)$ $C(35)-N(2)$ $1.481(5)$ $C(61)Sb(2)C(51)$ $116.60(14)$ $O(3)-N(2)$ $1.204(4)$ $C(41)Sb(2)O(7)$ $82.27(10)$ $O(5)-N(1)$ $1.236(4)$ $C(41)Sb(2)C(61)$ $116.09(13)$ $O(10)-N(4)$ $1.206(5)$ $C(41)Sb(2)C(51)$ $125.23(14)$ $O(8)-N(3)$ $1.231(5)$ $C(51)Sb(2)O(7)$ $85.19(12)$ $O(4)-N(2)$ $1.220(4)$ $Sb(1)O(1)Sb(2)$ $142.32(12)$	O(7)-C(71)	1.317(4)	O(1)Sb(2)C(61)	92.94(11)
$\begin{array}{ccccccc} C(72)-N(3) & 1.477(5) & O(1)Sb(2)C(51) & 92.34(12) \\ C(32)-N(1) & 1.460(5) & C(61)Sb(2)O(7) & 88.46(11) \\ C(35)-N(2) & 1.481(5) & C(61)Sb(2)C(51) & 116.60(14) \\ O(3)-N(2) & 1.204(4) & C(41)Sb(2)O(7) & 82.27(10) \\ O(5)-N(1) & 1.236(4) & C(41)Sb(2)C(61) & 116.09(13) \\ O(10)-N(4) & 1.206(5) & C(41)Sb(2)C(51) & 125.23(14) \\ O(8)-N(3) & 1.231(5) & C(51)Sb(2)O(7) & 85.19(12) \\ O(4)-N(2) & 1.220(4) & Sb(1)O(1)Sb(2) & 142.32(12) \\ \end{array}$	C(75)-N(4)	1.495(5)	O(1)Sb(2)C(41)	98.93(11)
C(32)-N(1) $1.460(5)$ $C(61)Sb(2)O(7)$ $88.46(11)$ $C(35)-N(2)$ $1.481(5)$ $C(61)Sb(2)C(51)$ $116.60(14)$ $O(3)-N(2)$ $1.204(4)$ $C(41)Sb(2)O(7)$ $82.27(10)$ $O(5)-N(1)$ $1.236(4)$ $C(41)Sb(2)C(61)$ $116.09(13)$ $O(10)-N(4)$ $1.206(5)$ $C(41)Sb(2)C(51)$ $125.23(14)$ $O(8)-N(3)$ $1.231(5)$ $C(51)Sb(2)O(7)$ $85.19(12)$ $O(4)-N(2)$ $1.220(4)$ $Sb(1)O(1)Sb(2)$ $142.32(12)$	C(72)-N(3)	1.477(5)	O(1)Sb(2)C(51)	92.34(12)
C(35)-N(2) $1.481(5)$ $C(61)Sb(2)C(51)$ $116.60(14)$ $O(3)-N(2)$ $1.204(4)$ $C(41)Sb(2)O(7)$ $82.27(10)$ $O(5)-N(1)$ $1.236(4)$ $C(41)Sb(2)C(61)$ $116.09(13)$ $O(10)-N(4)$ $1.206(5)$ $C(41)Sb(2)C(51)$ $125.23(14)$ $O(8)-N(3)$ $1.231(5)$ $C(51)Sb(2)O(7)$ $85.19(12)$ $O(4)-N(2)$ $1.220(4)$ $Sb(1)O(1)Sb(2)$ $142.32(12)$	C(32)-N(1)	1.460(5)	C(61)Sb(2)O(7)	88.46(11)
O(3)-N(2) $1.204(4)$ $C(41)Sb(2)O(7)$ $82.27(10)$ $O(5)-N(1)$ $1.236(4)$ $C(41)Sb(2)C(61)$ $116.09(13)$ $O(10)-N(4)$ $1.206(5)$ $C(41)Sb(2)C(51)$ $125.23(14)$ $O(8)-N(3)$ $1.231(5)$ $C(51)Sb(2)O(7)$ $85.19(12)$ $O(4)-N(2)$ $1.220(4)$ $Sb(1)O(1)Sb(2)$ $142.32(12)$	C(35)-N(2)	1.481(5)	C(61)Sb(2)C(51)	116.60(14)
O(5)-N(1) $1.236(4)$ $C(41)Sb(2)C(61)$ $116.09(13)$ $O(10)-N(4)$ $1.206(5)$ $C(41)Sb(2)C(51)$ $125.23(14)$ $O(8)-N(3)$ $1.231(5)$ $C(51)Sb(2)O(7)$ $85.19(12)$ $O(4)-N(2)$ $1.220(4)$ $Sb(1)O(1)Sb(2)$ $142.32(12)$	O(3)-N(2)	1.204(4)	C(41)Sb(2)O(7)	82.27(10)
O(10)-N(4) $1.206(5)$ $C(41)Sb(2)C(51)$ $125.23(14)$ $O(8)-N(3)$ $1.231(5)$ $C(51)Sb(2)O(7)$ $85.19(12)$ $O(4)-N(2)$ $1.220(4)$ $Sb(1)O(1)Sb(2)$ $142.32(12)$	O(5)-N(1)	1.236(4)	C(41)Sb(2)C(61)	116.09(13)
O(8)-N(3) $1.231(5)$ $C(51)Sb(2)O(7)$ $85.19(12)$ $O(4)-N(2)$ $1.220(4)$ $Sb(1)O(1)Sb(2)$ $142.32(12)$	O(10)-N(4)	1.206(5)	C(41)Sb(2)C(51)	125.23(14)
$\begin{array}{c} O(4) - N(2) \\ O(4) - N(2) \\ 1.220(4) \\ 1.220(4) \\ Sb(1)O(1)Sb(2) \\ 142.32(12) \\ 142.32(12) \\ \end{array}$	O(8) - N(3)	1.231(5)	C(51)Sb(2)O(7)	85,19(12)
	O(4) - N(2)	1.220(4)	Sb(1)O(1)Sb(2)	142.32(12)

Таблица 2. Продолжение

Связь	d, Å	Угол	ω, град
		III	
Sb(1)-O(1)	2.2902(16)	C(21)Sb(1)O(1)	81.62(6)
Sb(1)-C(21)	2.118(2)	C(21)Sb(1)C(31)	98.21(8)
Sb(1)-C(11)	2.111(2)	C(11)Sb(1)O(1)	80.16(7)
Sb(1)-C(1)	2.109(2)	C(11)Sb(1)C(21)	123.56(8)
Sb(1)-C(31)	2.157(2)	C(11)Sb(1)C(31)	96.54(8)
O(1)-C(41)	1.300(2)	C(1)Sb(1)O(1)	85.16(7)
C(45)-N(2)	1.475(3)	C(1)Sb(1)C(21)	111.91(9)
C(42)-N(1)	1.467(3)	C(1)Sb(1)C(11)	119.07(8)
O(3)-N(1)	1.223(3)	C(1)Sb(1)C(31)	98.76(8)
O(2)-N(1)	1.212(3)	C(31)Sb(1)O(1)	175.80(7)
		IV	I
Sb(1)-O(1)	2.342(2)	C(1)Sb(1)O(1)	83.67(12)
Sb(1)-C(1)	2.120(3)	C(1)Sb(1)C(31)	99.37(14)
Sb(1)-C(11)	2.115(3)	C(11)Sb(1)O(1)	79.33(11)
Sb(1)-C(21)	2.106(3)	C(11)Sb(1)C(1)	113.03(13)
Sb(1)-C(31)	2.159(3)	C(11)Sb(1)C(31)	98.68(12)
O(1)-C(41)	1.299(4)	C(21)Sb(1)O(1)	81.38(9)
C(45)-N(2)	1.476(6)	C(21)Sb(1)C(1)	114.71(11)
C(42)-N(1)	1.460(5)	C(21)Sb(1)C(11)	125.55(12)
O(4)-N(2)	1.187(6)	C(21)Sb(1)C(31)	97.96(11)
N(2)-O(5)	1.213(5)	C(31)Sb(1)O(1)	176.86(10)
Sb(1) = O(1)	2.245(6)	\mathbf{v} C(21)Sb(1)C(1)	118.4(3)
Sb(1) - C(1)	2.126(8)	C(31)Sb(1)C(1)	113.6(3)
Sb(1) - C(21)	2.112(10)	C(31)Sb(1)C(21)	124.7(4)
Sb(1) = C(11)	2.181(9)	C(51)Sb(2)O(2)	163.1(3)
Sb(1) - C(31)	2.103(9)	C(51)Sb(2)O(3)	105.2(3)
Sb(2) = O(2)	2.273(5)	C(51)Sb(2)C(8)	133.9(3)
Sb(2) - O(3)	2.249(6)	C(61)Sb(2)C(8)	79.2(3)
Sb(2)-C(8)	2.656(9)	C(61)Sb(2)C(41)	161.6(3)
Sb(2)-C(41)	2.179(9)	C(71)Sb(2)O(3)	152.8(3)
Sb(2)-C(51)	2.177(9)	C(71)Sb(2)C(8)	124.2(3)
Sb(2)-C(61)	2.169(9)	C(71)Sb(2)C(51)	101.9(4)
Sb(2)-C(71)	2.152(9)	C(71)Sb(2)C(61)	95.6(3)
O(1)-C(8)	1.260(10)	C(8)O(1)Sb(1)	124.1(6)
O(2)-C(8)	1.302(10)	C(8)O(2)Sb(2)	91.9(5)
O(3)-C(8)	1.278(10)	C(8)O(3)Sb(2)	93.6(5)
		VI	
Sb(1)-C(21)	2.159(4)	C(21)Sb(1)C(1)	96.17(15)
Sb(1)-C(1)	2.166(4)	C(21)Sb(1)C(11)	95.32(15)
Sb(1)-C(11)	2.165(4)	C(21)Sb(1)O(2)	151.82(11)
Sb(1)-O(2)	2.216(2)	C(21)Sb(1)O(3)	92.88(11)
Sb(1)-O(3)	2.251(2)	C(21)Sb(1)C(8)	122.16(12)
Sb(1)-C(8)	2.611(3)	C(21)Sb(1)C(31)	104.22(14)

Связь	d, Å	Угол	ω, град
Sb(1)-C(31)	2.178(3)	C(1)Sb(1)O(2)	82.35(13)
Sb(4)-O(4)	2.263(2)	C(1)Sb(1)O(3)	85.63(12)
Sb(4)-C(121)	2.119(4)	C(1)Sb(1)C(8)	83.64(13)
Sb(4)-C(151)	2.170(3)	C(1)Sb(1)C(31)	93.15(15)
Sb(4)-C(141)	2.117(4)	C(11)Sb(1)C(1)	165.55(15)
Sb(4)-C(131)	2.127(3)	C(11)Sb(1)O(2)	83.39(14)
Sb(3)-O(5)	2.217(2)	C(11)Sb(1)O(3)	85.08(12)
Sb(3)-C(101)	2.157(4)	C(11)Sb(1)C(8)	82.84(13)
Sb(3)-C(8)	2.166(4)	C(11)Sb(1)C(31)	92.48(15)
Sb(3)-O(6)	2.251(2)	O(2)Sb(1)O(3)	58.94(8)
Sb(3)-C(9)	2.609(3)	O(2)Sb(1)C(8)	29.67(9)
Sb(3)-C(111)	2.177(3)	O(3)Sb(1)C(8)	29.28(9)
Sb(3)-C(91)	2.165(4)	C(31)Sb(1)O(2)	103.97(12)
Sb(2)-C(41)	2.120(4)	C(31)Sb(1)O(3)	162.89(12)
Sb(2)-C(71)	2.172(3)	C(31)Sb(1)C(8)	133.61(13)
Sb(2)-O(1)	2.263(2)	C(121)Sb(4)O(4)	86.32(11)
Sb(2)-C(51)	2.114(4)	C(121)Sb(4)C(151)	97.00(14)
Sb(2)-C(61)	2.125(3)	C(121)Sb(4)C(131)	116.86(14)

Таблица 2. Окончание

ных. Расстояния Sb-O_{мост} (1.973(3), 1.980(2) Å в I и 1.975(2), 1.977(2) Å в II) меньше, чем Sb-O_{кони} (2.211(3), 2.213(3) Å в I и 2.191(2), 2.191(2) Å в II). Отметим, что расстояния Sb-O_{мост} практически совпадают, в то время как расстояния Sb-O_{кони} в I длиннее, чем в II. Связи С-О в фенолятных лигандах (1.307(3), 1.312(4) Å в I и 1.303(4), 1.317(4) Å в II) сопоставимы по длине, но больше, чем в изолированных 2,5-динитрофенолятных анионах (1.268(6) Å [22]). В кристалле I межмолекулярные водородные связи O(3)…H(64)2.42 Å сшивают структурные единицы в единое целое. В кристалле комплекса II структурирование осуществляется за счет водородных связей между атомом кислорода орто-нитрогруппы фенолятного лиганда одной молекулы с *мета*-Н фенолятной группы другой молекулы.

Мы показали, что продуктами реакций пентаарилсурьмы с I и II являются ароксиды тетраарилсурьмы $Ar_4SbOC_6H_3(NO_2)_2$ -2,5, Ar = Ph (III), 4-MeC₆H₄ (IV) и карбонаты тетраарилсурьмы, образующиеся при контакте реакционной смеси с углекислым газом воздуха [23].

$$\begin{aligned} &2Ar_{5}Sb + \left[Ar_{3}SbOC_{6}H_{3}(NO_{2})_{2} - 2,5\right]_{2}O \rightarrow \\ &\rightarrow 2 Ar_{4}SbOC_{6}H_{3}(NO_{2})_{2} - 2,5 + (Ar_{4}Sb)_{2}O, \\ &Ar = Ph(III), \ 4-MeC_{6}H_{4}(IV). \\ &(Ar_{4}Sb)_{2}O + CO_{2} \rightarrow (Ar_{4}Sb)_{2}CO_{3}, \\ &Ar = Ph(V), \ 4-MeC_{6}H_{4}(VI). \end{aligned}$$

Соединения III и IV также синтезировали из пентаарилсурьмы и 2,5-динитрофенола.

По данным РСА, в тригонально-бипирамидальных молекулах III и IV атомы кислорода занимают аксиальные положения (рис. 2). Аксиальные углы в III (175.80(7)°) и IV (176.86(10)°) близки к идеальному значению, как и суммы углов в экваториальной плоскости 354.54(9)° в III и 353.29(12)° в IV. Значения углов OSbC_{экв} меньше 90° (80.16(7)-85.16(7)°, 79.33(11)-83.67(12)°), поскольку отклонения атомов сурьмы от экваториальных плоскостей к аксиальным атомам углерода (0.286 и 0.317 Å) весьма существенны. Связи Sb-С_{экв} (2.109(2)-2.118(2) Å в III и 2.106(3)-2.120(3) Å в IV) больше суммы ковалентных радиусов атомов Sb и C (*sp*²) (2.07 Å [24]). Аксиальные связи Sb-C (2.157(2), 2.159(3) Å) значительно длиннее и тоже равны в пределах погрешности эксперимента. Связь Sb-O в IV (2.342(2) Å) заметно длиннее, чем в III (2.290(2) Å), и значительно длиннее аналогичных расстояний в I, II. Удлинение связи Sb-O в молекуле IV коррелирует с большим искажением тригонально-бипирамидального полиэдра атома сурьмы в ней, что следует из сравнения валентных углов между аксиальными и экваториальными связями и отклонений атома сурьмы от экваториальных плоскостей в соединениях III и IV. Слабые водородные связи О…H-С (О…H 2.52-2.98 Å) объединяют структурные блоки в кристалле III в отличие от IV.

Рис. 1. Строение молекул I (а) и II (б).

Структура выделенных карбонатов тетраарилсурьмы V и VI доказана методом РСА. Для соединения V известны триклинная [25] и моноклинная [26] модификации. Мы впервые расшифровали строение ромбической модификации. Соединение VI мы структурно охарактеризовали впервые (моноклинная модификация, два типа кристаллографически независимых молекул **a**, **b**). В молекулах V и VI атомы сурьмы имеют разные KЧ, равные 5, 6) (рис. 3). Тригонально-бипирамидальная координация атомов сурьмы практически не искажена, аксиальные углы OSbC составляют 178.7(3)° в V и 175.2(1)°, 175.1(1)° в **VIa, VIb**. Суммы углов в экваториальной плоскости равны

Рис. 2. Строение молекулы III (а) и IV (б).

Рис. 3. Строение молекулы V (а) и VI (б).

C(37)

356.7(3)° и 356.9(1)°, 356.9(1)°. Связи Sb-С_{экв} (2.114(9) и 2.120(4), 2.121(4) Å) в среднем короче, чем Sb-С_{акс} (2.181(9) и 2.170(3), 2.172(3) Å). Связи Sb-O (2.245(6) и 2.263(3), 2.263(3) Å) в V и VI короче, чем в III и IV.

Суммы валентных углов между связями в экваториальной плоскости [О₂С₂] при октаэдрических атомах сурьмы равны 359.9(4)° в V и 360° в VIa. VIb. Однако индивидуальные значения углов сильно различаются: OSbO не превышают 60°, CSbC ~105°. Транс-углы в экваториальной плоскости CSbO равны 163.1(3)°, 152.8(3)° и 162.9(1)°, 151.8(1)°; 163.0(1)°, 151.8(1)°. Углы между аксиальными связями CSbC тоже меньше теоретического значения (161.6(3)° и 165.6(2)°, 165.8(2)°). Расстояния Sb-С изменяются в интервалах 2.152(9)-2.179(9) и 2.159(4)-2.178(3), 2.157(4)-2.177(3) Å. Карбонатный лиганд координируется с атомом сурьмы несимметрично: расстояния Sb-O равны 2.249(6), 2.273(5) и 2.216(2), 2.251(2); 2.217(2), 2.251(2) Å; при этом толильные лиганды связаны с центральным атомом прочнее, чем фенильные. Длины связей С-О в карбонатной группе различаются: 1.260(10), 1.302(10), 1.278(10) Å B V, 1.284(4), 1.293(4), 1.277(4) Å B VIa, 1.285(4), 1.293(4), 1.274(4) Å B VIb. При этом наблюдается закономерность: более короткой связи Sb-O соответствует более длинная С-О. Отметим, что значения валентных углов в триклинной, моноклинной и ромбической модификациях соединения V имеют близкие значения. Некоторые отличия наблюдаются в значениях длин связей Sb-O; например, в молекулах триклинной модификации эти расстояния равны 2.258, 2.185, 2.325 Å [25], а в молекулах моноклинной модификации 2.273, 2.239, 2.262 Å [26].

Таким образом, синтезированы и структурно охарактеризованы новые фенильные и *пара*-толильные производные сурьмы(V). Установлено, что прочность связывания атома сурьмы с лигандами зависит как от природы арильных заместителей, так и от типа сурьмаорганического соединения.

Авторы заявляют об отсутствии конфликта интересов.

ФИНАНСИРОВАНИЕ

Южно-Уральский государственный университет благодарит за финансовую поддержку Министерство образования и науки Российской Федерации (грант № 4.6151.2017/8.9).

СПИСОК ЛИТЕРАТУРЫ

 Hadjikakou S.K., Ozturk I.I., BantiC. N. et al. // J. Inorg. Biochem. 2015. V. 153. P. 293. https://doi.org/10.1016/j.jinorgbio.2015.06.006

- Ali M.I., Rauf M.K., Badshah A. et al. // Dalton Trans. 2013. V. 42. P. 16733. https://doi.org/10.1039/C3DT51382C
- Zhang X.-Y., Cui L., Zhang X. et al. // J. Mol. Struct. 2017. V. 1134. P. 742. https://doi.org/10.1016/j.molstruc.2017.01.039
- 4. *Гущин А.В., Грунова Е.В., Моисеев Д.В. и др.* // Изв. АН. Сер. хим. 2003. № 6. С. 1302.
- Шарутин В.В., Шарутина О.К., Ефремов А.Н. и др. // Журн. неорган. химии. 2018. Т. 63. № 2. С. 164 (Sharutin V.V., Sharutina O.K., Efremov A.N. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 2. Р. 174). https://doi.org/10.1134/S0036023618020195
- 6. Шарутин В.В., Шарутина О.К., Ефремов А.Н. // Журн. неорган. химии. 2018. Т. 63. № 3. С. 327 (Sharutin V.V., Sharutina O.K., Efremov A.N. // Russ. J. Inorg. Chem. 2018. V. 63. № 3. Р. 343). https://doi.org/10.1134/S0036023618030208
- Шарутин В.В., Шарутина О.К., Сенчурин В.С. и др. // Вестник ЮУрГУ. Сер. хим. 2014. Т. 6. № 4. С. 14.
- SMART and SAINT-Plus. Version 5.0. Data Collection and Processing Software for the SMART System. Madison (WI, USA): Bruker AXS Inc., 1998.
- SHELXTL/PC. Version 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Bruker AXS Inc., Madison: (WI, USA), 1998.
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- Li N., Qiu R., Zhang X. et al. // Tetrahedron. 2015. V. 71. P. 4275. https://doi.org/10.1016/j.tet.2015.05.013
- Gibbons M.N., Sowerby D.B. // J. Organomet. Chem. 1998. V. 555. P. 271. https://doi.org/10.1016/S0022-328X(97)00759-6
- Ruther R., Huber F., Preut H. // Angew. Chem. Int. Ed. 1987. V. 26. P. 906. https://doi.org/10.1002/anie.198709061
- 14. Preut H., Ruther R., Huber F. // Acta Crystallogr. C. 1986. V. 42. P. 1154. https://doi.org/10.1107/S010827018609306X
- 15. *Gibbons M.N., Sowerby D.B.* // Dalton Trans. 1997. P. 2785.
- Effendy, Grigsby W.J., Hart R.D. et al. // Aust. J. Chem. 1997. V. 50. P. 675. https://doi.org/10.1071/C96042
- Quan L., Yin H., Wang D. // Acta Crystallogr. E. 2009. V. 65. P. m99. https://doi.org/10.1107/S1600536808042335
- Quan L., Yin H., Wang D. // Acta Crystallogr. E. 2008. V. 64. P. m349. https://doi.org/10.1107/S1600536808000676
- Ebina F., Ouchi A., Yoshino Y. et al. // Acta Crystallogr. B. Chem. 1978. V. 34. P. 2134. https://doi.org/10.1107/S0567740878007578

- Mahon M.F., Molloy K.C., Omotowa B.A. et al. // J. Organomet.Chem. 1998. V. 560. P. 95. https://doi.org/10.1016/S0022-328X(98)00488-4
- Abakumov G.A., Vavilina N.N., Kursky Yu.A. et al. // Russ. Chem. Bull. 2007. V. 9. P. 1813.
- Perpetuo G.J., Janczak J. // Acta Crystallogr. C. 2005. V. 61. P. o165. https://doi.org/10.1107/S0108270105001253
- 23. Шарутин В.В., Шарутина О.К., Сенчурин В.С. и др. // Коорд. химия. 2001. Т. 27. № 9. С. 710 (Sharutin V.V., Sharutina O.K., Senchurin V.S. et al. // Russ. J. Coord. Chem. 2001. V. 27. № 9. Р. 669). https://doi.org/10.1023/A:1017909824029
- 24. Бацанов С.С. // Журн. неорган. химии. 1991. Т. 36. № 12. С. 3015 (*Batsanov S.S.* // Russ. J. Inorg. Chem. 1991. V. 36. № 12. Р. 3015).
- 25. Ferguson G., Hawley D.M. // Acta Crystallogr. B. 1974.
 V. 30. № 1. P. 103. https://doi.org/10.1107/S0567740874002299
- Шарутин В.В., Шарутина О.К., Платонова Т.П. и др. // Журн. общ. химии. 2001. Т. 71. № 10. С. 1637 (Sharutin V.V., Sharutina O.K., Platonova T.P. et al. // Russ. J. Gen. Chem. 2001. V. 71. № 10. Р. 1550). https://doi.org/10.1023/A:1013938600798