УДК 54-386[548-735]

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА 1,2,4,1',2',4'-ГЕКСАМЕТИЛФЕРРОЦЕНА

© 2020 г. Н. З. Ибрагимова^{1, *, **}, Г. М. Джафаров¹, Д. Б. Тагиев¹, И. У. Лятифов¹

¹Институт катализа и неорганической химии НАН Азербайджана, Баку, Азербайджан

*e-mail: iltifatl@mail.ru

**e-mail: nigar-ibrahimova93@mail.ru Поступила в редакцию 12.02.2019 г. После доработки 15.03.2019 г. Принята к публикации 10.04.2019 г.

Методом РСА определена кристаллическая структура 1,2,4,1',2',4'-гексаметилферроцена (Me₆Fc_{сим}). В молекуле Me₆Fc_{сим} C₅-кольца находятся в заторможенной конформации. Длина связи Fe–Ц(центр C₅-кольца) в ряду Me₂Fc_{сим}, Me₆Fc_{сим}, Me₈Fc_{сим} и Me₁₀Fc_{сим} имеет тенденцию к удлинению. Взаимная конформация вицинальных Me-групп в молекулах Me₆Fc_{сим}, Me₈Fc_{сим} и Me₁₀Fc_{сим}, a также особенность изменения ЯМР ¹H и ¹³C сигналов Me-групп в ряду полиметилферроценов Me_nFc_{сим} (*n* = 2, 4, 6, 8, 10) по сравнению с аналогами в ряду метилбензолов указывают на то, что Me-группы в симетричных полиметилферроценах не находятся в зацепленном состоянии, а относительно свободно вращаются вокруг связи C(C₅-кольцо)–C(Me) (CIF file CCDC № 1436882).

Ключевые слова: 1,2,4,1',2',4'-гексаметилферроцен, стерическое взаимодействие, конформация, PCA **DOI:** 10.31857/S0132344X20010028

Химическая устойчивость и разнообразие производных ферроцена, наряду с их различными возможными прикладными аспектами [1], делает эти соединения одними из наиболее интенсивно изучаемых химических систем за последние 60 лет. Наш интерес к производным ферроцена связан с возможностью разработки на основе полиметилферроценов и соответствующих катионов полиметилферрициния обратимых электрохимических электродов сравнения в неводных средах [2].

Из-за неустойчивости катиона феррициния в ряде растворителей и зависимости редокс потенциала системы ферроцен—феррициний от природы органического растворителя [3], в настоящее время полиметилферроцены и соответствующие им катионы полиметилферрициния рассматриваются как более перспективные системы для создания электродов сравнения [2]. Учитывая это, в качестве объектов исследования мы выбрали 1,2,4,1',2',4'-гексаметилферроцен (**Me₆Fc**_{сим}) и гексафторфосфат-1,2,4,1',2',4'-гексаметилферрициния (**Me₆Fc**⁺**PF**⁻_{6сим}). ЯМР ¹Н исследование го-

могенной системы $Me_6Fc_{cum}-Me_6Fc^+PF_{6cum}^-$ в дейтероацетоне показало [4, 5], что электронный обмен в ней протекает в ~3–4 раза быстрее, чем в системе ферроцен—феррициний. Поэтому данная система удовлетворяет условию обратимости одному из требований, предъявляемых к электродам сравнения [6] со стороны ИЮПАК.

Для выяснения соответствия редокс системы $Me_6Fc_{сим}-Me_6Fc^+PF_{6_{сим}}^-$ другим требованиям ИЮПАК к электродам сравнения, а также применения недавно усовершенствованного уравнения Маркуса [7] к электронному обмену в этой системе мы изучили кристаллические структуры этих двух комплексов.

В настоящей работе рассмотрены особенности кристаллической структуры молекулы Me₆Fc_{сим}.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Соединение $Me_6Fc_{cим}$ синтезировали в соответствии с методикой [8]. Монокристаллы $Me_6Fc_{сим}$ размером $0.16 \times 0.13 \times 0.11$ мм выращивали в гексане при -10° С.

РСА $Me_6Fc_{сим}$ проведен на автоматическом трехкружном дифрактометре с двухкоординатным детектором Bruker SMART APEX-II CCD (T = 150 K, MoK_{α} -излучение, $\lambda = 0.71073$ Å, графитовый монохроматор, φ - и ω -сканирование). Учет поглощения рентгеновского излучения проведен по программе SADABS [9]. Структура расшифрована прямыми методами и уточнена полноматричным MHK по F^2 в анизотропном приближении для неводородных атомов. Положения

Параметр	Значение		
M	270.18		
Сингония	Моноклинная		
Пр. гр.	$P2_1/c$		
Параметры ячейки:			
<i>a</i> , Å	8.685(6)		
b, Å	10.871(7)		
<i>c</i> , Å	7.513(5)		
β, град	109.894(14)		
V, Å ³	667.1(7)		
Ζ	2		
ρ(выч.), г/см ³	1.345		
μ , MM^{-1}	1.106		
<i>F</i> (000)	288		
Размер кристалла, мм	$0.16 \times 0.13 \times 0.11$		
Диапазон Ө, град	3.120-24.964		
Пределы индексов h, k, l	$-10 \le h \le 8,$		
	$-12 \le k \le 12,$		
	$-8 \le l \le 8$		
Общее число отражений	4197		
Число независимых отражений (<i>R</i> _{int})	1166 (0.1150)		
GOOF для F^2	1.022		
R -фактор ($I \ge 2\sigma(I)$)	$R_1 = 0.0579, wR_2 = 0.0893$		
<i>R</i> -фактор (все отражения)	$R_1 = 0.1374, wR_2 = 0.1155$		
$\Delta \rho_{\rm max} / \Delta \rho_{\rm min}, e {\rm \AA}^{-3}$	0.370/-0.487		

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структуры Me₆Fc_{сим}

атомов водорода рассчитаны геометрически и включены в уточнение по модели "наездника" с фиксированными изотропными параметрами $(U_{\mu_{30}}(H) = 1.5U_{3\kappa_B}(C)$ для CH₃-групп и $U_{\mu_{30}}(H) =$

= $1.2U_{_{3KB}}(C)$ для всех остальных групп). Все расчеты проведены по комплексу программ SHELXTL [10]. Основные характеристики эксперимента и параметры элементарной ячейки приведены в

Рис. 1. Общий вид молекулы Me₆Fc_{сим} и схема нумераций атомов углерода.

ИБРАГИМОВА и др.

Связь	<i>d</i> , Å	Связь	$d, \mathrm{\AA}$	Угол	ω, град
Fe(1)-C(4)	2.037(5)	C(1)–C(5)	1.420(7)	C(5)C(1)C(2)	107.8(4)
Fe(1)–C(2)	2.043(5)	C(1)–C(2)	1.425(7)	C(1)C(2)C(3)	108.7(5)
Fe(1)–C(1)	2.045(5)	C(2)–C(3)	1.430(7)	C(4)C(3)C(2)	106.5(5)
Fe(1)-C(5)	2.049(5)	C(3)–C(4)	1.416(7)	C(3)C(4)C(5)	109.6(5)
Fe(1)–C(3)	2.051(5)	C(4)–C(5)	1.420(6)	C(1)C(5)C(4)	107.5(5)
среднее	2.045(5)	среднее	1.422(7)		
C(1)–C(6)	1.504(7)			C(5)C(1)C(6)	126.8(5)
C(3)–C(7)	1.499(7)			C(2)C(1)C(6)	125.4(5)
C(5)–C(8)	1.503(6)			C(1)C(5)C(8)	126.2(5)
среднее	1.502(7)			C(4)C(5)C(8)	126.3(5)

Таблица 2. Некоторые длины связей и валентные углы в молекуле Me₆Fc_{сим}

табл. 1, некоторые длины связей и валентные углы – в табл. 2.

Таблицы координат атомов, длин связей, валентных и торсионных углов и анизотропных параметров смещения для Me₆Fc_{сим} депонированы в Кембриджском банке структурных данных (CCDC № 1861054; deposit@ccdc.cam.ac.uk или http:// www.ccdc.cam.ac.uk/data_request/cif).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Геометрия молекулы $Me_6Fc_{сим}$ показана на рис. 1, 2. Как видно из рис. 2, в молекуле $Me_6Fc_{сим}$ C_5 -кольца расположены в заторможенной конформации ($\varphi = 35.67^\circ$), как и в молекулах $Me_8Fc_{сим}$ [11] и $Me_{10}Fc_{сим}$ [12]. Поскольку в твердом состоянии в молекуле $Me_2Fc_{сим}$ [13, 14] C_5 -кольца имеют заслоненную конформацию, изменение конформации в молекулах перечисленных трех полиметилферроценов логичнее приписать к стерическим взаимодействиям Me-групп разных колец или же силам кристаллической упаковки.

С₅-кольцо в молекуле $Me_6Fc_{сим}$ плоское, наибольшее отклонение от плоскости составляет 0.003(5) Å. С₅-кольца параллельны. Величина угла, проходящего через центры С₅-колец и атом железа, равна 180(16)°. Расстояние между центрами колец 3.298 Å.

В молекуле $Me_6Fc_{cим}$ все расстояния $C(C_5-$ кольцо)— $C(C_5$ -кольцо) в пределах ошибки эксперимента одинаковы. Их среднее значение 1.422(7) Å

близко к соответствующим расстояниям в молекулах $Me_8Fc_{сим}$ (1.428(4) Å) [11] и $Me_{10}Fc_{сим}$ (1.419(2) Å) [12]. Среднее расстояние $C(C_5$ -кольцо)-C(Me), равное 1.502(7) Å, соответствует длине обычной связи $C(sp^2)-C(sp^3)$ [15]. Средняя длина связи Fe- $C(C_5$ -кольцо) 2.045(5) Å также соответствует длинам связи Fe- $C(C_5$ -кольцо) в молекулах $Me_8Fc_{сим}$ (2.054(3) [11], 2.048(6) [16]) и $Me_{10}Fc_{сим}$ (2.053(2) [17], 2.050(2) Å [12]).

Рис. 2. Заторможенная конформация C_5 -колец молекулы $Me_6Fc_{сим}$.

Таблица 3. Химические сдвиги ЯМР ¹ H(CH ₃) и ¹³ C(C	CH_3) метильных групп (в CS_2 и CH_2C	l ₂ соответственно) в
ряду симметричных полиметилферроценов Ме _n Fc _{си} сигнала TMC	$(n = 2, 4, 6, 8, 10)^*$ относительн	о соответствующего

Me _n Fc _{сим}	n				
	2	4	6	8	10
¹ H(CH ₃)	1.92	1.88	1.79(1) 1.76(2)	1.72 1.66	1.61
¹³ C(CH ₃)	14.32	14.19	13.67(1) 11.85	11.59 9.64	9.48

* В скобке указано число метильных групп.

В структуре $Me_6Fc_{сим}$ наблюдается ряд слабых межмолекулярных нековалентных связей. Многие из них образуются между C_5 -кольцом (донором электронов) одной молекулы и атомом водорода (акцептором электронов) C_5 -кольца другой молекулы. Эти контакты фактически связывают металлоорганические цепочки в 3D-супрамолекулярный каркас, расширяя структуру в направлении *x*, *y* и *z* [18–20].

В табл. 2 приведены некоторые длины связей и валентные углы в молекуле Me₆Fc_{сим}, в которой Ме-группы отклоняются от плоскости С5-кольца (от атома Fe). Одиночная Ме-группа отклоняется на 2.49° (С(7)), вицинальные Ме-группы – на 0.87° (C(8)) и 1.64° (C(6)). Впервые об отклонении Мегрупп от плоскости C₅-кольца (от атома Fe) в молекулах метилзамещенных ферроценов было указано в [11] на примере кристаллических структур Ме₈Fc_{сим} и Ме₁₀Fc_{сим}, изучение которых было предпринято с целью установить причины аддитивного сильнопольного смещения резонансных сигналов атомов углерода Ме-групп, наблюдаемого в спектрах ЯМР ¹³С Me_nFc_{CMM} (n = 2, 4, 6, 8, 10) [21]. Несмотря на то что ближайшие невалентные контакты С…С Ме-групп разных колец (3.79–3.85 Å) были меньше удвоенного ванн-дерваальсового радиуса Ме-группы (4 Å), отклонение Ме-групп от плоскости С5-кольца авторы [11] не стали связывать со стерическими взаимодействиями Ме-групп разных С5-колец, поскольку аналогичное отклонение Ме-групп наблюдается и в молекуле $Me_5C_5Fe(CO)_2SO_2CH_2-CH=CH-C_6H_5$ [22], где отсутствует второе метилзамещенное кольцо [11].

Впоследствии исследование спектров ЯМР ¹³С несимметричных полиметилферроценов позволило выявить и оценить вышеуказанное стерическое взаимодействие между Ме-группами, расположенными в разных кольцах симметричных полиметилферроценов (~0.4–0.5 м.д.), что примерно в 3 раза меньше стерического взаимодействия между вицинальными Ме-группами (~1.5 м.д.) [8, 23].

Причины отклонения Me-групп от атома Fe в молекуле $Me_{10}Fc_{сим}$ авторы [11, 12] связали только со стерическим взаимодействием вицинальных Me-групп, расположенных в одном C₅-кольце.

Действительно, в молекулах полиметилферроценов невалентные контакты Н…Н вицинальных Ме-групп наиболее короткие среди всех контактов Н…Н. Например, в Ме₆Fc_{сим} указанные контакты H···H составляют 2.38, в $Me_8Fc_{cum} - 2.23$ и 2.26 Å [11], а в Ме₁₀Fc_{сим} – средн. 2.4 Å [11, 12]. Если причиной отклонения Ме-групп от атома Fe является только взаимодействие вицинальных Ме-групп в пределах одного кольца, следовало бы ожидать, что некоторые из метильных групп в полиметилферроценах должны были бы отклониться от плоскости кольца и к атому железа. Так, в молекуле полностью замещенного производного бензола Ме₆С₆ стерическая перегруженность вицинальных метильных групп разрешается путем поочередного отклонения последних вверх и вниз от плоскости бензольного кольца [24, 25] и согласованным (зацепленным) вращением метильных групп вокруг связи C(C₆)–C(Me) [26, 27].

В отличие от метилбензолов, в гомологическом ряду полиметилферроценов из-за присутствия фрагмента $Me_mC_5H_{5-m}M$, связанного с рассматриваемым метилзамещенным C_5 -кольцом, метильные группы последнего не в состоянии отклониться в обе стороны от плоскости C_5 -кольца, т.е. и к атому Fe. Во вторых, из-за большего угла (72°) между вицинальными Ме-группами Me_5C_5 кольца (относительно аналогичного угла в 60° в Me_6C_6) стерическое взаимодействие между ними слабее, чем в Me_6C_6 . Под влиянием перечисленных двух факторов, последовательно возрастающее стерическое напряжение в гомологическом ряду метилферроценов в комплексе $Me_{10}Fc_{сим}$ не разрешается, как в молекуле Me_6C_6 , и напряжение сохраняется. Все Ме-группы отклонены в одну сторону от плоскости C_5 -кольца (от атома железа), авицинальные Ме-группы находятся не в зацепленном состоянии (в конформации 2 : 1 или 1 : 2), а в конформации 2 : 2. Так, в конформации 2 : 2 (или близком к 2 : 2) находятся вицинальные Мегруппы в молекуле Me_6Fc , все Ме-группы в $Me_8Fc_{сим}$ [11] и шесть из десяти Ме-групп в $Me_{10}Fc_{сим}$ [12].

Разные структурные следствия стерической перегруженности в метильных гомологах ферроцена и бензола позволяют объяснить и отличительную особенность их спектров ЯМР ¹Н и ¹³С [21, 27]. Так, в ряду $Me_2Fc_{сим}$, $1,3,1',3'-Me_4Fc_{сим}$, $Me_6Fc_{сим}$, $Me_8Fc_{сим}$ и $Me_{10}Fc_{сим}$ монотонно возрастающее стерическое взаимодействие вицинальных Мегрупп проявляется в последовательном и аддитивном сильнопольном смещении резонансных сигналов ЯМР ¹Н и ¹³С Me-групп (табл. 3).

В ряду метил-, 1,2-диметил-, 1,3,5-триметил-, 1,2,4,5-тетраметил-, пентаметил-, гексаметилбензолов (и др.) резонансные сигналы ЯМР ¹Н и ¹³С Ме-групп послеловательно и также аллитивно смещаются в сильное магнитное поле включительно до Me_5C_6H [27]. При переходе от пентаметилбензола к гексаметилбензолу эта тенденция в изменении химических сдвигов ЯМР ¹Н и ¹³С нарушается, наблюдается слабопольное смещение резонансных сигналов ЯМР ¹Н и ¹³С Ме-групп, что указывает на ослабление стерического взаимодействия между вицинальнымиМе-группами в молекуле Me_6C_6 . По данным [24, 25], ослабление стерического взаимодействия в молекуле Ме₆С₆ можно объяснить альтернирующим отклонением вниз и вверх от плоскости бензольного кольца и согласованным вращением последних [26, 27]. В симметричных полиметилферроценах не имеет место ни одно из перечисленных двух структурных изменений. Поэтому вопрос о причинах отклонения Ме-групп от плоскости С5-кольца от атома Fe в полиметилферроценах пока остается открытым.

Сравнение длины связи Fe–Ц(C₅-кольца) в молекуле Me₆Fc_{сим} (1.649(5) Å) с таковой в комплексах Me₂Fc_{сим} (1.647 [28], 1.6447(10) и 1.6487(10) [13], 1.649(6) [14]), Me₈Fc_{сим} (1.653 [16], (1.655(8) [11]) и Me₁₀Fc_{сим} (1.6568(8) [11], 1.651 Å [28]) позволяет предположить, что в гомологическом ряду связь Fe–Ц(C₅-кольца) имеет общую тенденцию к удлинению. Хотя это увеличение в ряду метилзамещенных гомологов ферроцена находится в пределах 2–3 σ , однако оно соответствует наблюдаемому в спектрах ЯМР ¹³С комплексов Ме_{*n*}Fc_{сим} стерическому взаимодействию Мегрупп, расположенных в разных кольцах, и оцениваемому в ~0.4-0.5 м.д. в сильное магнитное поле [8, 23].

Таким образом, рассмотренные особенности кристаллической структуры молекулы $Me_6Fc_{сим}$ в основном могут быть интерпретированы стерическими взаимодействиями вицинальных метильных групп, как между собой (в пределах рассматриваемого лиганда $Me_mC_5H_{5-m}$), так и с Мегруппами, расположенными в другом лиганде $Me_mC_5H_{5-m}$ молекулы.

Сравнительный анализ результатов рентгеноструктурного исследования кристаллических структур $Me_6Fc_{сим}$ и его катиона 1,2,4,1',2',4'-гексаметилферрициния (в виде симметричного гексафторфосфата гексаметилферрициния) будет рассмотрен в следующей публикации.

СПИСОК ЛИТЕРАТУРЫ

- 1. Astruc D. // Eur. J. Inorg. Chem. 2017. V. 1. P. 6.
- Bartlett P.N., Branch J. // J. Electroanalyt. Chem. 2016. V. 780. P. 282.
- Nielson R.M., McManis G.E., Safford L.K., Weaver M.J. // J. Phys. Chem. 1989. V. 93. P. 2152.
- 4. Ибрагимова Н.З., Мамедов И.Г., Джафаров Г.М. и др. // Chem. Problems. 2017. № 1. Р. 51.
- 5. *Ibrahimova N.Z., Jafarov G.M., Tagiyev D.B., Lyatifov I.U.* // Chem. Problems. 2019. № 2. P. 310.
- 6. *Gritzner G., Kuta J.* // Pure Appl. Chem. 1984. V. 56. № 4. P. 461.
- 7. *Li Xiang-Yuan //* Intern. J. Quantum Chem. 2015. V. 115. P. 700.
- 8. Лятифов И.Р. Дис. ... докт. хим. наук. Ленинград: ЛТИ, 1990. 395 с.
- 9. *Sheldrick G.M.* SADABS. Version 2.03. Bruker/Siemens Area Detector Absorption Correction Program. Madison (WI, USA): Bruker AXS Inc., 2003.
- 10. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
- Struchkov Yu.T., Andrianov V.G., Sal'nikova T.N. et al. // J. Organomet. Chem. 1978. V. 145. P. 213.
- Freyberg D.P., Robbins J.L., Raymond K.N., Smart J.C. // J. Am. Chem. Soc. 1979. V. 101. P. 892.
- Lousada C.M., Pinto S.S., Canongia Lopes J.N. et al. // J. Phys. Chem. A. 2008. V. 112. P. 2977.
- 14. Foucher D.A., Honeyman Ch.H., Lough A.J. et al. // Acta Crystallogr. C. 1995. V. 51. P. 1795.
- Tables of Interatomic Distances and Configuration in Molecules and Ions. Supplement 1956–1959 / Ed. Sutton L.E., London: Chemical Society, 1965.
- Schmitz D., Fleischhauer J., Meier U. et al. // J. Organomet. Chem. 1981. V. 205. P. 381.
- Arrais A., Diana E., Gobetto R. et al. // Eur. J. Inorg. Chem. 2003. P. 1186.
- Gurbanov A.V., Mahmoudi G., Guedes da Silva M.F.C. et al. // Inorg. Chim. Acta. 2018. V. 471. P. 130.

КООРДИНАЦИОННАЯ ХИМИЯ том 46 № 1 2020

- 19. Hazra S., Martins N.M.R., Mahmudov K.T. et al. // J. Organomet. Chem. 2018. V. 867. P. 193.
- 20. Kvyatkovskaya E.A., Zaytsev V.P., Zubkov F.I. et al. // Acta Crystallogr. E. 2017. V. 73. № 4. P. 515.
- 21. Materikova R.B., Babin V.N., Lyatifov I.R. et al. // J. Organomet. Chem. 1977. V. 142. P. 81.
- 22. Churchill M.R., Wormald J. // Inorg. Chem. 1971. V. 10. № 3. P. 572.
- 23. *Мамедов И.Г., Оруджева А.Б., Салимов Р.М. и др. //* Вестник БГУ. 2013. № 3. С. 5.
- 24. Stride J. // Acta Crystallogr. B. 2005. V. 61. P. 200.
- 25. Le Maguères P., Lindeman S.V., Kochi J.K. // Organometallics. 2001. V. 20. P. 115.
- 26. Wolfoenden W.R., Grant D.M. // J. Am. Chem. Soc. 1966. V. 88. P. 1496.
- Cheney B.V., Grant D.M. // J. Am. Chem. Soc. 1967. V. 89. P. 5319.
- 28. Makal A.M., Plazuk D., Zakrzewski J. et al. // Inorg. Chem. 2010. V. 49. P. 4046.