УДК 548.33

Авторы поздравляют академика И.Л. Еременко с 70-летним юбилеем

ОБРАТИМЫЙ ФАЗОВЫЙ ПЕРЕХОД В СТРУКТУРЕ M₀O₂Cl₂(Dme) С СОХРАНЕНИЕМ СИНГОНИИ И ПРОСТРАНСТВЕННОЙ ГРУППЫ КРИСТАЛЛА

© 2020 г. А. В. Чураков^{1, *}, К. А. Руфанов²

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия ²Марбургский университет им. Филиппа, Марбург, Федеративная Республика Германия *e-mail: churakov@igic.ras.ru Поступила в редакцию 24.04.2020 г. После доработки 29.04.2020 г. Принята к публикации 07.05.2020 г.

Обнаружен и исследован полностью обратимый фазовый переход в соединении MoO₂Cl₂(Dme) с сохранением сингонии и пространственной группы кристалла. Этот переход также сопровождается удвоением параметра элементарной ячейки и протекает без разрушения монокристалла. Определены кристаллические структуры комплекса MoO₂Cl₂(Dme) при 160 (I) и 150 K (II) (CIF files CCDC № 1997752 и 1997751 соответственно).

Ключевые слова: фазовые переходы, дифракционная картина, систематические погасания, слабые межмолекулярные взаимодействия

DOI: 10.31857/S0132344X2011002X

В последнее время физико-химические процессы в кристаллических фазах, протекающие без разрушения монокристаллов (single-crystal-tosingle-crystal transformations, SCSC), привлекают повышенное внимание исследователей, поскольку они открывают перспективы создания принципиально новых устройств, таких как объемные 3D-модули записи информации [1] или фотопереключатели [2]. Среди прочих интенсивно исследуются фотохимические реакции [3], спиновые переходы [4], процессы лигандной изомеризации [5] и лигандного обмена в пористых структурах [6]. Фазовые переходы второго рода в кристаллах, вызываемые изменениями температуры или давления, также довольно часто протекают без потери кристалличности и габитуса [7, 8]. Одним из наиболее распространенных методов определения параметров этих переходов служит мониторинг дифракционной картины монокристаллов, хотя зачастую ее изменения не носят ярко выраженного характера и требуются трудоемкие измерения зависимостей параметров элементарной ячейки от температуры или давления [9, 10]. Нас заинтересовали случаи, когда изменения дифракционных картин при фазовых переходах резко выражены и легко определяются визуально [11]. Последнее происходит при таких фазовых переходах, где изменение симметрии кристалла сопровождается исчезновением—появлением скользящих элементов симметрии или кратным увеличением параметров элементарной ячейки, поскольку это приводит к исчезновению—появлению систематических погасаний [12].

В настоящей статье исследован обратимый фазовый переход в монокристалле комплекса $MoO_2Cl_2(Dme)$ в интервале 150–160 К. Установлены две его структуры при 160 (I) и 150 К (II).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали безводный Na_2MoO_4 , полученный прокаливанием кристаллогидрата $Na_2MoO_4 \cdot 2H_2O$ в сушильном шкафу при 120— 140°C в течение 6 ч, а также коммерчески доступный $Me_3SiCl 98\%$ чистоты (Aldrich), подвергавшийся дополнительной осушке путем кипячения над алюминиевой пудрой в течение 5 ч с последующей перегонкой в токе сухого аргона. Безводный диметиловый эфир этиленгликоля (**Dme**) 99.5% чистоты (Merck) применяли без дополнительной осушки.

ПМР и масс-спектры записывали на спектрометрах Varian VXR-400 и Varian CH-7aMAT соответственно (США).

Таблица 1.	Кристаллографические данные и детали уточнения структур I и I	11
------------	---	----

	Значение		
Параметр	Ι	II	
Брутто-формула	C ₄ H ₁₀ O ₄ Cl ₂ Mo	$C_4H_{10}O_4Cl_2Mo$	
M	288.96	288.96	
Размер образца, мм	$0.40 \times 0.30 \times 0.20$	$0.35 \times 0.20 \times 0.10$	
Сингония	Моноклинная	Моноклинная	
Пр. гр.	<i>P</i> 2 ₁ /c	<i>P</i> 2 ₁ /c	
Температура, К	160	150	
<i>a</i> , Å	7.1866(1)	14.3460(3)	
b, Å	11.0595(1)	11.1358(2)	
<i>c</i> , Å	13.7604(3)	13.6587(2)	
β, град	117.653(1)	117.932(1)	
V, Å ³	968.75(3)	1927.84(6)	
Ζ	4	8	
ρ(выч.), г/см ³	1.981	1.991	
$\mu(MoK_{\alpha}), $ мм ⁻¹	1.874	1.883	
<i>F</i> (000)	568	1136	
Область θ, град	2.49-27.49	1.61-27.47	
Всего отражений	6871	13788	
Независимых отражений (<i>R</i> _{int})	2221 (0.0238)	4418 (0.0286)	
Число уточняемых параметров	141	280	
$R_1 (I \ge 2\sigma(I))$	0.0230	0.0259	
<i>wR</i> ₂ (все данные)	0.0609	0.0715	
GOOF	1.051	1.106	
$\Delta \rho_{\min} / \Delta \rho_{\max}, e / Å^3$	-0.507/0.574	-0.457/0.777	

Синтез MoO₂Cl₂(Dme) проводили по описанной ранее методике [13]. Выход целевого продукта 20.0 г (69%). Кристаллы, пригодные для РСА, получали перекристаллизацией из сухой смеси ацетона с 20% Dme.

Найдено, %:	C 16.63;	H 3.49;	Cl 24.54.
Для C ₄ H ₁₀ O ₄ Cl ₂ M	Мо		
вычислено, %:	C 16.40;	Н 3.34;	Cl 24.42.

Спектр ПМР (CDCl₃; δ, м.д.): 3.95 с. (4H, CH₂O–), 4.00 с. (6H, –OCH₃).

Масс-спектр (EI, 70 эВ): 200 (МН⁺-Dme), 165 (МН⁺-Dme-Cl), 90 (Dme).

РСА I и II выполнен на автоматическом дифрактометре Siemens 1K, мониторинг фазового перехода проведен на автоматическом дифрактометре Bruker SMART APEX II (оба – Германия) с использованием Мо K_{α} -излучения ($\lambda = 0.71073$ A, графитовый монохроматор) в режиме ω -сканирования. Учет поглощения введен по измерениям интенсивностей эквивалентных отражений [14]. Структуры I и II расшифрованы прямым методом и уточнены полноматричным анизотропным МНК по F^2 для всех неводородных атомов [15]. Все атомы водорода найдены из разностного синтеза Фурье и уточнены изотропно. Кристаллографические данные и результаты уточнения структур I и II приведены в табл. 1, длины связей и валентные углы — в табл. 2.

Структуры I и II депонированы в Кембриджском банке структурных данных (КБСД № 1997752 и 1997751 соответственно; deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Мы предприняли поиск в КБСД [16] полиморфных модификаций, отличающихся удвоением одного из параметров приведенной элементарной ячейки (с учетом возможных перестановок осей). Наше внимание привлекли структуры полиморфов вольфрамового комплекса WO₂Cl₂(Dme) –

КООРДИНАЦИОННАЯ ХИМИЯ том 46 № 12 2020

Срази и угла	II (150 K)		I (160 K)
Сбязи и углы	молекула 1	молекула 2	Z' = 1
Mo=O	1.688(2), 1.692(2)	1.687(2), 1.691(2)	1.686(2), 1.689(2)
Mo-Cl	2.3501(7), 2.3692(7)	2.3641(7), 2.3688(8)	2.3580(8), 2.3621(7)
Mo-O	2.297(2), 2.311(2)	2.278(2), 2.304(2)	2.2806(15), 2.303(2)
O=Mo=O	104.75(10)	104.84(12)	104.77(10)
ClMoCl	157.22(3)	158.82(3)	158.08(3)
OMoO	70.61(6)	70.71(6)	70.94(6)

Таблица 2. Избранные длины связей (Å) и углы (град) для I и II

рефкоды KUDGIZ (monoclinic I) и KUDGIZ01 (monoclinic II). Первая из этих структур была исследована при комнатной температуре [17], вторая — при 120 К [18]. Авторы [18] обратили внимание на сходство параметров решетки для обоих полиморфов, но возможность фазового перехода ими не рассматривалась. В ходе предварительных исследований мы выяснили, что работать с $WO_2Cl_2(Dme)$ весьма неудобно в силу его крайней неустойчивости к гидролизу. Было решено переключиться на молибденовый аналог, тем более что при комнатной температуре оба соединения изоструктурны [19].

Были определены кристаллические структуры комплекса MoO₂Cl₂(Dme) при 160 К (I) и при 150 К (II). Оказалось, что структуры I и II относятся к одной сингонии и обладают одной и той же пространственной группой № 14, но различаются вдвое по величине параметра ячейки а (табл. 1), объему ячейки и количеству кристаллографически независимых молекул Z' (рис. 1 и 2 соответственно). Оказалось, что между этими температурами наблюдается полностью обратимый фазовый переход, происходящий без какой-либо заметной деградации качества монокристалла. Для определения точного положения момента перехода был проведен мониторинг интенсивностей ряда запрещенных для высокотемпературной фазы рефлексов (удваивающих отражений с нечетным индексом *h* для низкотемпературной модификации, рис. 3). Как видно, переход умещается в узкий интервал менее 1 К и сопровождается резким изменением интенсивностей систематических погасаний.

Молекулы комплекса в обеих модификациях расположены в общих положениях и представляют собой искаженные октаэдры с *цис*-расположением двоесвязанных терминальных атомов кислорода О=Мо и *транс*-расположением атомов хлора. Как видно из табл. 2, геометрические параметры комплекса очень мало изменяются в ходе фазового перехода.

Данный фазовый переход приводит к значительному взаимному смещению молекул. Так, в

КООРДИНАЦИОННАЯ ХИМИЯ том 46 № 12 2020

структуре I, кратчайшие межмолекулярные расстояния Мо^{\cdots}Мо составляют 5.59 и 6.00 Å, в то время как в II эти расстояния заметно больше — 5.71 и 6.06 Å.

В структуре I наблюдается укороченный межмолекулярный контакт метиленовой группы и терминального атома кислорода O=Mo с расстоянием H···O, равным 2.50 Å, что может рассматриваться как C-H···O водородная связь средней силы [20]. При охлаждении, в структуре II данный контакт значительно ослабляется (до 2.60 Å), но зато возникает несколько укороченных контактов C-H···Cl (2.74–2.86 Å). По-видимому, данный фазовый переход происходит благодаря ослаблению одних, но одновременному усилению других слабых межмолекулярных взаимодействий C-H···X, которые в силу кооперативности являются для данного соединения структурообразующими.

Обнаружен и исследован полностью обратимый фазовый переход в структуре MoO₂Cl₂(Dme)

Рис. 1. Кристаллографически независимая молекула в структуре I. Тепловые эллипсоиды приведены с 50%-ной вероятностью.

Рис. 2. Обе кристаллографически независимых молекулы в структуре II. Тепловые эллипсоиды приведены с 50%-ной вероятностью.

с сохранением сингонии и пространственной группы кристалла и сопровождающийся удвоением параметра элементарной ячейки, протекающий без разрушения монокристалла. Показано, что переход умещается в узкий температурный интервал менее 1 К и сопровождается резким и легко визуально наблюдаемым изменением интенсивностей систематических погасаний. Это делает его весьма удобным для быстрой калибровки низкотемпературных приставок к дифрактометрам, тем более что точка перехода (156 К) расположена почти посередине температурного интервала 100–200 К в котором, по данным

Рис. 3. Зависимость интенсивностей двух запрещенных для фазы I рефлексов от температуры.

КБСД, сейчас производится съемка более чем половины монокристальных экспериментов.

Авторы заявляют об отсутствии конфликта интересов.

БЛАГОДАРНОСТИ

Авторы благодарят проф. Дж.А.К. Ховард (Даремский университет, Великобритания) за доступ к дифрактометрическому оборудованию и О.В. Доломанова (Московский государственный университет им. М.В. Ломоносова) – за плодотворную дискуссию.

ФИНАНСИРОВАНИЕ

Исследование фазового перехода выполнено в рамках государственного задания ЦКП ИОНХ РАН.

СПИСОК ЛИТЕРАТУРЫ

- Кузьмина Л.Г., Ведерников А.И., Громов С.П., Алфимов М.В. // Кристаллография. 2019. Т. 64. № 5. С. 677 (Kuz'mina L.G., Vedernikov A.I., Gromov S.P., Alfimov M.V. // Crystallogr. Rep. 2019. V. 64. № 5. P. 691). https://doi.org/10.1124/S1062774510050122
 - https://doi.org/10.1134/S1063774519050122
- Marchivie M., Guionneau P., Howard J.A.K. et al. // J. Am. Chem. Soc. 2002. V. 124. № 2. P. 194. https://doi.org/10.1021/ja016980k
- Huang S.-L., Andy-Hor T.S., Jin G.-X. // Coord. Chem. Rev. 2016. V. 346. P. 112. https://doi.org/10.1016/j.ccr.2016.06.009
- 4. Money V.A., Radosavljevic-Evans I., Halcrow M.A. et al. // Chem. Commun. 2003. P. 158. https://doi.org/10.1039/B210146G

КООРДИНАЦИОННАЯ ХИМИЯ том 46 № 12 2020

- Mikhailov A., Vuković V., Kijatkin C. et al. // Acta Crystallogr. B. 2019. V. 75. № 6. P. 1152. https://doi.org/10.1107/S205252061901357X
- Manna B., Desai A.V., Kumar N. et al. // Cryst. Eng. Commun. 2015. V. 17. № 46. P. 8796. https://doi.org/10.1039/c5ce00139k
- 7. *Yufit D.S., Chetina O.V., Howard J.A.K.* // J. Mol. Struct. 2006. V. 784. № 1–3. P. 214. https://doi.org/10.1016/j.molstruc.2005.09.007
- Spencer E.C., Angel R.J., Ross N.L. et al. // J. Am. Chem. Soc. 2009. V. 131. № 11. P. 4022. https://doi.org/10.1021/ja808531m
- Вацадзе С.З., Гаврилова Г.В., Зюзькевич Ф.С. и др. // Изв. РАН. Сер. хим. 2016. № 7. С. 1761 (Vatsadze S.Z., Gavrilova G.V., Zyuz'kevich F.S. et al. // Russ. Chem. Bull. 2016. V. 65. № 7. Р. 1761). https://doi.org/10.1007/s11172-016-1508-7
- 10. Zaitsev K.V., Lam K., Poleshchuk O.Kh. et al. // Eur. J. Inorg. Chem. 2019. № 22. P. 2750. https://doi.org/10.1002/ejic.201900316
- 11. Leech M.A., J.A.K. Howard, S. Dahaoui et al. // Chem. Commun. 1999. № 22. P. 2245. https://doi.org/10.1039/a906876g
- 12. International Tables for Crystallography. Space-Group Symmetry / Ed. Hahn Th. Dordrecht (The Netherlands): Springer, 2005. V. A. 911 p.

- 13. *Rufanov K.A., Zarubin D.N., Ustynyuk N.A. et al.* // Polyhedron. 2001. V. 20. № 5. P. 379.
- 14. *Sheldrick G.M.* SADABS. Program for Scaling and Correction of Area Detector Data. Göttingen (Germany): Univ. of Göttingen, 1997.
- Sheldrick G.M. // Acta. Crystallogr. A. 2008. V. 64. № 1. P. 112. https://doi.org/10.1107/S0108767307043930
- Groom C.R., Bruno I.J., Lightfoot M.P., Ward S.C. // Acta Crystallogr. B. 2016. V. 72. № 2. P. 171. https://doi.org/10.1107/S2052520616003954
- Dreisch K., Andersson C., Stålhandske C. // Polyhedron. 1991. V. 10. № 20–21. P. 2417. https://doi.org/10.1016/S0277-5387(00)86203-8
- Davis M.F., Levason W., Light M.E et al. // Eur. J. Inorg. Chem. 2007. № 13. P. 1903. https://doi.org/10.1002/ejic.200700043
- Kamenar B., Penavić M., Korpar-Čolig B., Marković B. // Inorg. Chim. Acta. 1982. V. 65. P. L245. https://doi.org/10.1016/S0020-1693(00)93562-X
- 20. *Steiner T.* // Crystallogr. Rev. 2003. V. 9. № 2–3. P. 177. https://doi.org/10.1080/08893110310001621772