УДК 541.49:546.41:546.42:546.881.4

КООРДИНАЦИОННЫЕ ПОЛИМЕРЫ НА ОСНОВЕ БУТИЛМАЛОНАТНЫХ ФРАГМЕНТОВ ОКСОВАНАДИЯ(IV) И КАТИОНОВ КАЛИЯ, МАГНИЯ И КАДМИЯ

© 2020 г. Е. С. Бажина^{1, *}, Г. Г. Александров¹, М. А. Кискин¹, А. А. Сидоров¹, И. Л. Еременко¹

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия

*e-mail: evgenia-VO@mail.ru Поступила в редакцию 04.09.2019 г. После доработки 18.09.2019 г. Принята к публикации 23.09.2019 г.

Представлены результаты по синтезу и исследованию кристаллической структуры соединений $\{[K_2Mg_2(VO)_3(Bumal)_6(H_2O)_{15}] \cdot 2H_2O\}_n$ (I) и $\{[Cd(VO)(Bumal)_2(H_2O)_5] \cdot H_2O\}_n$ (II), образованных анионными фрагментами $[VO(Bumal)_2(H_2O)]^{2-}$ с оксованадием(IV) и двумя хелатно координированными анионами бутилмалоновой кислоты ($H_2Bumal = C_5H_{10}(COOH)_2$). В кристаллах I (ССDС № 1911220) анионные фрагменты $[VO(Bumal)_2(H_2O)]^{2-}$ связаны между собой катионами K⁺ и Mg²⁺ в 2D полимерную структуру, в соединении II (ССDС № 1033008) – катионами Cd²⁺, формируя 1D координационный полимер.

Ключевые слова: оксованадий(IV), бутилмалоновая кислота, гетерометаллические комплексы, координационные полимеры, рентгеноструктурный анализ

DOI: 10.31857/S0132344X20020024

Анионы карбоновых кислот благодаря многообразию проявляемых ими способов координации — удобный инструмент для конструирования полиядерных комплексов переходных металлов, обладающих магнитными [1-7] и/или люминесцентными свойствами [8–14], а также проявляющих каталитическую [15, 16] и биологическую активность [17]. Мостиковые анионы дикарбоновых кислот находят широкое применение в конструировании пористых металлоорганических каркасных полимеров, способных к селективной сорбции малых молекул и ионов [18-26]. Среди представителей этого обширного класса лигандов особое место занимают замещенные малоновые кислоты (H_2R_2 mal), анионы которых за счет образования шестичленного хелатного цикла с катионами 3*d*-металлов способны формировать устойчивые моноядерные бисхелатные анионные комплексы $[M(R_2 mal)_2]^{2-}$ (M = VO²⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺), содержащие свободные для координации атомы кислорода карбоксильных групп. Такие комплексы перспективны в качестве металлсодержащих блоков для сборки сложных полиядерных структур и координационных полимеров, содержащих атомы металлов разного типа [27, 28]. Природа заместителей (R) в малонат-анионе оказывает влияние не только на растворимость продукта взаимодействия в конкретной реакционной среде, но и на его кристаллическую структуру. Кроме того, структурообразующую роль в малонатных системах играют также и катионы щелочных (М') и щелочноземельных металлов (М"), вводимые в реакцию в виде соли замещенной малоновой кислоты. Радиус этих катионов в сочетании с размером заместителя малонатного лиганда в большинстве случаев определяет размерформирующихся полимерных структур ность $[M_2^{"}M(R_2mal)_2]_n$ и $[M^{"}M(R_2mal)_2]_n$ (M = катион 3*d*-металла) [29]. Несомненным преимушеством таких соединений является возможность замешения катионов щелочных и щелочноземельных металлов двухзарядными катионами магния и различных *d*-металлов, что приводит к формированию новых гетерометаллических соединений иных состава и строения. Например, ранее было продемонстрировано, как взаимодействие водных растворов соединений {[Ba(VO)(Me₂mal)₂- (H_2O)] · H_2O }_n и {[Ba₃(VO)₃(Bumal)₆(H₂O)₁₃] · 4H₂O}_n с сульфатом марганца(II) привело к полному замещению катионов бария(II) катионами марганца(II) и формированию 1D-полимеров {[Mn(VO)- $(R_2 mal)_2 (H_2 O)_5] \cdot H_2 O_n (R_2 = Me_2$ или Bu соответственно) [30]. В случае гетерометаллических комплексов К-М возможно как полное, так и частичное замещение катионов калия. На примере реакций $[K_4(VO)_2(Cbdc)_4(H_2O)_4]_n$ с нитратом магния, комплекса $[K_8Cu_4(Me_2mal)_8(H_2O)_8]_n$ с нитратами

магния, никеля(II) или кобальта(II) продемонстрировано частичное замещение катионов калия катионами соответствующих металлов [31, 32], а взаимодействие [K₈Cu₄(Me₂mal)₈(H₂O)₈]_n с нитратом кадмия привело к продукту полного замещения катионов калия кадмием [33].

В настоящей работе исследованы возможности замещения катионов K⁺ катионами Mg²⁺ и d-металлов (Mn²⁺, Cd²⁺) в реакции взаимодействия сульфата ванадила и калиевой соли бутилмалоновой кислоты в соотношении 1 : 2. Выделены в виде монокристаллов и исследованы методом РСА два новых соединения оксованадия(IV): продукт частичного замещения катионов калия магнием, 2D-полимер {[K₂Mg₂(VO)₃(Bumal)₆- $(H_2O)_{15}$] · 2H₂O}_n (I), имеющий иные состав и строение, чем ранее описанный комплекс $\{[KMg_{0.5}(VO)(Cbdc)_2(H_2O)_{5.5}] \cdot 2.5H_2O\}_n$ c анионами циклобутан-1,1-дикарбоновой кислоты [31], и продукт полного замещения катионов калия кадмием, 1D-полимер $\{[Cd(VO)(Bumal)_2(H_2O)_5]\}$ $H_2O_{l_n}$ (II), схожий по строению с ранее описанным комплексом $\{[Mn(VO)(Bumal)_2(H_2O)_5]\}$ $H_2O_{n}[30].$

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез новых комплексов выполняли на воздухе с использованием дистиллированной воды, этанола (95%), VOSO₄ · 3H₂O (99+%), KOH (99+%), $Mg(NO_3)_2 \cdot 6H_2O$ (98+%), $Mn(NO_3)_2 \cdot xH_2O$ (98%, Sigma Aldrich), Cd(NO₃)₂ · 4H₂O (99+%, Acros Organics), H₂Bumal (99%, Sigma-Aldrich). ИК-спектры соединений регистрировали в интервале частот 4000-400 см⁻¹ на ИК-спектрофотометре с Фурье-преобразованием Spectrum 65 (Perkin-Elmer), оборудованном приставкой Quest ATR Accessory (Specac). Элементный анализ выполняли на CHNS-анализаторе **EuroEA** 3000 (EuroVector).

Синтез {[K₂Mg₂(VO)₃(Bumal)₆(H₂O)₁₅] · 2H₂O}_n (I). К раствору VOSO₄ · 3H₂O (0.15 г, 0.69 ммоль) в 10 мл дистиллированной воды добавляли раствор K₂Bumal, полученный нейтрализацией H₂Bumal (0.221 г, 1.38 ммоль) и КОН (0.154 г, 2.76 ммоль) в 15 мл воды. Реакционную смесь перемешивали 10 мин при 40°С. К полученному раствору синего цвета добавляли Mg(NO₃)₂ · 6H₂O (0.354 г, 1.38 ммоль) и перемешивали еще 10 мин. Полученный раствор выдерживали при 22°С. Образовавшиеся через 2 мес. кристаллы синего цвета, пригодные для PCA, отделяли от маточного раствора фильтрованием, промывали холодной водой ($T \approx 5$ °С), этанолом ($T \approx 22$ °С) и сушили на воздухе. Выход соединения I 0.211 г (57.9% в расчете на $VOSO_4 \cdot 3H_2O$).

Найдено, %:	C 32.51;	Н 5.75.
Для C ₄₂ H ₉₄ O ₄₄ Mg ₂ K	V_2V_3	
вычислено, %:	C 31.87;	Н 5.99.

ИК-спектр (НПВО; v, см⁻¹): 3184 о. сл v(O–H), 2958 сл v(C–H), 2935 сл v(C–H), 2873 сл v(C–H), 1638 с v_{as} (СОО⁻), 1583 с v_{as} (СОО⁻), 1400 с v_{s} (СОО⁻), 1348 с, 1326 с, 1304 ср, 1272 ср, 1245 сл, 1199 ср, 1116 сл, 1103 с, 1006 с v(V=O), 952 с, 892 с, 808 с δ (ОСО), 774 с, 745 с, 700 о.с, 613 с, 526 с, 496 с, 454 с [34, 35].

Синтез { $[Cd(VO)(Bumal)_2(H_2O)_5] \cdot H_2O$ }, (II). К раствору VOSO₄ · 3H₂O (0.1 г, 0.46 ммоль) в 10 мл листиллированной волы добавляли раствор K₂Bumal, полученный нейтрализацией H₂Bumal (0.148 г, 0.92 ммоль) и КОН (0.103 г, 1.84 ммоль) в 15 мл воды. Реакционную смесь перемешивали 10 мин при 40°С. К полученному раствору синего цвета добавляли Cd(NO₃)₂ · 4H₂O (0.284 г, 0.92 ммоль) и перемешивали еще 10 мин. Образовавшийся кристаллический осадок голубого цвета отделяли фильтрованием, промывали водой $(T \approx 22^{\circ} \text{C})$ и сушили на воздухе. Кристаллы, пригодные для РСА, получали медленным испарением маточного раствора при 22°С в течение 7 сут. Кристаллы отделяли от маточного раствора фильтрованием, промывали водой ($T \approx 22^{\circ}$ C) и сушили на воздухе. Выход соединения II 0.124 г (44.5% в расчете на VOSO₄ · 3H₂O).

Найдено, %:	C 27.96;	Н 5.53.
Для C ₁₄ H ₃₂ O ₁₅ CdV		
вычислено, %:	C 27.85;	Н 5.45.

ИК-спектр (НПВО; v, см⁻¹): 3652 о. сл, 3497 сл. ш v(O–H), 3371 сл. ш v(O–H), 3222 сл. ш v(O–H), 2960 сл v(C–H), 2930 сл v(C–H), 2870 о. сл v(C–H), 1549 с v_{as} (СОО⁻), 1418 с v_s (СОО⁻), 1354 ср, 1341 ср, 1313 ср, 1290 ср, 1232 сл, 1202 сл, 1190 сл, 1139 о. сл, 1103 сл, 1071 о. сл, 987 с v(V=O), 963 ср, 912 сл, 865 о.сл, 807 ср δ (ОСО), 772 ср, 715 с, 669 ср, 511 с, 486 с, 456 с, 440 с, 428 с, 420 с [34, 35].

РСА монокристаллов I и II выполнен на дифрактометре Bruker SMART APEX II, оборудованном CCD-детектором (Мо K_{α} , $\lambda = 0.71073$ Å, графитовый монохроматор) [36]. Введена полуэмпирическая поправка на поглощение [37]. Структуры расшифрованы прямыми методами и уточнены полноматричным МНК в анизотропном приближении для всех неводородных атомов. Атомы водорода генерированы геометрически и уточнены в модели "наездника". Расчеты проведены по комплексу программ SHELX-97 и SHELX-2014 [38]. Кристаллографические пара-

КООРДИНАЦИОННЫЕ ПОЛИМЕРЫ

Параметр	Значение			
параметр	Ι	Π		
М	1582.81	602.73		
Т, К	153(2)	170(2)		
Сингония	Триклинная	Триклинная		
Пр. гр.	PĪ	PĪ		
<i>a</i> , Å	11.7871(7)	9.9366(14)		
b, Å	18.3252(11)	10.6972(16)		
<i>c</i> , Å	18.5491(11)	11.8978(17)		
α, град	65.6160(10)	83.797(2)		
β, град	74.3830(10)	65.603(2)		
ү, грал	82.7430(10)	83.475(2)		
<i>V</i> , Å ³	3514.0(4)	1141.7(3)		
Ζ	2	2		
ρ(выч.), г см ⁻³	1.496	1.753		
μ, мм ⁻³	0.626	1.410		
$\theta_{min} - \theta_{max}$, град	2.19-29.47	2.62-26.05		
<i>F</i> (000)	1658	612		
T_{\min}/T_{\max}	0.6342/0.7459	0.5852/0.7456		
Интервалы индексов отражений	$-16 \le h \le 16,$ $-25 \le k \le 2,$ $-25 \le l \le 25$	$-12 \le h \le 12,$ $-13 \le k \le 13,$ $-15 \le l \le 15$		
Измерено отражений	39607	11117		
Независимых отражений	19418	5164		
<i>R</i> _{int}	0.033	0.031		
Отражений с <i>I</i> > 2σ(<i>I</i>)	15841	4189		
GOOF	1.016	0.982		
R -факторы по $F^2 > 2\sigma(F^2)$	$R_1 = 0.0908, wR_2 = 0.2507$	$R_1 = 0.0434, wR_2 = 0.1264$		
<i>R</i> -факторы по всем отражениям	$R_1 = 0.1061, wR_2 = 0.2666$	$R_1 = 0.0556, wR_2 = 0.1377$		
Остаточная электронная плотность (min/max), <i>e</i> /Å ³	-3.039/3.317	-0.826/1.568		

Таблица 1. Кристаллографические данные и параметры расчетов структуры кристаллов I и II

T

метры и детали уточнения структур I, II приведены в табл. 1.

Структурные данные соединений I и II депонированы в Кембриджском банке структурных данных (ССDС № 1911220, 1033008 соответственно); deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk/ data_request/cif).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Взаимодействием $VOSO_4 \cdot 3H_2O$, K_2Bumal и $Mg(NO_3)_2 \cdot 6H_2O$ в мольном соотношении

VOSO₄ · 3H₂O + 2K₂Bumal $\xrightarrow{+ Mg(NO_3)_2 \cdot 6H_2O}$ + Mn(NO₃)₂ · xH₂O + Cd(NO₃)₂ · 4H₂O

1:2:2 получен 2D-координационный полимер { $[K_2Mg_2(VO)_3(Bumal)_6(H_2O)_{15}] \cdot 2H_2O$ }_n (I). Аналогичная реакция с использованием Cd(NO₃)₂ · 4H₂O и Mn(NO₃)₂ · xH₂O вместо Mg(NO₃)₂ · 6H₂O, взятых в том же количестве, приводит к образованию 1D-полимеров { $[Cd(VO)(Bumal)_2(H_2O)_5] \cdot H_2O$ }_n (II) и { $[Mn(VO)(Bumal)_2(H_2O)_5] \cdot H_2O$ }_n (получен ранее по другой методике, см. [30]), которые имеют одинаковое строение и не содержат катионов калия (схема 1).

	${[K_2Mg_2(VO)_3(Bumal)_6(H_2O)_{15}] \cdot 2H_2O}_n$	(I)
0	$\{[Mn(VO)(Bumal)_2(H_2O)_5] \cdot H_2O\}_n$	
0	$\{[Cd(VO)(Bumal)_2(H_2O)_5] \cdot H_2O\}_n$	(II)

Схема 1.

Базовый структурный фрагмент I (рис. 1) обтремя бисхелатными дианионами разован $[VO(Bumal)_2(H_2O)]^{2-}$, содержащими кристаллографически неэквивалентные атомы ванадия (V(1), V(2), V(3)), двумя атомами магния (Mg(1), Mg(2)), двумя атомами калия (K(1), K(2)) и пятнадцатью молекулами воды, координированными к атомам металлов. Схожее строение элементарного звена (наличие трех бисхелатных дианионов с неэквивалентными атомами ванадия) мы наблюдали ранее в структурах соединений Ba-V [30], Sr-V [39] и Na-V [40] с анионами Bumal²⁻. Атомы ванадия в составе дианионов $[VO(Bumal)_2(H_2O)]^{2-}$ находятся в искаженно октаэдрическом координационном окружении шести атомов О. Экваториальную плоскость полиэдра занимают атомы О карбоксильных групп двух хелатно координированных бутилмалонат-анионов, в аксиальных позициях находятся атом О ванадильной группы и атом О молекулы воды. Длины связей и углы, характеризующие координационные полиэдры ванадия, находятся в интервалах, наблюдаемых для других известных замещенных малонатов оксованадия(IV) (табл. 2) [30, 31, 39-45]. В пределах одного элементарного звена металлофрагменты [V(3)O(Bumal)₂(H₂O)]²⁻ и [V(2)O(Bumal)₂(H₂O)]²⁻ за счет координации карбоксильных групп анионов бутилмалоновой кислоты связывают атомы магния Mg(1) и Mg(2) соответственно, а атом K(1)соединяет атом Mg(1) с бисхелатными дианионами [V(1)O(Bumal)₂-(H₂O)]²⁻ и [V(2)O(Bumal)₂(H_2O)]²⁻ за счет координации двух мостиковых молекул воды и четырех атомов О карбоксильных групп ванадийсодержащих фрагментов. Aтомы Mg(2), K(1) и K(2) также координируют по одному атому карбоксильных групп металлофрагментов [V(1)O(Bumal)₂- (H₂O)]²⁻, [V(2)O(Bumal)₂(H₂O)]²⁻ μ [V(3)O(Burnal)₂-(H₂O)]²⁻ cootBetственно, принадлежащих соседним звеньям, связывая элементарные структурные фрагменты в слоистую полимерную структуру (рис. 2), которая дополнительно стабилизируется за счет водородных связей (табл. 3). Расстояния между атомами ванадия V(1)…V(2), V(2)…V(3), V(3)…V(1) в элементарном структурном фрагменте равны 7.882, 7.652, 11.583 Å соответственно. Атом Mg(1) помимо одного карбоксилатного атома О дианиона $[V(3)O(Bumal)_2(H_2O)]^{2-}$ координирует пять молекул воды, находясь в октаэдрическом координационном окружении. Две молекулы воды (O(9w) и O(10w)) мостиковые и связывают атом Mg(1) с атомом К(1), а три – координированы монодентатно (O(1w), O(3w), O(11w)). Октаэдрическое окружение атома Mg(2) образовано двумя карбоксилатными атомами О металлофрагментов $[V(1)O(Bumal)_2(H_2O)]^{2-}$, $[V(2)O(Bumal)_2-(H_2O)]^{2-}$, принадлежащих соседним структурным звеньям, и четырьмя молекулами воды, одна из которых мостиковая (O(15w)) и связывает атом Mg(2) с атомом K(2), а три – координированы монодентатно (O(13w), O(14w), O(16w)). Значения основных углов в полиэдрах Мд приведены в табл. 2. Атом К(2) дополнительно монодентатно координирует три молекулы воды (O(4w), O(6w)) и O(7w)).

Несмотря на подобие методик синтеза ранее полученного 1D-полимера { $[KMg_{0.5}(VO)(Cbdc)_2-(H_2O)_{5.5}] \cdot 2.5H_2O$ }, и нового 2D-полимера { $[K_2Mg_2(VO)_3(Bumal)_6(H_2O)_{15}] \cdot 2H_2O$ }, (I), их состав и строение абсолютно разные, что может определяться как природой карбоксилатного аниона (стерическим эффектом заместителя в малонатном лиганде), так и соотношением металлов, входящих в структуру. Так, соотношение

Рис. 1. Базовый фрагмент 2D-полимерной структуры I. Бутильные заместители анионов кислоты и атомы водорода не показаны.

Рис. 2. Строение полимерного слоя соединения І. Синие линии соединяют атомы V(1), V(2) и V(3) элементарных звеньев. Бутильные заместители и атомы водорода не показаны.

К : Mg : V в элементарном фрагменте соединения с анионами Cbdc^{2–} равно 1 : 0.5 : 1, в соединении I – 2 : 2 : 3. Таким образом, содержание Mg в элементарном звене I в четыре, а V – в три раза больше по сравнению с циклобутан-1,1-дикарбоксилатом, что, несмотря на наличие в малонат-анионе объемного бутильного заместителя, по-видимому, поспособствовало формированию структуры более высокой размерности.

Полимерные цепочки соединения II образованы фрагментами $VO(Bumal)_2(H_2O)$, близкими

БАЖИНА и др.

Связь	<i>d</i> , Å		
	I(M = Mg)	II (M = Cd)	
V=O	1.586(3), 1.593(3), 1.595(3)	1.580(3)	
V–O (Bumal)	1.987(3)-2.023(3)	1.986(2)-2.003(3)	
V–O (H ₂ O)	2.321(3), 2.326(3), 2.363(3)	2.316(3)	
M–O (Bumal)	2.060(3), 2.079(3), 2.085(3)	2.323(2), 2.327(3)	
М–О (H ₂ O)	2.034(3)-2.095(3)	2.238(3)-2.303(3)	
K–O (Bumal)	2.698(3)-3.024(3)		
K–O (H ₂ O)	2.761(3) -3.100(3)		

Таблица 2. Основные длины связей (d, Å) и валентные углы (ω , град), характеризующие координационные полиэдры ванадия ($K\Pi_V$), магния и кадмия ($K\Pi_{Me, Cd}$) в соединениях I и II

$K\Pi_V$

Vron	ω, град		
5101	I (M = V)	II ($M = V$)	
O _{okco} VO _{экв}	98.42(15)-102.14(16)	99.20(13)-102.47(13)	
O _{okco} VO _{akc}	176.48(15), 177.89(15), 179.17(15)	175.68(14)	
О _{экв} VО _{экв} (смежные)	86.64(12)-91.24(12)	84.74(10)-89.32(10)	
О _{экв} VO _{акс}	77.51(11)-81.86(12)	75.87(11)-82.19(11)	

КП_{Mg, Cd}

Vron	ω, град		
5101	I(M = Mg)	II $(M = Cd)$	
О _{акс} МО _{экв}	83.69(12), 86.79(13)-96.12(14)	80.64(10), 85.68(11)-94.32(11), 99.36(10)	
$O_{_{3KB}}MO_{_{3KB}}$ (смежные)	82.32(12), 86.88(15)-96.96(13)	80.49(10), 87.18(12), 92.82(12), 99.51(10)	
O _{akc} MO _{akc}	170.48(14), 177.27(15)	180	

по строению бисхелатным блокам соединения I (рис. 3, табл. 2), причем все атомы ванадия в структуре кристаллографически эквивалентны. Металлофрагменты {VO(Bumal)₂(H₂O)} связаны в полимерные цепочки атомами кадмия, каждый из которых координирует по два карбоксилатных атома О лиганда соседних бисхелатных ванадийсодержащих фрагментов. В отличие от ранее полученного соединения { $[Cd(VO)(Cbdc)_2(H_2O)_5] \cdot H_2O$ } [44], в котором анионы дикарбоновой кислоты фрагмента {VO(Cbdc)₂(H₂O)} проявляют разный тип координации (µ₃, к²-хелатно-мостиковый и κ^2 -хелатный), в II оба аниона кислоты фрагмента ${VO(Bumal)₂(H₂O)}$ демонстрируют μ,κ²-тип координации. Межатомные расстояния V(1)…Cd(1) и V(1)…Cd(2) в полимерной цепи неодинаковы и равны 5.155 и 5.089 Å соответственно, а расстояния между соседними атомами кадмия одинаковы и равны 9.235 Å, что на ~1.34 Å больше, чем в соединении {[Cd(VO)(Cbdc)₂(H₂O)₅] · H₂O}_n. Кроме того, в отличие от циклобутан-1,1-дикарбоксилата V-Cd, в II на ~2.4 Å увеличиваются расстояния V…V, которые неодинаковы (10.178 и 10.311 Å). Кристаллическая структура II дополнительно стабилизируется за счет водородных связей, в образовании которых принимают участие сольватные и координированные молекулы воды и атомы О карбоксильных групп (табл. 4). В структуре II существуют два типа кристаллографически неэквивалентных атомов кадмия, Cd(1) и Cd(2), имеющие отличающиеся характеристики октаэдрических координационных полиэдров. Экваториальную плоскость полиэдра Cd(1) образуют четыре атома О монодентано координированных молекул воды

координационные полимеры

D. HA	Расстояние, Å			Veee D. H. A. erroe
	D-H	Н…А	D…A	утол D-н МА, град
$O(3w) - H(3wa) \cdots O(8)^{(i)}$	0.83	1.88	2.706	176
O(5w)–H(5wb)····(O1) ⁽ⁱⁱ⁾	0.83	2.26	3.069	168
$O(5w) - H(5wa) \cdots O(4w)^{(iii)}$	0.83	2.05	2.815	153
$O(16w) - H(16c) - O(10)^{(iv)}$	0.83	1.94	2.749	164
O(11w)-H(11c)····O(28) ^(iv)	0.83	2.01	2.826	171
$O(2w) - H(2wa) \cdots O(8)^{(v)}$	0.83	1.94	2.702	152
$O(1w) - H(1wa) \cdots O(29)^{(vi)}$	0.83	2.18	2.859	140
$O(12w) - H(12c) - O(20)^{(ii)}$	0.83	1.98	2.771	159
O(11w)–H(11d)…O(13)	0.83	2.06	2.886	179
O(16w)-H(16d)…O(20) ⁽ⁱⁱ⁾	0.83	1.96	2.782	176
$O(2w) - H(2wb) \cdots O(4)^{(i)}$	0.83	1.98	2.795	168
$O(4w) - H(4wa) \cdots O(4)^{(i)}$	0.83	1.99	2.820	174
$O(3w)-H(5wb)\cdots O(7w)$	0.83	1.89	2.712	169
O(22w)–H(22d)····O(28) ^(vii)	0.83	2.29	3.093	163
O(15w)-H(15d)O(8w)	0.83	1.82	2.639	169
$O(1w) - H(1wb) \cdots O(25)^{(vi)}$	0.83	1.94	2.730	158
$O(10w) - H(10d) \cdots O(2w)^{(iv)}$	0.83	2.10	2.902	162
O(9w)–H(9wb)…O(17)	0.83	1.93	2.760	177
$O(8w) - H(8wa) - O(7)^{(i)}$	0.83	2.06	2.819	152
$O(8w) - H(8wb) \cdots O(3)^{(i)}$	0.83	2.19	2.853	137
$O(14w) - H(14e) - O(14)^{(viii)}$	0.83	1.84	2.654	167
$O(13w) - H(13c) - O(15)^{(ii)}$	0.83	2.40	2.850	115
$O(13w) - H(13d) \cdots O(18)^{(ii)}$	0.83	1.97	2.778	164
O(14w)-H(14d)…O(27)	0.83	2.39	3.059	138

Таблица 3. Геометрические параметры водородных связей в структуре I*

* Коды симметрии: ⁱ -x + 2, -y + 2, -z; ⁱⁱ -x + 1, -y + 2, -z + 1; ⁱⁱⁱ x - 1, y, z + 1; ^{iv} x - 1, y, z; ^v -x + 3, -y + 2, -z; ^{vi} -x + 1, -y + 3, -z; ^{viii} x + 1, y, z.

Таблица 4. Геометрические параметры водородных связей в структуре II*

D HA	Расстояние, Å			VEOR D. HA. FROM
D-II A	D-H	H…A	D…A	утол D=11 А, град
$O(1w)-H(1w1)\cdots O(3)^i$	0.83	1.84	2.659	169
$O(1w) - H(2w1) \cdots O(9)^{ii}$	0.83	1.92	2.688	155
$O(2w)-H(1w2)\cdots O(1w)$	0.83	2.10	2.893	160
$O(2w)-H(2w2)\cdots O(7)^{iii}$	0.83	2.05	2.838	159
$O(3w)-H(1w3)\cdots O(2)^{iv}$	0.83	2.16	2.975	164
$O(3w) - H(2w3) \cdots O(5)^{v}$	0.83	2.02	2.835	165
$O(4w) - H(1w4) \cdots O(9)^{ii}$	0.83	1.87	2.701	176
O(4w)-H(2w4)…O(6w)	0.83	2.19	2.836	134
$O(5w) - H(1w5) - O(6w)^{ii}$	0.83	1.98	2.768	160
$O(5w) - H(2w5) - O(3)^{vi}$	0.83	1.89	2.711	170
O(6w)-H(1w6)…O(8) ⁱⁱ	0.83	2.22	2.924	142
$O(6w) - H(1w6) \cdots O(2w)^{ii}$	0.83	2.63	3.138	121

* Коды симметрии: ⁱ -x + 1, -y, -z + 1; ⁱⁱ -x + 1, -y, -z; ⁱⁱⁱ -x + 2, -y, -z; ^{iv} x + 1, y, z - 1; ^v x - 1, y, z.

Рис. 3. Строение полимерной цепочки комплекса II. Бутильные заместители анионов кислоты и атомы водорода не показаны.

Рис. 4. Сравнение строения полимерных цепочек соединения $\{[Mn(VO)(Bumal)_2(H_2O)_5] \cdot H_2O\}_n$ (а) и II (б). Бутильные заместители анионов кислоты и атомы водорода не показаны.

(два O(3w) и два O(4w)), аксиальные позиции занимают атомы O(7) карбоксильных групп бутилмалонат-анионов бисхелатных фрагментов $\{VO(Bumal)_2-(H_2O)\}$. В полиэдре Cd(2) карбоксилатные атомы O(5) бисхелатных фрагментов $\{VO(Bumal)_2(H_2O)\}$ лежат в экваториальной плоскости вместе с двумя атомами O монодентано связанных молекул воды (два O(2w)), еще два атома O молекул воды (O(5w)) находятся в аксиальных позициях. Значения основных углов в полиэдрах Cd приведены в табл. 2.

При рассмотрении упаковки полимерных цепей в кристалле расстояния между атомами Cd соседних цепей оказываются меньше, чем расстояния Cd···Cd одной цепи, на 3.29 Å (5.949 Å), а соответствующие межатомные расстояния V···V – меньше на 2.9 Å (7.403 и 7.436 Å). Строение и упаковка полимерных цепей в кристалле II аналогичны строению и упаковке цепей в структуре его марганецсодержащего аналога { $[Mn(VO)(Bumal)_2(H_2O)_5] \cdot H_2O\}_n$, полученного замещением катионов бария(II) (см. [30]) (рис. 4). Это свидетельствует об отсутствии влияния радиуса катиона *d*-металла на строение гетерометаллического соединения, образованного бисхелатными ванадильными фрагментами, как это наблюдалось для соединений с анионами циклобутан-1,1-дикарбоновой кислоты (см. [44]).

Таким образом, показано, что в системах с оксованадием(IV), подобно малонатам меди(II) [28], происходит лишь частичное замешение катионов калия магнием, независимо от природы заместителя в малонат-анионе. При этом комплекс { $[K_2Mg_2(VO)_3(Bumal)_6(H_2O)_{15}] \cdot 2H_2O$ }, (I) с анионами бутилмалоновой кислоты. содержашими объемный заместитель. имеет большую размерность (2D), чем соответствующее соединение с анионами циклобутан-1,1-дикарбоновой кислоты { $[KMg_{0.5}(VO)(Cbdc)_{2}(H_{2}O)_{5.5}] \cdot 2.5H_{2}O_{ln}$, имеющее 1D полимерную структуру. По-видимому, такой эффект можно объяснить наличием в элементарном фрагменте соединения I большего количества металлоцентров, способных связывать бисхелатные ванадийсодержащие фрагменты между собой. В то же время полное замещение катионов калия происходит при взаимодействии с марганцем и кадмием несмотря на существенную разницу их ионных радиусов. Формирующиеся 1D полимерные комплексы с общей формулой { $[M(VO)(Bumal)_2(H_2O)_5] \cdot H_2O$ }, (M = Mn, Cd) имеют одинаковое строение.

Авторы заявляют об отсутствии конфликта интересов.

БЛАГОДАРНОСТИ

СНNS-анализ, ИК-спектроскопия и РСА выполнены с использованием оборудования ЦКП ФМИ ИОНХ РАН, функционирующего при поддержке государственного задания ИОНХ РАН в области фундаментальных научных исследований.

ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке Российского научного фонда (проект 19-73-10181).

СПИСОК ЛИТЕРАТУРЫ

- 1. Papatriantafyllopoulou C., Wernsdorfer W., Abboud K.A., Christou G. // Inorg. Chem. 2011. V. 50. P. 421.
- Langley S.K., Wielechowski D.P., Vieru V. et al. // Angew. Chem. Int. Ed. 2013. V. 52. P. 12014.
- Zhao F.-H., Li H., Che Y.-X. et al. // Inorg. Chem. 2014. V. 53. P. 9785.

- Pineda E.M., Chilton N.F., Tuna F. et al. // Inorg. Chem. 2015. V. 54. P. 5930.
- Kiskin M., Zorina-Tikhonova E., Kolotilov S. et al. // Eur. J. Inorg. Chem. 2018. P. 1356.
- Fan S., Xu S., Zheng X. et al. // CrystEngComm. 2018. V. 20. P. 2120.
- Botezat O., van Leusen J., Kögerler P., Baca S.G. // Eur. J. Inorg. Chem. 2019. P. 2236.
- Yin M., Lei X., Li M. et al. // J. Phys. Chem. Solids. 2006. V. 67. P. 1372.
- Bo Q.-B., Wang H.-Y., Wang D.-Q. et al. // Inorg. Chem. 2011. V. 50. P. 10163.
- 10. Goldberg A., Kiskin M., Shalygina O. et al. // Chem. Asian J. 2016. V. 11. P. 604.
- 11. Кискин М.А., Доброхотова Ж.В., Богомяков А.С. и др. // Изв. АН. Сер. хим. 2016. № 6. С. 1488.
- Zheng S.-R., Tan J.-B., Cai S.-L. et al. // CrystEng-Comm. 2016. V. 18. P. 8672.
- Kiraev S.R., Nikolaevskii S.A., Kiskin M.A. et al. // Inorg. Chim. Acta. 2018. V. 477. P. 15.
- Hou S., Tang X.-Y., Li Y. et al. // J. Mol. Struct. 2018. V. 1167. P. 239.
- Nesterov D.S., Nesterova O.V., Pombeiro A.J.L. // Coord. Chem. Rev. 2018. V. 355. P. 199.
- Wei L.-Q., Ye B.-H. // Inorg. Chem. 2019. V. 58. P. 4385.
- 17. *Kuhn P.-S., Cremer L., Gavriluta A. et al.* // Chem. Eur. J. 2015. V. 21. P. 13703.
- Shi F.-N., Pinto M.L., Ananias D., Rocha J. // Micropor. Mesopor. Mat. 2014. V. 188. P. 172.
- 19. *Ding Y.-J., Li T., Hong X.-J. et al.* // CrystEngComm. 2015. V. 17. P. 3945.
- 20. Sapianik A.A., Zorina-Tikhonova E.N., Kiskin M.A. et al. // Inorg. Chem. 2017. V. 56. P. 1599.
- 21. *Zou J., Li L., You S. et al.* // Dalton Trans. 2017. V. 46. P. 16432.
- Feng X., Feng Y., Guo N. et al. // Inorg. Chem. 2017. V. 56. P. 1713.
- 23. Sapchenko S.A., Demakov P.A., Samsonenko D.G. et al. // Chem. Eur. J. 2017. V. 23. P. 2286.
- 24. *Zhao S., Hao X.-M., Liu J.-L. et al.* // J. Solid State Chem. 2017. V. 255. P. 76.
- 25. *Litvinova Yu.M., Gayfulin Y.M., Kovalenko K.A. et al.* // Inorg. Chem. 2018. V. 57. P. 2072.
- 26. Bolotov V.A., Kovalenko K.A., Samsonenko D.G. et al. // Inorg. Chem. 2018. V. 57. P. 5074.
- 27. Dobrokhotova Zh.V., Gogoleva N.V., Zorina-Tikhonova E.N. et al. // Eur. J. Inorg. Chem. 2015. P. 3116.
- Gogoleva N.V., Zorina-Tikhonova E.N., Bogomyakov A.S. et al. // Eur. J. Inorg. Chem. 2017. P. 547.
- Бажина Е.С., Гоголева Н.В., Зорина-Тихонова Е.Н. и др. // Журн. структур. химии. 2019. Т. 6. № 6. С. 893.
- Bazhina E.S., Aleksandrov G.G., Bogomyakov A.S. et al. // Polyhedron. 2014. V. 77. P. 47.

- Бажина Е.С., Александров Г.Г., Кискин М.А. и др. // Коорд. химия. 2017. Т. 43. № 11. С. 641. https://doi.org/10.7868/S0132344X17110019
- 32. Gogoleva N.V., Zorina-Tikhonova E.N., Bogomyakov A.S. et al. // Eur. J. Inorg. Chem. 2017. P. 547.
- 33. Заузолкова Н.В., Зорина Е.Н., Сидоров А.А. и др. // Изв. АН. Сер. хим. 2012. № 7. С. 1404.
- Накамото К. Инфракрасные спектры неорганических и координационных соединений. М.: Мир, 1966. 411 с.
- Беллами Л. Инфракрасные спектры сложных молекул. М.: Изд-во ИЛ, 1963. 590 с.
- SMART (control) and SAINT (integration) Software. Version 5.0. Madison (WI, USA): Bruker AXS, Inc., 1997.
- Sheldrik G.M. SADABS. Program for Scanning and Correction of Area Detector Data. Göttingen (Germany): Univ. of Göttingen, 2004.

- Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112.
- 39. Бажина Е.С., Александров Г.Г., Сидоров А.А., Еременко И.Л. // Коорд. химия. 2015. Т. 41. № 11. С. 657. https://doi.org/10.7868/S0132344X15110018
- 40. Бажина Е.С., Александров Г.Г., Кискин М.А. и др. // Изв. АН. Сер. хим. 2014. № 7. С. 1475.
- 41. Бажина Е.С., Никифорова М.Е., Александров Г.Г. и др. // Изв. АН. Сер. хим. 2011. № 5. С. 779.
- 42. Бажина Е.С., Александров Г.Г., Ефимов Н.Н. и др. // Изв. АН. Сер. хим. 2013. № 4. С. 962.
- 43. Бажина Е.С., Александров Г.Г., Кискин М.А. и др. // Изв. АН. Сер. хим. 2016. № 1. С. 249.
- 44. Bazhina E.S., Gogoleva N.V., Aleksandrov G.G. et al. // Chem. Select. 2018. P. 13765.
- 45. Bazhina E.S., Aleksandrov G.G., Kiskin M.A. et al. // Eur. J. Inorg. Chem. 2018. P. 5075.