УДК 546.723:546.732+547.435.421

# СИНТЕЗ, КРИСТАЛЛИЧЕСКОЕ СТРОЕНИЕ И ТЕРМИЧЕСКИЕ СВОЙСТВА ПРОТОННЫХ МЕТАЛЛСОДЕРЖАЩИХ ИОННЫХ ЖИДКОСТЕЙ, ГАЛОГЕНМЕТАЛЛАТОВ ДИЭТАНОЛАММОНИЯ: (HOCH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>NH<sub>2</sub>FeCl<sub>4</sub>, ((HOCH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>NH<sub>2</sub>)<sub>2</sub>CoCl<sub>4</sub>

© 2020 г. М. А. Захаров<sup>1, \*</sup>, Ю. В. Филатова<sup>1</sup>, М. А. Быков<sup>1</sup>, Н. В. Авраменко<sup>1</sup>, Л. А. Асланов<sup>1</sup>

<sup>1</sup>Московский государственный университет им. М.В. Ломоносова, Москва, Россия

\*e-mail: max@struct.chem.msu.ru Поступила в редакцию 15.10.2019 г. После доработки 05.11.2019 г. Принята к публикации 15.11.2019 г.

Синтезированы протонные металлсодержащие ионные жидкости с катионом диэтаноламмония  $(HO-CH_2-CH_2)_2NH_2^+$  (DEAH<sup>+</sup>) и анионами  $FeCl_4^-$ ,  $CoCl_4^{2-}$  (DEAHFeCl<sub>4</sub> (I), (DEAH)<sub>2</sub>CoCl<sub>4</sub> (II)). Методом РСА определено их кристаллическое строение (CIF files CCDC № 1957208 (I) и 1957189 (II)). Соединение I имеет слоистое строение. Слой состоит из катионов DEAH<sup>+</sup> с разупорядоченной системой водородных связей и присоединенных анионов  $FeCl_4^-$ . Структура II представляет собой трехмерный каркас, состоящий из катионов DEAH<sup>+</sup> и анионов  $CoCl_4^{2-}$ , соединенных водородными связями. Термический анализ показал, что температуры плавления I (45°C) и II (55°C) ниже 100°C, энтальпия плавления I выше, чем энтальпия плавления II, а температура разложения II (210°C) выше, чем у I (128°C).

*Ключевые слова:* металлсодержащие ионные жидкости, протонные ионные жидкости, кристаллическая структура, термические свойства

DOI: 10.31857/S0132344X20040076

По многим прогнозам глобальное потребление энергии значительно возрастет к середине XXI столетия, и эта возросшая потребность будет частично удовлетворена за счет использования возобновляемых источников энергии. Из-за прерывистого характера действия солнечных панелей должны быть разработаны совместимые крупномасштабные устройства накопления энергии для ее потребления в ночное время. Нужны электрические аккумуляторы большой емкости с высокой плотностью энергии, сделанные из дешевых материалов [1].

Проточные аккумуляторы, основанные на неводных системах, потенциально предлагают более широкие электрохимические окна, более высокую эффективность цикла зарядки, пониженную температурную чувствительность, увеличенный срок службы, а в некоторых случаях даже благоприятные прогнозы стоимости. Перспективны аккумуляторы с ионными жидкостями (ИЖ), поскольку ИЖ практически не испаряются, что отвечает требованиям противопожарной безопасности.

ИЖ интенсивно исследуются последние три десятка лет благодаря разнообразию и специфике их свойств как растворителей [2, 3], катализаторов [2, 4], молекулярных магнитов [5-7], электролитов для аккумуляторов [8, 9] и многого другого. Отдельный класс ИЖ представляют собой соли жидкие при комнатной температуре (комнатно-температурные ИЖ (room temperature ionic liquids)). Как известно, знание структуры помогает выявить зависимость свойств от строения и состава, но исследование структуры жидкостей сопряжено с известными трудностями [10]. Исследование структур веществ методом РСА дает неоспоримые преимущества, но, к сожалению, в случае с ИЖ, часто стеклующихся, а не кристаллизующихся, этот метод бывает неприменим. Исследованные в данной работе методом РСА соли кристаллизуются при температурах ниже 100°C, а поэтому относятся к ИЖ.

Применение в разных областях нашли протонные ИЖ [3, 11, 12]. Протонные ИЖ получаются по стехиометрической реакции между кислотой Бренстеда и основания Бренстеда и содержат диссоциирующий протон в катионе (в отличие от традиционных ИЖ, являющихся апротонными) [3]. Новым направлением в исследованиях ИЖ с недавних пор стали металлсодержащие ИЖ (ионные жидкости с координированным катионом металла) [13]. Протонные металлсодержащие ИЖ (ПМИЖ) представлены в [14].

Недавно была предложена новая группа ионных жилкостей (MetIL) [15-19] с ионами переходного металла в качестве координационных центров и аминоспиртами в качестве лигандов. Есть много интересных результатов, связанных с синтезом, структурой и свойствами MetIL с общей формулой  $MA_2 \cdot 6L$ , где M = Fe(III), Cu(II),  $Mn(II), Zn(II), A = CF_3SO_3^- = OTf^-$  (трифлат-анион),  $N(SO_2CF_3)_2^- = NTf_2$  (бис-(трифторметилсульфонил)имид),  $CH_3(CH_2)CH(C_2H_5)COO^- = EHN$ (2-этилгексаноат-ион), L = DEA (диэтаноламин) или EA (этаноламин). Все полученные MetIL считаются отдельными координационными соединениями, а не растворами солей переходных металлов или их комплексов в избытке лиганда [15-19]. Они имеют два преимущества: низкая цена и высокая концентрация металлов, которую невозможно получить в растворах солей [20, 21].

В [22] сообщается о RTIL, которые имеют катионы  $Ag(H_2N-R)_2^+$  или  $Zn(H_2N-R)_4^{2+}$  (R = алкильная группа). Существует также ряд ИЖ, содержащих ферроценил-функционализированные катионы [23]. Синтез, строение и свойства Fe((HOCH\_2CH\_2)\_2NH)<sub>6</sub>(CF<sub>3</sub>SO<sub>3</sub>)<sub>3</sub> представлены в [24].

Недавно был опубликован ряд статей о RTIL, содержащих анионы на основе переходных металлов. Примеры включают соединения, в состав которых входят катионы имидазолия с тетраэдрическими галогеноферратами и катионы фосфония с различными кобальтатами, а также RTIL, состоящие из алкиламмония, фосфония или имидазолия и кластеров полиоксотунгстата [25, 26]. Возможность использования EmimFeCl<sub>4</sub> в аккумуляторах описана в [27]. Другие области применения ИЖ с анионом FeCl<sub>4</sub><sup>-</sup> описаны в [13, 28–32].

В настоящей работе мы представляем синтез, кристаллическое строение и термические свойства двух протонных металлсодержащих ионных жидкостей с катионом диэтаноламмония (HO–CH<sub>2</sub>– CH<sub>2</sub>)<sub>2</sub>NH<sub>2</sub><sup>+</sup> и анионами FeCl<sub>4</sub><sup>-</sup> или CoCl<sub>4</sub><sup>2-</sup>.

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали FeCl<sub>3</sub> · 6H<sub>2</sub>O ("ч. д. а"), CoCl<sub>2</sub> · 6H<sub>2</sub>O ("ч. д. а"), HCl ("х. ч."), H<sub>2</sub>SO<sub>4</sub> ("х. ч."), (HOCH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>NH (99%, Acros), Fe (стружка, "х. ч."), P<sub>4</sub>O<sub>10</sub> ("ч.").

Синтез хлорида железа(III). Безводный хлорид железа получали в результате реакции железной стружки с осушенным хлором. В колбу Вюрца, содержащую 12.5 г (79 ммоль) КМпO<sub>4</sub> с помощью капельной воронки небольшими порциями добавляли 79 мл концентрированной HCl (2.511 моль). Реакционную смесь слегка подогревали. Выделившийся хлор пропускали сначала через промывалку с концентрированной H<sub>2</sub>SO<sub>4</sub>, а затем над стружкой Fe (5 г, 89.3 ммоль), помещенной в сухую кварцевую трубку. Трубку во время реакции нагревали промышленным феном ( $T \approx 470^{\circ}$ С). Получили блестящие черно-коричневые гигроскопичные кристаллы, которые запаяли в стеклянные ампулы. Выход FeCl<sub>3</sub> 89%.

Синтез протонной ионной жидкости хлорида диэтаноламмония (DEAHCl). Хлорид диэтаноламмония синтезировали по методике [33]:

$$(HOCH2CH2)2 NH + HCl = = (HOCH2CH2)2 NH2Cl. (1)$$

В круглодонную колбу с обратным холодильником, помещенную в баню со льдом и содержащую 37.103 г (353.4 моль) диэтаноламина в 50 мл дихлорметана, при перемешивании по каплям добавляли соляную кислоту ( $\rho = 1.1111$  г/см<sup>3</sup>,  $\omega =$ = 22.54 мас. %) с 5%-ным избытком от стехиометрического количества (54.1 мл, 371 ммоль). Полученный раствор перемешивали на магнитной мешалке в течение 2 ч. Затем из реакционной смеси отгоняли растворитель на роторном испарителе до постоянной массы. В результате получили прозрачную вязкую жидкость. Выход 96%.

Синтез тетрахлороферрата(III) диэтаноламмония (I) выполняли двумя способами согласно реакциям

 $DEAHCl + FeCl_3 = DEAHFeCl_4,$  (2)

$$DEAHCl + FeCl_3 \cdot 6H_2O =$$
  
= DEAHFeCl\_4 + 6H\_2O. (3)

В обоих случаях синтезы проводили аналогично с той лишь разницей, что в случае гексагидрата массу соли  $FeCl_3$  брали с учетом кристаллизационной воды, а синтез с безводным свежеприготовленным хлоридом железа(III) проводили в сухом боксе в атмосфере аргона.

В стеклянный бюкс с крышкой помещали 6.013 г (37 ммоль) FeCl<sub>3</sub> или 10.009 г (37 ммоль) Fe-Cl<sub>3</sub> · 6H<sub>2</sub>O и 5.236 г (37 ммоль) хлорида диэтаноламмония. Затем смесь при нагревании до 70°C перемешивали в течение 3 ч на магнитной мешалке до полной гомогенизации. Полученное темно-бурое вязкое вещество помещали в эксикатор с  $P_4O_{10}$ . Че-

рез 1 нед. в обоих случаях образовались коричневые кристаллы I.

Синтез тетрахлорокобальтата(II) диэтаноламмония (II) выполняли двумя способами, используя шестиводный хлорид кобальта(II) или безводный хлорид кобальта согласно реакциям

$$2DEAHCl + CoCl_2 = (DEAH)_2 CoCl_4, \qquad (4)$$

$$2DEAHCl + CoCl_2 \cdot 6H_2O =$$
  
= (DEAH)<sub>2</sub> CoCl<sub>4</sub> + 6H<sub>2</sub>O. (5)

Синтезы в обоих случаях проводили аналогично, но в случае гексагидарата массу соли  $CoCl_2$ брали с учетом кристаллизационной воды, синтез с безводным хлоридом кобальта(II) проводили в сухом боксе в атмосфере аргона.

В стеклянный бюкс с крышкой помещали 0.507 г (3.9 ммоль) СоСl<sub>2</sub> или 0.928 г (3.9 ммоль) Со-Cl<sub>2</sub> · 6H<sub>2</sub>O и 1.104 г (7.8 моль) хлорида диэтаноламмония. Затем смесь при нагревании до 50°С перемешивали в течение 1 ч на магнитной мешалке до полной гомогенизации. Полученную темно-сине-фиолетовую жидкость помещали в эксикатор с  $P_4O_{10}$ . Через 1 нед. в обоих случаях образовались темно-синие кристаллы II.

Образцы полученных металлсодержащих ИЖ исследовали методом дифференциальной сканирующей калориметрии (ДСК) на приборе Netzsch DSC-204 F1. Измерительную систему калибровали согласно стандарту ISO 11357-1 по параметрам фазовых переходов стандартных веществ ( $C_6H_{12}$ , Hg, бензойная кислота, Ga, KNO<sub>3</sub>, In, Sn, Bi, Cs-Cl, чистота 99.99%). Систематическая ошибка температурной калибровки (определена по In) составляет 0.1°C.

Образцы тестировали в стандартных алюминиевых ячейках ( $V = 56 \text{ мм}^3$ , d = 6 мм), завальцованных крышкой с отверстием (отношение площади дна ячейки к площади отверстия составляло ~40) в потоке (40 мл/мин) азота ("ос. ч.") при скорости нагревания 5 К/мин. Экспериментальные данные обрабатывали с помощью пакета анализа NETZSCH Proteus Analysis согласно стандарту ISO/CD 11358.

Синхронный термогравиметрический и массспектрометрический анализ продуктов термического разложения выполняли для образцов I и II. Анализ проводили на приборе Netzsch STA-409 PC/PG с квадрупольным масс-спектрометром QMS 403C Aëolos (скорость потока аргона 30 мл/мин в интервале 40–600°С и скорость нагрева 5 К/мин).

РСА І и ІІ проведен с использованием монокристального рентгеновского дифрактометра Stadi Vari Pilatus 100К. Кристаллические структуры расшифрованы прямыми методами (программа SHELX-97 [34]) и уточнены полноматричным методом наименьших квадратов. Все атомы, кроме атомов водорода, уточнены анизотропно (программа SHELXL в пакете программ SHELX-97 [34]). Атомы водорода метиленовых групп заданы геометрически и не уточнены. Положения атомов водорода ОН и NH2<sup>+</sup> групп найдены из разностных синтезов Фурье и уточнены в изотропном приближении, при этом атомы водорода гидроксильных групп уточнены с фиксированным расстоянием О–Н, равным 0.86 Å (команда DFIX). В структуре I около атомов кислорода O(1) и O(2) (гидроксильных групп) найдено по два пика электронной плотности, заданных как атомы водорода с заселенностью 0.5, которые уточнены, как указано выше. Для обработки данных использована программа WinGX [35]. Рисунки структур подготовлены с использованием программы Diamond 3.0 [36]. Кристаллографические данные и детали съемки приведены в табл. 1.

Кристаллические структуры депонированы в Кембриджском банке структурных данных (CCDC № 1957208 (I) и 1957189 (II); deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk/ data\_request/cif). Параметры кристаллических структур I и II также можно получить у авторов.

### РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Независимая часть элементарной ячейки в структуре I состоит из катиона DEAH<sup>+</sup> и аниона

FeCl<sub>4</sub>. Атом железа окружен хлорид-ионами по вершинам искаженного тетраэдра (рис. 1) с расстояниями Fe(1)-Cl(l) 2.1663(15), Fe(1)-Cl(2) 2.2096(14), Fe(1)-Cl(3) 2.1710(14) и Fe(1)-Cl(4) 2.1902(15) Å, наиболее далеко от атома железа располагаются атомы хлора, образующие водородные связи (ВС) с атомами азота диэтаноламмония (N(1)…Cl(2) 3.468(5), N(1)…Cl(2') 3.517(5) и N(1)…Cl(4) 3.338(5) Å). Атомы водорода гидроксильных групп были уточнены в двух равнозаселенных (по 0.5) положениях, так как, с одной стороны, у атомов O(2) и O(1) имеется по два коротрасстояния (2.758(6) и 2.719(5) ких Å), подходящих для ВС, с другой - на разностном синтезе Фурье локализуются пики электронной плотности, подходящие для атомов водорода. Катионы образуют тетрамеры посредством ВС между атомами O(2) и O(1) разных молекул диэтаноламмония, причем предполагаемое разупорядочение атомов водорода по двум позициям можно объяснить равновероятным образованием ВС либо через атомы H(2) и H(4) (BC показаны штрихом на рис. 2), либо через атомы H(1) и H(3) (ВС показаны пунктиром на рис. 2).

Тетрамеры образуют гофрированные слои, перпендикулярные оси *а*. Анионы дополняют слои из катионов посредством ионных взаимодействий и BC (N(1)…Cl(2) 3.468(5), N(1)…Cl(2')

Таблица 1. Кристаллографические данные и условия съемки образцов I и II

| Параметр —                                                           | Значение                                                         |                                                                                 |
|----------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------|
|                                                                      | Ι                                                                | II                                                                              |
| Брутто-формула                                                       | C <sub>4</sub> H <sub>8</sub> NO <sub>2</sub> Cl <sub>4</sub> Fe | C <sub>8</sub> H <sub>16</sub> N <sub>2</sub> O <sub>4</sub> Cl <sub>4</sub> Co |
| М                                                                    | 303.8                                                            | 413                                                                             |
| Излучение; λ, Å                                                      | $CuK_{\alpha}$ (1.54186)                                         | Mo $K_{\alpha}$ ( 0.71073)                                                      |
| Сингония                                                             | Моноклинная                                                      | Моноклинная                                                                     |
| Пр. гр.                                                              | $P2_{1}/c$                                                       | C2/c                                                                            |
| <i>a</i> , Å                                                         | 7.781(1)                                                         | 11.4866(9)                                                                      |
| <i>b</i> , Å                                                         | 12.764(1)                                                        | 9.2475(6)                                                                       |
| <i>c</i> , Å                                                         | 11.947(1)                                                        | 17.164(1)                                                                       |
| β, град                                                              | 90.77(1)                                                         | 108.273(6)                                                                      |
| <i>V</i> , Å <sup>3</sup>                                            | 1186.4(2)                                                        | 1731.3(2)                                                                       |
| Ζ                                                                    | 4                                                                | 4                                                                               |
| ρ(выч.), г/см <sup>3</sup>                                           | 1.701                                                            | 1.585                                                                           |
| Температура, К                                                       | 293(2)                                                           | 293(2)                                                                          |
| μ, мм <sup>-1</sup>                                                  | 18.242                                                           | 1.617                                                                           |
| <i>F</i> (000)                                                       | 612                                                              | 852                                                                             |
| Область θ, град                                                      | 5.07-66.40                                                       | 2.499-31.092                                                                    |
| Общее число рефлексов                                                | 7154                                                             | 12 523                                                                          |
| Число независимых рефлексов ( $R_{int}$ )                            | 2011 (0.0849)                                                    | 2748 (0.1141)                                                                   |
| Число рефлексов с <i>I</i> >2 <i>σ</i> ( <i>I</i> )                  | 1036                                                             | 2052                                                                            |
| Число уточняемых параметров                                          | 125                                                              | 104                                                                             |
| GOOF по $F^2$                                                        | 0.785                                                            | 1.018                                                                           |
| $R_1$ по $I > 2\sigma(I)$                                            | 0.0382                                                           | 0.0437                                                                          |
| <i>wR</i> <sub>2</sub> (по всем данным)                              | 0.0652                                                           | 0.1335                                                                          |
| Остаточная электронная плотность (min/max), <i>е</i> Å <sup>-3</sup> | -0.21/0.24                                                       | -0.71/1.42                                                                      |

3.517(5) и N(1)…Cl(4) 3.338(5) Å). Между слоями действуют силы Ван-дер-Ваальса (рис. 3).

Независимая часть элементарной ячейки структуры II состоит одного катиона DEAH<sup>+</sup> и половины аниона  $\text{CoCl}_4^{2-}$  (атом кобальта лежит на поворотной оси 2) (рис. 4). Атом кобальта имеет координационное окружение из атомов хлора по вершинам искаженного тетраэдра (рис. 4). Расстояния Co–Cl в тетраэдре CoCl<sub>4</sub> равны Co–Cl(1) 2.2842(7) Å и Co–Cl (2) 2.2723(7) Å. Анионы образуют слои, перпендикулярные оси *с*. Катионы между собой соединяются BC между атомами азота аминогрупп и атомами кислорода гидроксильных групп (N(1)…O(1) 2.799(3), N(1)…O(2) 2.808(4) Å). При этом образуются цепочки из катионов, вытянутых вдоль направления [110] (рис. 5). Соседние катионные цепочки связаны между собой при помощи осей симметрии 2 и  $2_1$  и объединяются анионами через BC между атомами кислорода гидроксильной группы и атомами хлора



Рис. 1. Фрагмент структуры І. Тепловые эллипсоиды с вероятностью 50%. Атомы водорода H(1), H(2), H(3) и H(4) имеют заселенность 0.5.

(O(2)…Cl(2) 3.079(3), O(1)…Cl(1) 3.129(2) Å) в трехмерный каркас (рис. 6).

Результаты ДСК всех полученных металлсодержащих ИЖ представлены в табл. 2. Разница в температурах плавления I и II, возможно, зависит от различий кристаллических структур и составов ИЖ: кристаллическая структура I слоистая с взаимодействием между слоями посредством сил Ван-дер-Ваальса, а структура II представляет собой трехмерный каркас, образованный кулоновскими взаимодействиями между катионами и анионами и ВС О-Н····О и N-H····Сl. По нашим данным, при замене атома водорода в ОН-группе диэтаноламмония на углеводородный радикал (например, метил) ионные жидкости имеют только процессы стеклования и размягчения, а плавление и кристаллизация отсутствуют.

Согласно данным термического анализа (ДСК-ТГ), температура разложения ИЖ I составила 128°С, а II – 210°С, последняя ИЖ более перспективна для использования, так как имеет более высокую температуру разложения.

В заключение можно отметить следующее: 1) впервые синтезированы две протонные металлсодержащие ИЖ; 2) определены кристаллические структуры полученных ИЖ, DEAHFeCl<sub>4</sub> (I) имеет слоистое строение, внутри слоя находится слой из катионов DEAH<sup>+</sup> с разупорядоченной системой водородных связей и присоединен-

ных анионов  $FeCl_4^-$ , структура (DEAH)<sub>2</sub>CoCl<sub>4</sub> (II) представляет собой трехмерный каркас, состоящий из цепочек катионов DEAH<sup>+</sup>, соединенных анионами посредством водородных связей; 3) температуры плавления I (45°C) и II (55°C) ниже 100°C, энтальпия плавления I выше, чем энтальпия плавления II; температура разложения II (210°C) выше, чем у I (128°C).

Авторы заявляют, что у них нет конфликта интересов.



**Рис. 2.** Тетрамеры из катионов DEAH<sup>+</sup> в структуре I. Анионы не показаны. Штрихом показан один вариант системы водородных связей, пунктиром – другой равновероятный вариант.



**Рис. 3.** Слоистая структура I. Штриховыми линиями показаны водородные связи. Вид вдоль оси *с*.



Рис. 4. Фрагмент структуры II. Тепловые эллипсоиды с вероятностью 50%.

Таблица 2. Результаты ДСК металлсодержащих ионных жидкостей

| Образец                                           | <i>Т</i> <sub>пл</sub> , °С | $\Delta H_{	ext{int}},$ кДж/моль |
|---------------------------------------------------|-----------------------------|----------------------------------|
| DEAHFeCl <sub>4</sub> (реакция 2)                 | 45.5                        | 87.010                           |
| DEAHFeCl <sub>4</sub> (реакця3)                   | 45.4                        | 98.308                           |
| (DEAH) <sub>2</sub> CoCl <sub>4</sub> (реакция 4) | 52.5                        | 28.877                           |
| (DEAH) <sub>2</sub> CoCl <sub>4</sub> (реакция 5) | 58.2                        | 34.872                           |



Рис. 5. Цепочки из катионов DEAH<sup>+</sup> в структуре II. Анионы и метиленовые атомы водорода не показаны для ясности.



**Рис. 6.** Структура II. Штриховыми линиями показаны водородные связи. Атомы водорода метиленовых групп не показаны для ясности.

#### ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 19-08-00672а).

## СПИСОК ЛИТЕРАТУРЫ

- Staiger C.L., Pratt III H.D., Leonard J.C. et al. // Proc. EESAT (16–19 Oct. 2011). San Diego (California), 2011. P. 91.
- 2. Vekariya R.L. // J. Mol. Liq. 2017. V. 227. P. 44.
- Greaves T.L., Drummond C.J. // Chem. Rev. 2015. V. 115. P. 11379.

 Dai C., Zhang J., Huang C., Lei Z. // Chem. Rev. 2017. V. 117. P. 6929.

- 5. *Yoshida Y., Tanaka H., Saito G. et al.* // Inorg. Chem. 2009. V. 48. P. 9989.
- Yoshida Y., Saito G. // J. Mater. Chem. 2006. V. 16. P. 1254.
- Hayashi S., Hamaguchi H.-O. // Chem. Lett. 2004. V. 33. P. 1590.
- Hapiot P., Lagrost C. // Chem. Rev. 2008. V. 108. P. 2238.
- Watanabe M., Thomas M.L., Zhang S. et al. // Chem. Rev. 2017. V. 117. P. 7190.

- 10. Hayes R., Warr G.G., Atkin R. // Chem. Rev. 2015. V. 115. P. 6357.
- 11. *Hu J., Ma J., Zhu Q, et al.* // Angew. Chem. Int. Ed. 2015. V. 54. P. 5399.
- 12. Hunt P.A., Ashworth C.R., Matthews R.P. // Chem. Soc. Rev. 2015. V. 44. P. 1257.
- Zazybin A., Rafikova Kh., Yu V. et al. // Russ. Chem. Rev. 2017. V. 86. P. 1254.
- 14. *Dengler J.E., Dorodian A., Bernhard R. //* J. Organomet. Chem. 2011. V. 696. P. 3831.
- 15. Anderson T.M., Ingersoll D., Rose A.J. et al. // Dalton Trans. 2010. V. 39. P. 8609.
- Pratt III H.D., Rose A.J., Staiger C.L., et al. // Dalton Trans. 2011. V. 40. P. 11396.
- Pratt III H.D., Leonard J.C., Steele L.A.M. et al. // Inorg. Chim. Acta. 2013. V. 396. P. 78.
- Pratt III H.D., Ingersoll D., Hudak N.S. et al. // J. Electroanal. Chem. 2013. V. 704. P. 153.
- 19. Zakharov M.A., Fetisov G.V., Veligzhanin A.A. et al. // Dalton Trans. 2015. V. 44. P. 18576.
- 20. Schaltin S., Brooks N.R., Binnemans K., Fransaer J. // J. Electrochem. Soc. 2011. V. 158. P. D21.
- 21. Brooks N. R., Schaltin S., van Hecke K. et al. // Chem. Eur. J. 2011. V. 17. P. 5054.
- Huang J.-F., Luo H., Dai S. // J. Electrochem. Soc. 2006. V. 153. P. J9.
- 23. Balasubramanian R., Wang W., Murray R.W. // J. Am. Chem. Soc. 2006. V. 128. P. 9994.

- 24. Anderson T. M., Ingersoll D., Rose A.J. et al. // Dalton Trans. 2010. V. 39. P. 8609.
- 25. Yoshida Y., Tanaka H., Saito G. et al. // Inorg. Chem. 2009. V. 48. P. 9989.
- 26. Ortiz-Acosta D., Purdy G.M., Scott B. et al. // ECS Trans. 2009. V. 16. P. 171.
- 27. Katayama Y., Konishiike I., Miura T., Kishi T. // J. Power Sources. 2002. V. 109. P. 327.
- Wang J., Yao H., Nie Y. et al. // J. Mol. Liq. 2012.
  V. 169. P. 152.
- 29. Sun X., Zhao S., Zhang M. // Petrol. Sci. 2005. V. 2. P. 77.
- 30. *Small L.J., Pratt III H.D., Staiger C.L., Anderson T.M.* // Adv. Sustain. Syst. 2017. V. 1. № 1700066.
- Estager J., Holbrey J.D., Swadźba-Kwaśny M. // Chem. Soc. Rev. 2014. V. 43. P. 847.
- Wang L.-J., Lin C.-H. // Mini-Rev. Org. Chem. 2012. V. 9. P. 223.
- Petrović Z. D., Hadjipavlou-Litina D., Pontiki E. et al. // Bioorg. Chem. 2009. V. 37. P. 162.
- Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112.
- 35. Farrugia L.J. // J. Appl. Cryst. 1999. V. 32. P. 837.
- 36. Diamond. Crystal and Molecular Structure Visualization. Bonn: Crystal Impact, 2014.