УДК 546.47/.49

Соавторы поздравляют Игоря Леонидовича Еременко с 70-летием

КООРДИНАЦИОННЫЙ ПОЛИМЕР И МОНОМЕР С ФРАГМЕНТОМ Cd(NO₃)₂, СОДЕРЖАЩИЕ 2-АМИНО-5-БРОМПИРИДИН: СИНТЕЗ, СТРОЕНИЕ, ЯМР-ИССЛЕДОВАНИЕ И ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА

© 2020 г. В. В. Ковалев^{1,} *, Ю. В. Кокунов¹, Ю. К. Воронина¹, М. А. Кискин¹, С. Г. Сахаров¹, Л. Д. Попов², И. Л. Еременко^{1, 3}

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия ²Южный федеральный университет, Ростов-на-Дону, Россия ³Институт элементоорганических соединений им. А.Н. Несмеянова РАН, Москва, Россия

> *e-mail: kovavlad@igic.ras.ru Поступила в редакцию 24.12.2019 г. После доработки 29.01.2020 г. Принята к публикации 31.01.2020 г.

При взаимодействии Cd(NO₃)₂ · 4H₂O с 2-амино-5-бромопиридином (Abp) выделены соединения [Cd(NO₃)₂(Abp)(H₂O)]_n (I) и [Cd(NO₃)₂(Abp)₂(H₂O)₂] (II). По данным РСА монокристаллов установлена структура обоих комплексов (CIF files CCDC № 1938624 (I) и 1959680 (II)). Соединение I представляет собой координационный 1D-полимер, в котором роль мостиков выполняют две хелатно-связанные группы NO₃⁻. При этом координационный полиэдр октакоординированного центрального атома кадмия в I состоит из семи атомов кислорода (один воды и шесть групп NO₃⁻) и атома азота Abp и представляет собой треугольный додекаэдр. Комплекс II представляет собой моноядерную молекулу, в которой октаэдрический координационный полиэдр Cd сформирован четырьмя атомами кислорода двух молекул воды и двух групп NO₃⁻ и двумя атомами азота двух молекул Abp-цикла. Аминогруппа Abp в обоих комплексах в координации с металлом не участвует. Проведено изучение I методом ЯМР ¹H, ³¹C и ¹⁵N раствора полимерного комплекса в CD₃CN, причем наиболее существенная разница хим. сдвигов связанного и свободного лиганда Abp наблюдается в спектрах ¹⁵N (37 м.д.). Отмечено, что, по данным люминесцентной спектроскопии, соединения I и II проявляют эмиссию в области 430–690 нм.

Ключевые слова: координационный полимер, молекулярный комплекс, нитрат кадмия, 2-амино-5бромпиридин, структура, ЯМР, фотолюминесценция

DOI: 10.31857/S0132344X20060031

Синтез и изучение строения новых молекулярных и полимерных металлоорганических соединений остаются популярной областью исследований из-за их необычных координационных архитектур и ряда физико-химических свойств, таких как проводимость, фотолюминесценция, биологическая, фотохимическая и каталитическая активность, обеспечивающих возможность их потенциального применения в различных областях. Комбинирование способов управления строением комплексов позволяет получать новые молекулярные материалы, обладающие перспективой применения в катализе, оптике, электронике, люминесценции и биологии [1, 2]. Синтез координационных соединений, главным образом, основан на самосборке ионов металлов и органических лигандов, находящихся в растворе. Определяющими ход реакции факторами могут являться природа противоионов и растворителя, соотношение металл—лиганд, температура проведения реакции, pH среды и др. Кроме того, различные нековалентные взаимодействия, как сильные водородные связи, так и более слабые $\pi-\pi$, CH...O, *lp*... π , галогенные и др. взаимодействия, играют важную роль в процессах самосборки, формировании молекулярной и кристаллической структуры новых соединений, а также их устойчивости. Ионы металлов и органические лиганды, в зависимости от их электронного строения, определяют функциональные свойства кристаллов полученных соединений: магнитные, оптические или люминесцентные, механическую твердость, термическую устойчивость. Выбор лиганда и его количество в реакционной смеси также может являться причиной структурного разнообразия продуктов реакции, что позволяет более тонко управлять проявляемыми свойствами полученных соединений.

Как известно, N-гетероциклы широко используются при получении координационных дискретных и полимерных соединений металлов. Введение в положение 2 пиридинового кольца донорного заместителя (NH₂) оказывает влияние на геометрические и электронные параметры лиганда, что проявляется в изменении строения соединений с его участием. Группа NH₂ способна участвовать в образовании Н-связей и придавать стабильность новым структурным образованиям. Введение двух различных заместителей: одного – донора электронов, другого – акцептора – придает такому лиганду нелинейно-оптический характер [3, 4]. На основе таких органических соединений потенциально можно получать молекулярные материалы с низкой диэлектрической константой. В частности, для этих целей часто используют производные пиридина, в которых в положении 2 находится NH₂-группа, а в положении 5 – галогенид-ионы или NO₂-группа. Выполнен ряд исследований по получению координационных соединений Cu(I и II), Cd(II) с 2-амино-5-нитропиридином и Cu(II), Zn(II) и Ag(I) с 2-амино-5-бромпиридином (**Abp**) [5-10], изучены их строение и физикохимические свойства.

В настоящей работе изучена реакционная система, содержащая катионы кадмия(II) и 2-амино-5-бромпиридин. Варьирование соотношения Cd: L позволило выделить два продукта реакции, исследовать их состав, строение и сравнить люминесцентные свойства.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали $Cd(NO_3)_2 \cdot 4H_2O$ ("х. ч.") и 2-амино-5-бромпиридин (97%; Aldrich), ацетонитрил и толуол без дополнительной очистки (Химмед).

Синтез [Cd(Abp)(NO₃)₂(H₂O)]_{*n*} (I). Навески 2-амино-5-бромпиридина (0.23 г, 1.33 ммоль) и Cd(NO₃)₂ · 4H₂O (0.21 г, 0.66 ммоль) раздельно растворяли в 4 мл ацетонитрила. Растворы сливали и перемешивали течение 10 мин при температуре 40—45°C, отфильтровывали и выдерживали в условиях медленного испарения растворителя при комнатной температуре ~36 ч до испарения большей части растворителя. Образовавшиеся крупные пластинчатые кристаллы отделяли от раствора декантацией, промывали ацетонитрилом и растворяли в 6 мл смеси ацетонитрил—толуол (1:1) при нагревании до 40—45°С. Медленной кристаллизацией при комнатной температуре из раствора выделяли кристаллы, которые после высушивания на воздухе, по данным элементного анализа, отвечали составу I.

Найдено, %:	N 12.92;	C 13.81;	H 1.27.
Для C ₅ H ₇ N ₄ O ₇ B	rCd		
вычислено, %:	N 13.09;	C 14.02;	H 1.64.

Синтез [Cd(Abp)₂(NO₃)₂(H₂O)₂] (II) выполняли таким же способом, как для I, но перекристаллизацию первоначально выделенных кристаллов проводили с использованием в качестве растворителя ацетонитрила. Высушенные кристаллы отвечали составу II.

Найдено, %:	N 13.33;	C 19.78;	H 2.79.
Для C ₁₀ H ₁₄ N ₆ O ₈	Br ₂ Cd		
вычислено, %:	N 13.60;	C 19.42;	H 2.28.

Спектры ЯМР¹Н и ¹³С записывали на спектрометре Bruker AV 300 с рабочими частотами 300.13 и 75.47 МГц, соответственно, и внутренней стабилизацией по дейтерию при комнатной температуре (298 К). Хим. сдвиги ядер ¹Н и ¹³С приведены относительно ТМС. Спектры ЯМР ¹⁵N записывали на спектрометре Bruker AV 400 с рабочей частотой 40.54 МГц и внутренней стабилизацией по дейтерию при комнатной температуре (298 К). Хим. сдвиги ядер ¹⁵N приведены относительно жидкого NH₃. Соотнесение сигналов в спектрах протонного и углеродного резонансов проводили с помощью двумерного гетерокоррелированного эксперимента¹³C,¹H-HMQC (heteronuclear multiple quantum correlation). Для накопления сигналов ¹⁵N, а также для соотнесения сигналов в спектрах протонного и азотного резонансов использовали методику двумерного инверсного гетерокоррелированного эксперимента ¹H-1/¹⁵N HMBC (Heteronuclear multiple bond correlation) через дальние константы спин-спинового взаимодействия ${}^{n}J({}^{1}\mathrm{H},{}^{15}\mathrm{N}) = 10 \,\Gamma\mathrm{H}.$

Спектры возбуждения и эмиссии твердых образцов регистрировали при комнатной температуре в видимом диапазоне спектра с использованием спектрометра Perkin-Elmer LS-55.

РСА монокристаллов соединений I и II выполнен на дифрактометре Bruker Apex II, оборудованном ССD-детектором (Мо K_{α} , $\lambda = 0.71073$ Å, графитовый монохроматор) [11]. Для I введена полуэмпирическая поправка на поглощение по программе SADABS [12]. Структуры решены прямым методом и уточнены MHK сначала в изотроп-

ном, а затем в анизотропном приближении по F_{hkl}^2 .

Таблица 1. Кристаллографические параметры и детали уточнения структур I и II

	Значение				
Параметр	Ι	II			
М	427.46	616.48			
Т, К	150(2)	298(2)			
Сингония	Моноклинная	Моноклинная			
Пр. гр.	$P2_{1}/c$	$P2_1/c$			
a, Å	7.8517(2)	7.7061(4)			
b, Å	18.5145(5)	16.5248(8)			
<i>c</i> , Å	8.8399(2)	7.2898(5)			
β, град	111.5840(10)	96.404(2)			
<i>V</i> , Å ³	1194.95(5)	922.50(9)			
Ζ	4	2			
ρ(выч.), г см ³	2.376	2.219			
μ, мм ⁻¹	1.746	5.567			
θ, град	2.71-28.99	2.47-30.58			
T_{\min}/T_{\max}	0.5706/0.7461				
Число измеренных рефлексов	13 030	12140			
Число независимых рефлексов	3144	2814			
Число рефлексов с $I > 2\sigma(I)$	2939	1828			
R _{int}	0.0228	0.1266			
Число уточняемых параметров	163	134			
GOOF	1.023	0.957			
$R_1, wR_2 (I > 2\sigma(I))$	0.0195, 0.0396	0.0562, 0.1136			
<i>R</i> ₁ , <i>wR</i> ₂ (все данные)	0.0218, 0.0404	0.0947, 0.1136			
$\Delta \rho_{\min} \Delta \rho_{\max}, e/\text{\AA}^3$	-0.899/0.881	-1.640/0.822			

Позиции атомов водорода рассчитаны геометрически и уточнены в изотропном приближении по модели наездника. Все расчеты проведены с помощью комплекса программ SHELXL [13]. Кристаллографические параметры и детали уточнения структур I и II приведены в табл. 1. Геометрия полиэдров атомов металлов определена с помощью программы Shape 2.1 [14–16].

Структурные данные соединений I и II депонированы в Кембриджском банке структурных данных (**КБСД** № 1938624 и 1959680 соответственно).

РФА мелкокристаллических образцов I и II выполнен на дифрактометре Bruker D8 Advance (Cu K_{α} , Ni-фильтр, LYNXEYE детектор, геометрия на отражение).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Исследование продуктов реакции $Cd(NO_3)_2 \cdot 4H_2O$ с Аbр выявило существенное влияние растворителя на их состав и строение. При использовании смеси толуол—ацетонитрил (1:1) был получен координационный полимер $[Cd(Abp)(NO_3)_2(H_2O)]_n$ (I).

В среде ацетонитрила образуется моноядерное соединение $[Cd(Abp)_2(NO_3)_2(H_2O)_2]$ (II).

Анализ параметров спектров $ЯMP^{1}H$, ${}^{13}C{H}$ и ¹⁵N комплекса I в растворе CD₃CN показывает, что, как и для комплексов Ag(I) с лутидинами [17], некоторые из них заметно изменяются при координации органического лиганда к атому Cd(II) (рис. 1, табл. 2). Например, сигнал протонов NH₂-группы смещается в слабое поле на 0.58 м.д. Наименьшие изменения в сдвигах СН-протонов (от -0.09 до 0.17 м.д.) наблюдаются в спектрах ЯМР ¹Н. Так, при координации 2-амино-5-бромопиридина происходит смещение сигналов протонов кольца в положении 6 в сильное поле всего на 0.09 м.д. В то же время максимальное смещение в слабое поле наблюдается для СНпротонов кольца в положении 3. Интересно отметить, что КССВ между протонами в положениях 3 и 4 несколько увеличивается (на 0.2 Гц) при координации лиганда. Возможно, это связано с некоувеличением электроотрицательности торым атома азота пирилинового кольца при соединении с ионом Cd(II). Подтверждением этого является увеличение значений ${}^{3}J_{\rm H-H}$ в положениях 3 и

Рис. 1. Спектр 2D-ЯМР 1 H 13 C (HMQC, long range) раствора, содержащего комплекс 2-амино-5-бромопиридина с Cd(NO₃)₂ в CD₃CN.

4 пиридина на 0.4 Гц при протонировании [18]. Сдвиг сигналов в спектре ¹³С при комплексообразовании оказывается несколько больше, а именно от -1.6 до 2.7 м.д. в зависимости от расположения ядра углерода. Наибольший сдвиг в слабое поле при координации лиганда наблюдается для углеродных атомов кольца в положениях 3 (2.7 м.д.) и 4 (2.3 м.д.). Изменений же в спектре ЯМР ¹³С{H} при переходе к комплексу для углеродов в положениях 2 и 5 практически нет.

Гораздо более значительные изменения наблюдаются в спектрах ¹⁵N: сигнал координированного атома азота пиридинового кольца расположен на 37 м.д в более сильном поле по сравнению с соответствующим сигналом в спектре свободного лиганда. Как и в случае комплексов серебра с лутидинами, это объясняется изменением локального парамагнитного вклада при координации 2-амино-5-бромпиридина к атому кадмия за счет неподеленной пары атома азота пиридинового кольца.

Основные длины связей и валентные углы в структурах I, II приведены в табл. 3; их анализ показал, что они находятся в пределах значений, стандартных для каждого типа связи.

Координационный полиэдр октакоординированного центрального атома кадмия Cd(1) (CdO₇N) в структуре I представляет собой треугольный додекаэдр (D_{2d} , $S_Q(P) = 4.703$), состоящий из трех бидентатных нитрогрупп и монодентатных лигандов Аbp и воды (рис. 2). Максимально отдаленными от атома кадмия являются атомы кислорода аксиально расположенных нитрогрупп (O(41a) и O(42)), являющихся мостиковыми в полимерной структуре изученного соединения. Такое расположение мостиковых групп приводит к ленточному строению всей полимерной цепи, при котором атомы кадмия находятся в одной плоскости, а атомы нитрогрупп лишь незначительно выходят из нее. Пиримидиновый цикл развернут на 45.35° относительно этой плоскости, при том что атом азота N(1) лежит непосредственно на ней. Плоскость, образованная атомом кислорода молекулы воды и свободной нитрогруппой, практически перпендикулярна основной плоскости полимерной структуры (угол между плоскостями 81.05°). Такая геометрическая структура и наличие нескольких центров водородного связывания приводит к тому, что полимерные ленты связаны друг с другом с одной стороны водородными связями О-Н...О, с другой – N-Н...О (рис. 3а, 36; табл. 4). Кроме того, кристаллическая структура изученного соединения дополнительно стабилизируется взаимодействиями СН...О, а также п...п-взаимодействиями между пиридиновыми циклами (расстояние между центрами взаимодействующих циклов 4.3912(14) Å, угол между плоскостями 0.00(11)°, расстояние от центра одного цикла до плоскости другого — 3.3553(9) Å) и взаимодействиями Br...O с участием атома кислорода воды (расстояние Br...O составляет 3.4070(50) Å, угол C-Br...O 148.71(7)°).

Соединение	Атомы и группы	ПМР, м.д. (относительно ТМС)		ЯМР ¹³ С, м.д. (относительно ТМС)		ЯМР ¹⁵ N, м.д. (относительно NH ₃ (ж))	
H	2-C			159.3			
Br H	5-C			10	7.6		
$\begin{bmatrix} 5 & 3 \\ 6 & 2 \end{bmatrix}$	3-CH	6.	48	11	0.9		
$H N NH_2$	4-CH	7.51		140.6			
	6-CH	8.03		149.3			
	NH ₂	5.05					
	1-N					2	74
	$^{3}J(3,4)$	8.8	Гц				
	$^{3}J(3,6)$	0.7	Гц				
	$^{3}J(4,6)$	2.6	Гц				
ГН]			$\Delta \delta^*$		Δδ		Δδ
Br	2-C			159.0	-0.3		
$\begin{bmatrix} 5 & 7 & 3 \\ 6 & 2 \end{bmatrix} \qquad Cd^{2+}$	5-C			107.4	-0.2		
H ^N N ^H 2	3-CH	6.65	0.17	113.6	2.7		
	4-CH	7.65	0.14	142.9	2.3		
	6-CH	7.94	-0.09	147.7	-1.6		
	NH ₂	5.63	0.58				
	1-N					237	-37
			Δv^{**}				
	$^{3}J(3,4)$	9.0 Гц	0.2 Гц				
	$^{3}J(3,6)$	0.7 Гц	0.0 Гц				
	$^{3}J(4,6)$	2.5 Гц	—0.1 Гц				

Таблица 2. Параметры спектров ЯМР растворов 2-амино-5-бромопиридина в CD₃CN и его комплекса с $Cd(NO_3)_2$

* $\Delta \delta = \delta$ (комплекс) – δ (лиганд), м.д. ** $\Delta v = {}^{3}J_{H-H}$ (комплекс) – ${}^{3}J_{H-H}$ (лиганд), Гц.

Комплекс II представляет собой моноядерную молекулу, в которой атом Cd(1) располагается в центре инверсии. Координационный полиэдр CdO_4N_2 соответствует октаэдру ($O_h, S_O(P) = 2.150$) и сформирован четырьмя атомами кислорода двух молекул воды и двух NO₃-групп и двумя атомами азота двух молекул Аbp (рис. 4, основные длины связей и углы приведены в табл. 3). Одинаковые лиганды располагаются в транс-положении относительно друг друга. Между атомом азота NH₂-группы и атомом кислорода молекулы воды, а также атомами Н молекулы воды и атомами кислорода NO₃-группы образованы водородные связи (рис. 4а, табл. 4). В кристалле молекулы комплекса формируют супрамолекулярный слой параллельно плоскости ас за счет водородных связей между молекулами воды и атомами кислорода NO₃-групп (рис. 4б, табл. 4). Дополнительно кристаллическая структура изученного соединения стабилизируется взаимодействиями NH...Br и СН...О, которые способствуют связыванию слоев в трехмерную сетку (табл. 4).

Поскольку строение лиганда играет одну из ключевых структурообразующих ролей в свойствах комплексного соединения, в частности с ионами Cd(II), было проанализировано строение Abp как в органических соединениях, так и в комплексах некоторых *d*-металлов. При анализе данных КБСД обнаружено 22 структуры 2-амино-5-бромпиридина, в которых аминопиридин не связан с атомом металла и восьми структур, в которых аминопиридин выступает в

Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	
-		Ι		
Cd(1)–N(1)	2.2570(16)	O(32)Cd(1)O(43)	76.37(6)	
Cd(1)–O(1)	2.2663(14)	N(1)Cd(1)O(31)	89.75(6)	
Cd(1)–O(31)	2.5149(16)	O(1)Cd(1)O(31)	149.13(5)	
Cd(1)–O(32)	2.4126(19)	O(41)Cd(1)O(31)	75.66(5)	
Cd(1)–O(41)	2.3830(13)	O(32)Cd(1)O(31)	51.55(5)	
Cd(1)-O(42)	2.5930(14)	O(43)Cd(1)O(31)	113.61(5)	
Cd(1)–O(41 <i>A</i>)	2.5436(13)	N(1)Cd(1)O(41)	84.76(5)	
Cd(1)-O(43)	2.4538(16)	O(1)Cd(1)O(41)	87.55(5)	
N(2)–C(2)	1.347(3)	O(41)Cd(1)O(41)	128.909(15)	
C(5)–C(6)	1.365(3)	O(32)Cd(1)O(41)	72.45(5)	
	I	II		
Cd(1)–N(2)	2.319(4)	N(2)-C(5)	1.355(6)	
Cd(1)–O(3)	2.474(6)	N(3)–C(1)	1.347(7)	
Cd(1)-O(1w)	2.365(4)	C(2)–C(3)	1.365(8)	
N(2)–C(1)	1.348(6)			
Угол	ω, град	Угол	ω, град	
		Ι		
N(1)Cd(1)O(1)	93.10(5)	O(43)Cd(1)O(41)	51.39(4)	
N(1)Cd(1)O(41)	146.05(5)	O(31)Cd(1)O(41)	123.32(5)	
O(1)Cd(1)O(41)	85.18(5)	N(1)Cd(1)O(42)	95.06(5)	
N(1)Cd(1)O(32)	93.14(7)	O(1)Cd(1)O(42)	77.46(5)	
O(1)Cd(1)O(32)	158.39(5)	O(41)Cd(1)O(42)	51.41(4)	
O(41)Cd(1)O(32)	100.83(6)	O(32)Cd(1)O(42)	122.50(5)	
N(1)Cd(1)O(43)	136.13(5)	O(43)Cd(1)O(42)	126.73(5)	
O(1)Cd(1)O(43)	84.83(5)	O(31)Cd(1)O(42)	71.66(5)	
O(41)Cd(1)O(43)	77.59(4)	O(41)Cd(1)O(42)	164.98(5)	
N(2)Cd(1)O(1w)	89.50(14)	11 O(1w)Cd(1)O(3)	70.35(15)	
N(2)Cd(1)O(3)	87.49(14)			

Таблица 3. Основные длины связей (Å) и валентные углы (град) в I и II

виде лиганда. Сравнение длин связей внутри пиридинового цикла показало, что при образовании комплексов происходит некоторое увеличение длин связей С–N(H₂) и С(N)–C(Br) (соответствуют С(2)–N(2) и С(5)–С(6) в структуре соединения I и С(1)–N(3) и С(2)–С(3)): в неметаллических соединениях длины связей находятся в пределах 1.313-1.346 и 1.335-1.366 Å, в комплексах – 1.334-1.373 и 1.353-1.377 Å соответственно). Длина связи М...N определяется природой металла.

Согласно [19] существует три типа координации NO₃-групп — монодентатная, симметричная бидентатная и асимметричная бидентатная. Различия в

КООРДИНАЦИОННАЯ ХИМИЯ том 46 № 6 2020

расстояниях металл—атомы кислорода NO_3^- определяют тип координации. Более 0.6 Å — монодентатная координация, менее 0.3 Å — симметричная бидентатная и промежуточное значение — асимметричная бидентатная. В представленной структуре I NO₃-группы симметричные бидентатные, в структуре II монодентатные. Кроме того, в I одна из NO₃-групп имеет мостиковые тридентатные свойства, координируясь к разным ионам кадмия за счет трех атомов кислорода NO₃⁻, формируя полимерную структуру. Интересно, что эта NO₃-группа присоединяется к ионам металла бидентатно-хелатным образом.

Рис. 2. Фрагмент полимерной цепи соединения I.

Рис. 3. Водородные связи О-Н...О (а) и N-Н...О (б) в кристалле соединения I.

Структурная целостность и фазовая чистота мелкокристаллических образцов I и II, полученных в качестве основных продуктов реакции, подтверждены методом РФА (рис. 5).

Для полученных соединений I, II и нейтрального лиганда Abp изучены спектры возбуждения и эмиссии (рис. 6). Пиридин и его производные, так же как и простые соединения кадмия, например галогениды, не обладают люминесцентными свойствами однако все координационные соединения кадмия, содержащие пиридиновые лиганды, при возбуждении показывают интенсивную флуоресценцию при частоте, соответствующей полосе поглощения лиганда [20, 21]. Соединения I ($\lambda_{воз6} = 390$ нм) и II ($\lambda_{воз6} = 405$ нм) проявляют эмиссию в области 430–690 нм, а лиганд Abp ($\lambda_{ex} =$ = 236 нм) – в области 350–540 нм., т.е. при координации к иону металла люминесценция Abp

Рис. 4. (а) — Молекулярная структура II (пунктиром показаны внутимолекулярные H-связи, эллипсоиды даны с вероятностью 50%); (б) — фрагмент супрамолекулярного слоя в кристалле II, образованного водородными связями $O(H_2O)...O(NO_3)$ (атомы водорода и молекулы 2-NH₂-5-Br-пиридина не показаны).

смещается в длинноволновую область спектра. Люминесцентные свойства соединений кадмия и цинка, согласно литературным данным, обусловлены внутрилигандными $\pi - \pi^*$ -переходами ароматических фрагментов органических молекул. Считается, что фотолюминесцентное поведение ассоциируется с локальным окружением иона металла и соотношением лиганд-металл [22, 23]. Небольшое различие в спектрах I и II, несмотря на одинаковую природу атомов (N и O) в координационных сферах кадмия, по-видимому, может быть связано с различным координационным числом иона металла (KЧ 8 в I; KЧ 6 в II).

Таким образом в работе представлены новые координационный полимер $[Cd(Abp)(NO_3)_2(H_2O)]_n$ (I) и мономер $[Cd(NO_3)_2(Abp)_2(H_2O)_2]$ (II). Структуры обоих соединений установлены методом РСА монокристаллов, охарактеризованы хими-

Рис. 5. Порошковые дифрактограммы образцов I (а, *1*) и II (б, *3*) и теоретически рассчитанные по данным PCA) (а, кривая *2*; б, кривая *4*, соответственно).

ческим анализом, РФА, фотолюминесцентными свойствами и методом ЯМР соединения I в растворе CD_3CN . В соединении I у иона кадмия(II) КЧ 8 в форме треугольного додекаэдра, в соединении II Cd имеет октаэдрическое окружение. В II полимерную структуру определяют мостиковые нитратогруппы. Исследование I в растворе CD_3CN методом ЯМР показало, что наибольшие изменения наблюдаются в спектрах ¹⁵N координированного 2-амино-5-бромпиридина. В спектрах люминесценции полосы эмиссии соединений I и II лежат в области 430–690 нм.

Рис. 6. Спектры возбуждения ($\lambda_{_{3M}} = 372$ (*1*), 480 (*3*), 550 нм (*5*)) и эмиссии ($\lambda_{_{BO36}} = 236$ (*2*), 390 (*4*), 405 нм (*6*)) для твердых образцов 2-NH₂-5-Br-пиридина, I и II, соответственно, при комнатной температуре.

		Расстояние, Å		Угол D-НА,	Элемент симметрии
<i>D</i> –пА	D–H	HA	DA	град	атома А([#])
		Ι		•	·
O(1)-H(11)O(33 [#])	0.75	2.04	2.774(2)	168	x - 1, y, z
O(1)-H(12)O(33 [#])	0.82	1.99	2.800(2)	171	x - 1, -y + 3/2, z - 1/2
N(2)-H(21)O(1)	0.91	2.32	3.079(2)	141	
N(2)-H(21)O(42)	0.91	2.51	3.136(2)	127	
N(2)-H(22)O(42 [#])	0.80	2.23	3.007(2)	166	-x, -y + 1, -z
C(4)-H(4A)O(32)	0.95	2.57	3.236(3)	128	
C(6)–H(6A)O(31)	0.95	2.49	3.371(3)	155	-x + 1, -y + 1, -z + 1
		I	ĺ	•	•
O(2)O(1w)			2.881(6)		
N(3)-H(3A)O(1w)	0.90	2.15	2.953(7)	119	
O(1w)O(1 [#])			3.223(6)		x, y, z - 1
O(1w)O(2 [#])			2.909(8)		x, y, z - 1
O(1w)O(1 [#])			2.896(6)		-x, 1-y, 1-z
C(3)-H(3C)O(2 [#])	0.93	2.53	3.341(6)	145	
C(5)-H(5C)O(3 [#])	0.93	2.49	3.130(7)	126	-x + 1, -y + 1, -z + 1
$N(3)-H(3B)Br(1^{\#})$	0.90	2.98	3.527(5)	121	x - 1, -y + 1/2, z - 1/2

Таблица 4. Параметры водородных связей в кристалле І и ІІ

Авторы заявляют об отсутствии конфликта интересов.

БЛАГОДАРНОСТИ

Соединения получены и исследованы в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований. РСА монокристаллов, РФА, люминесценция и элементный анализ выполнены на оборудовании ЦКП ФМИ ИОНХ РАН в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

СПИСОК ЛИТЕРАТУРЫ

- Ho C.-L., Wong W.-Y. // Coord. Chem. Rev. 2011. V. 255. P. 2469.
- Leong W.L., Vittal J.J. // Chem. Rev. 2011. V. 111. P. 688.
- 3. Koshima H., Hamada M., Yagi I., Uosaki K. // Cryst. Growth. Des. 2001. V. 1. P. 467.
- Tomaru S., Matsumoto S., Kurihara T. et al. // Appl. Phys. Lett. 1991. V. 58. P. 2583.
- Luque A., Sertucha J., Lesama L. et al. // Dalton Trans. 1997. P. 847.
- Mojdekaulous S., Khalaji A.D., Xu D. // Jpn. Soc. Analyt. Chem. 2007. V. 23. P. x189.
- Zhou W.-W., Zhao W., Wei B. et al. // Inorg. Chim. Acta. 2012. V. 386. P. 17.
- 8. Futriani, Hausongnern K., Leesakul N. et al. // Acta Crystallogr. E. 2013. V. 69. P. m302.

- Zhou W.-W., Zhao W., Zhao X. et al. // Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2013. V. 43. P. 1171.
- 10. Seth S.K. // CrystEngComm. 2013. V. 15. P. 1772.
- SMART (control) and SAINT (integration) Software. Version 5.0. Madison (WI, USA): Bruker AXS, Inc., 1997.
- Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 3.
- 13. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
- 14. Cirera J., Alemany P., Alvarez S. // Chem. Eur. J. 2004. V. 10. P. 190.
- 15. Casanova D., Llunell M., Alemany P., Alvarez S. // Chem. Eur. J. 2005. V. 11. P. 1479.
- Alvarez.D., Avnir D., Llunell M., Pinsky M. // New J. Chem. 2002. V. 26. P. 996.
- Sakharov S.G., Kovalev V.V., Gorbunova Yu.E., Kokunov Yu.V. // Russ. J. Coord. Chem. 2013. V. 39. P. 187. https://doi.org/10.1134/S1070328413020061
- Tables of Spectral Data for Structuew Determination of Organic Compounds. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983, P. H275.
- Kleywegt J.G.J., Weismeijer W.G.R., Van Driel G.J. et al. // Dalton Trans. 1985. P. 2171.
- 20. Chattopadhyay T., Banerjee A., Banu K.S. et al. // Polyhedron. 2008. V. 27. P. 2452.
- Neumann T., Germann L.S., Mandrakovski I. et al. // Z. Anorg. Allg. Chem. 2017. V. 643. P. 1904.
- 22. Fu Z.-Y., Wu X.-T., Dai J.-C. et al. // Eur. J. Inorg. Chem. 2002. P. 2730.
- 23. Nather C., Jess I., Germann L.S. et al. // Eur. J. Inorg. Chem. 2017. P.1245.

КООРДИНАЦИОННАЯ ХИМИЯ том 46 № 6 2020