УЛК 541.67

Авторы поздравляют академика И.Л. Еременко с 70-летним юбилеем

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ СТРОЕНИЯ И МАГНИТНЫХ СВОЙСТВ КОМПЛЕКСОВ КОБАЛЬТА С N-ЗАМЕЩЕННЫМИ ПИРИДИНОФАНАМИ И ФУНКЦИОНАЛИЗИРОВАННЫМИ РАДИКАЛАМИ *о*-БЕНЗОХИНОНАМИ

© 2020 г. В. И. Минкин¹, А. А. Старикова^{1, *}, М. Г. Чегерев¹, А. Г. Стариков¹

¹Научно-исследовательский институт физической и органической химии Южного федерального университета, Ростов-на-Дону, Россия

*e-mail: alstar@ipoc.sfedu.ru Поступила в редакцию 20.12.2019 г. После доработки 29.01.2020 г. Принята к публикации 31.01.2020 г.

Методом теории функционала плотности (DFT UTPSSh/6-311++G(d,p)) изучено строение и рассчитаны энергетические и магнитные характеристики моноядерных комплексов кобальта с N,N'-диалкил-2,11-диаза[3.3]-(2,6)пиридинофанами и o-бензохиноновыми лигандами, содержащими стабильные радикалы (нитронилнитроксил и TEMPO). Установлено, что варьирование алкильных заместителей при атомах азота тетраазамакроцикла позволяет управлять устойчивостью электромерных форм комплексов и, как следствие, возможностью реализации механизмов магнитной бистабильности (спин-кроссовер и валентная таутомерия). Природа радикальной группы определяет силу обменных взаимодействий, в которых она участвует, но не оказывает влияния на обмен в редокс-активном фрагменте.

Ключевые слова: кобальт, 2,11-диаза[3.3]-(2,6)пиридинофаны, o-бензохинон, стабильные радикалы, магнитные свойства, электронное строение

DOI: 10.31857/S0132344X20060067

Поиск комплексов переходных металлов с открытой оболочкой, проявляющих один из наиболее значимых видов электронной бистабильности — вариабельность магнитных свойств, представляет собой перспективное направление химии и материаловедения. Такие магнитно-активные соединения могут найти практическое применение в качестве основы молекулярных переключателей, молекулярных магнитов, устройств памяти и спиновых кубитов [1–9]. Наиболее распространенными механизмами, приводящими к изменению магнитных характеристик в результате внешних воздействий (температуры, света, давления, электромагнитного поля и др.), являются спин-кроссовер (СКО), обусловленный электронной перегруппировкой внутри валентной оболочки иона металла между его низкоспиновым и высокоспиновым состояниями [4, 10], и валентная таутомерия (ВТ) обратимый внутримолекулярный перенос электронов с участием иона переходного металла и координированного редокс-активного лиганда [11]. СКО широко изучен в комплексах железа [12, 13], но также встречается в соединениях кобальта [14], в то время как ВТ детально исследована в кобальтовых системах с o-бензохинонами (диоксоленами) [15—18].

Ранее был опубликован шикл работ, посвященных синтезу и исследованию катионных комплексов переходных металлов, включающих один редокс-активный лиганд и тетрадентатное макроциклическое азотсодержащее основание [19-31]. Этот структурный мотив успешно использовался для получения биядерных магнитно-активных соединений [32-40]. Построенные таким способом системы привлекают повышенный интерес благодаря их способности претерпевать как ВТ [19, 21-28], так и СКО [30, 31] в зависимости от природы тетраазамакроциклического лиганда. Недавно посредством теоретического и экспериментального исследования серии о-бензохиноновых комплексов кобальта с N,N'-диалкил-2,11-диаза[3.3]-(2,6)пиридинофанами (пиридинофанами) показано, что возможность протекания перегруппировок, приводящих к изменению спиновых состояний, и тип механизма этого процесса могут управляться заместителями при атомах азота макроцикла [41-43].

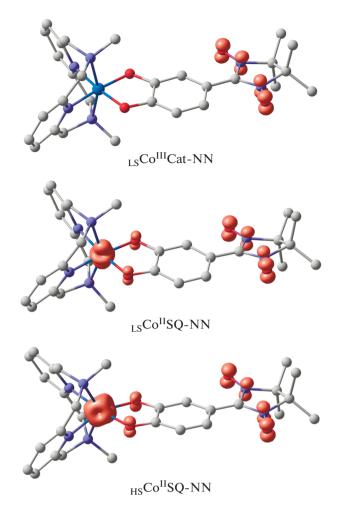
Металлокомплексы с о-хинонами, функционализированными радикальными фрагментами, привлекают особое внимание благодаря присутствию в них трех носителей спина: ион металла, анион-радикальная семихиноновая (SQ) форма лиганда и парамагнитный заместитель. Известны комплексы первого переходного ряда с о-хиноновыми лигандами, включающими нитронилнитроксильный радикал, связанный с диоксоленовым кольцом непосредственно либо через мостиковые группы [44-48]. Выполнены исследования, посвященные изучению гетероспиновых комплексов марганца, кобальта, никеля и меди с двумя редоксактивными лигандами, содержащими парамагнитную группу во вспомогательном азотсодержащем основании [49-52], а также соединений кобальта, включающих 3,6-ди-трет-бутил-о-бензохиноновые лиганды и 1,3,5-трифенилформазанатный анион [53]. Успешный синтез и установление строения комплекса железа(III) с катехолом (Cat), содержащим нитронилнитроксильный заместитель, и *mpuc*(2-пиридилметил)аминовым лигандом [48], а также многообразие химии стабильных радикалов [54, 55] открывают широкие перспективы для получения новых соединений, сконструированных подобным способом.

В настоящей работе с целью изучения особенностей магнитного поведения комплексов такого типа и выяснения влияния радикального заместителя на способность претерпевать механизмы ВТ и/или СКО мы провели кванговохимические расчеты геометрических, энергетических и магнитных характеристик пиридинофановых комплексов кобальта с *о*-бензохиноном, содержащим 4,4,5,5-тетраметил-4,5-дигидро-1*H*-имидазол-3-оксид-1-оксильный (нитронилнитроксильный, NN) и (2,2,6,6-тетраметилпиперидин-1-ил)оксильный (ТЕМРО) радикалы (соединения I и II соответственно).

$$R = Me, Et, i-Pr, t-Bu$$

МЕТОДИКА РАСЧЕТОВ

Расчеты проводили с помощью программы Gaussian 16 [56] методом теории функционала плотности (DFT) с использованием функционала UTPSSh [57, 58] и расширенного базиса 6-311++G(d,p), сочетание которых корректно воспроизводит энергетические и магнитные характеристики комплексов, проявляющих механизмы магнитной бистабильности [41-43, 59-65]. Согласно полученным в данном приближении результатам расчетов экспериментально изученных соединений кобальта, СКО реализуется при $\Delta E_{\rm HS-LS} < 6$ ккал/моль, BT — при $\Delta E_{\rm HS-LS} <$ < 10 ккал/моль [43]. Ранее была показана необходимость учета внешнесферных противоионов при DFT-изучении комплексов переходных металлов с редокс-активными лигандами [66]. В этой связи в настоящем исследовании квантовохимические расчеты проведены для соединений, включающих гексафторфосфатный анион. Локализацию стационарных точек на поверхности потенциальной энергии (ППЭ) осуществляли путем полной оптимизации геометрии молекулярных структур с проверкой стабильности DFT волновой функции и расчетом силовых констант. Вычисление параметров обменного взаимодействия (J, см $^{-1}$) осуществляли в рамках формализма "нарушенной симметрии" (broken symmetry, ВЅ) [67] с использованием метода обобщенной проекции спина, предложенного Ямагучи [68]. Графические изображения молекулярных структур получали при помощи программы ChemCraft [69].

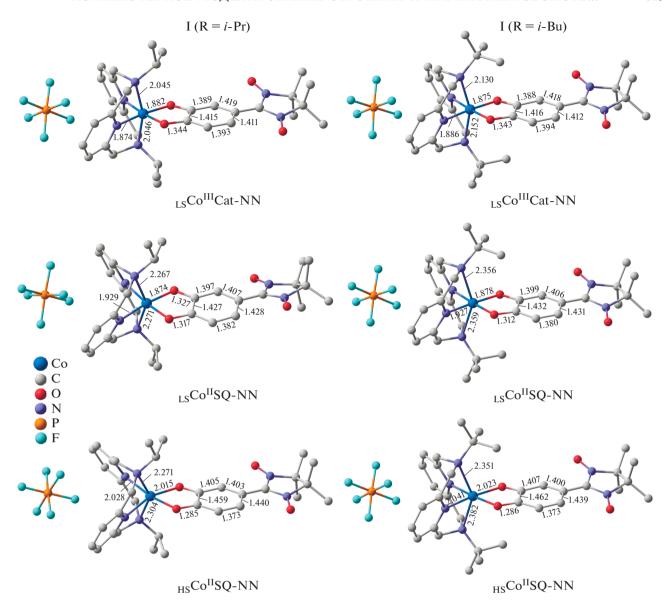

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Основным состоянием комплекса I (R = Me) является низкоспиновый электронный изомер (электромер [70]) _{LS}Co^{III}Cat-NN, содержащий диамагнитные ион кобальта и катехолатную форму редокс-лиганда (табл. 1). Единственный неспаренный электрон в этой структуре локализован на радикальном NN-фрагменте (рис. 1). Найденный на квартетной ППЭ изомер _{LS}Co^{II}SQ-NN расположен выше низкоспиновой формы на 5.8 ккал/моль. Значительная дестабилизация структуры с высокоспиновым ионом кобальта HSCo^{II}SQ-NN (12.9 ккал/моль) указывает на ее термическую недостижимость. Следовательно, соединение I (R = Me) будет находиться в низкоспиновом состоянии в широком диапазоне температур, что согласуется с полученными ранее результатами в родственных соединениях [31, 41-43] и свидетельствует о незначительном влиянии нитронилнитроксильного радикала на энергетические характеристики комплекса. В то же время присутствие в молекуле NN-фрагмента обеспечивает парамагнетизм электромера _{LS}Co^{III}Cat-NN.

При изучении комплекса I (R=Et) получены сходные результаты (табл. 1): существенная дестабилизация высокоспиновой структуры $_{\rm HS}{\rm Co^{II}SQ\text{-}NN}$ относительно основного состояния $_{\rm LS}{\rm Co^{III}Cat\text{-}NN}$ свидетельствует о нереализуемости перегруппировок, сопровождающихся изменением спинового состояния системы.

Переход к соединению I(R = i-Pr) сопровожлается сокращением разности энергий между низкоспиновым и высокоспиновым изомерами до величины 9.7 (7.2 с учетом ZPE) ккал/моль, которая указывает на возможность протекания термически инициированной BT $_{LS}$ Co III Cat-NN \rightleftarrows $_{HS}$ Co II SQ-NN (рис. 2). Такое поведение находится в согласии с теоретическими и экспериментальными ланными, полученными для 3,5-ди-трет-бутил-о-бензохинонового комплекса кобальта с N-изопропилзамещенным пиридинофаном [41]. Изучение обменных взаимодействий в электромере _{HS}Co^{II}SQ-NN показывает умеренное антиферромагнитное связывание спинов неспаренных электронов иона металла с другими радикалами, в то же время обмен между SO- и NN-фрагментами носит сильный ферромагнитный характер (табл. 2), что позволяет ожидать существование обсуждаемой структуры в высокоспиновом состоянии в широком диапазоне температур. Таким образом, комплекс I (R = i-Pr) способен претерпевать редокс-изомерные превращения, сопровождающиеся изменением спина системы (S) с 3/2 до 5/2.

Расчеты комплекса I (R = t-Bu) приводят к инверсии энергий изомеров LSCo^{III}Cat-NN и LSCo^{II}SQ-NN. в результате которой последний оказывается основным состоянием (табл. 1). Дестабилизация электромера, включающего низкоспиновый трехвалентный ион кобальта, обусловлена невозможностью формирования характерных для него коротких (не превышающих 2.05 Å) связей Co-N. Это вызвано стерическими препятствиями, создаваемыми объемистыми трет-бутильными группами (рис. 2). Высокоспиновая форма _{HS}Co^{II}SQ-NN отстоит от основного состояния _{LS}Co^{II}SQ-NN на 7.2 (6.1 с учетом ZPE) ккал/моль, что делает вероятным СКО-процесс $_{LS}$ Co II SQ-NN \rightleftarrows $_{HS}$ Co II SQ-NN и согласуется с полученными ранее данными по 3,5-ди-трет-бутил-о-бензохиноновому KOMплексу кобальта с N,N'-ди-трет-бутил-2,11-диаза[3.3]-(2,6)пиридинофаном [31, 41-43]. В электромере _{нs}Co^{II}SQ-NN, как и в рассмотренном выше высокоспиновом изомере комплекса I (R = = i-Pr), предсказаны умеренные антиферромагнитные обменные взаимодействия, в которые вовлечен ион металла, и сильное ферромагнитное связывание внутри лиганда (табл. 2). Следовательно, варьирование алкильных групп при атомах азота тетраазамакроцикла не приводит к изменению характера и силы обмена между парамагнитными

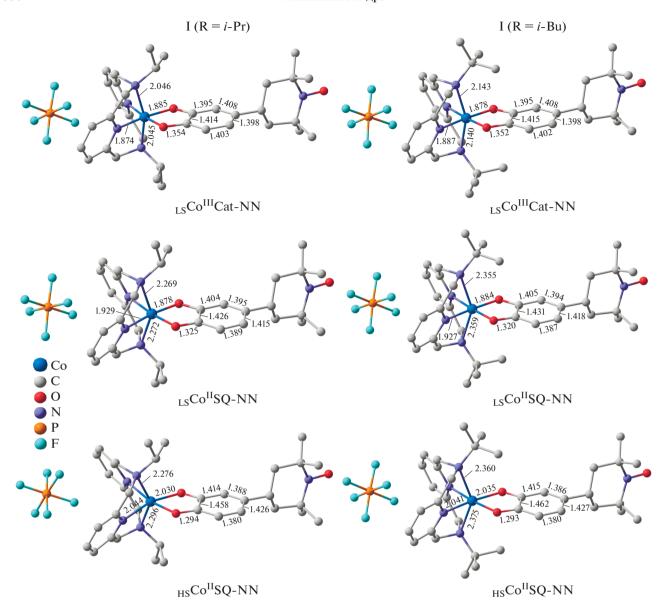

Рис. 1. Распределение спиновой плотности (cutoff = $0.035 \ e/Å^3$) в электромерах комплекса I (R = Me), рассчитанное методом DFT UTPSSh/6-311++G(d,p). Здесь и на рис. 2, 3 атомы водорода опущены для ясности.

центрами. Изомер $_{LS}$ Co II SQ-NN с низкоспиновым ионом кобальта характеризуется сильным ферромагнитным связыванием в редокс-активном фрагменте ($J_1 = 832 \text{ cm}^{-1}$), в то время как значения параметров J_2 и J_3 , отвечающих за обмен Co II -NN и SQ-NN, близки к величинам, найденным для структуры $_{HS}$ Co II SQ-NN (табл. 2).

Из приведенных в табл. 1 результатов следует, что замена в *о*-бензохиноновом лиганде нитронилнитроксила на радикал ТЕМРО не оказывает существенного влияния на разность энергий между электромерами рассмотренных комплексов. Значительная дестабилизация высокоспиновых изомеров координационных соединений II (R = Me, Et) свидетельствует о нахождении обсуждаемых систем в низкоспиновом дублетном состоянии. Предсказанная величина энергетической щели между электромерами _{LS}Co^{III}Cat-TEMPO

Таблица 1. Спин (S), полная энергия без учета (E) и с учетом энергии нулевых колебаний ($E^{\rm ZPE}$), значение оператора квадрата спина (S^2), относительная энергия без учета (ΔE) и с учетом энергии нулевых колебаний ($\Delta E^{\rm ZPE}$) в электромерах комплексов I и II (R=Me, Et, i-Pr, t-Bu), рассчитанные методом DFT UTPSSh/6-311++G(d,p)

Электромер	S	E	E^{ZPE}	S^2	E	E^{ZPE}			
Электромер		ат. ед.		ა-	ккал/моль				
I(R = Me)									
LSCo ^{III} Cat-NN	1/2	-4079.673906	-4079.041809	0.794	0.0	0.0			
$_{\rm LS}{\rm Co^{II}SQ\text{-}NN}$	3/2	-4079.664656	-4079.034870	3.807	5.8	4.4			
$_{\rm HS}{\rm Co^{II}SQ\text{-}NN}$	5/2	-4079.653341	-4079.025625	8.803	12.9	10.2			
I(R = Et)									
_{LS} Co ^{III} Cat-NN	1/2	-4158.327737	-4157.639282	0.794	0.0	0.0			
$_{\rm LS}{\rm Co^{II}SQ\text{-}NN}$	3/2	-4158.319071	-4157.633135	3.807	5.4	3.9			
$_{\rm HS}{\rm Co^{II}SQ\text{-}NN}$	5/2	-4158.306655	-4157.622437	8.802	13.2	10.6			
I(R = i-Pr)									
_{LS} Co ^{III} Cat-NN	1/2	-4236.977669	-4236.233267	0.794	0.0	0.0			
$_{\rm LS}{\rm Co^{II}SQ\text{-}NN}$	3/2	-4236.972022	-4236.229827	3.807	3.5	2.2			
$_{\rm HS}{\rm Co^{II}SQ\text{-}NN}$	5/2	-4236.962169	-4236.221770	8.802	9.7	7.2			
I(R = t-Bu)									
_{LS} Co ^{III} Cat-NN	1/2	-4315.607707	-4314.809305	0.795	2.8	3.8			
$_{\rm LS}{\rm Co^{II}SQ\text{-}NN}$	3/2	-4315.612097	-4314.815432	3.807	0.0	0.0			
$_{\rm HS}{\rm Co^{II}SQ\text{-}NN}$	5/2	-4315.600592	-4314.805657	8.802	7.2	6.1			
II (R = Me)									
LSCo ^{III} Cat-TEMPO	1/2	-4028.961901	-4028.270447	0.754	0.0	0.0			
$_{\rm LS}{\rm Co^{II}SQ\text{-}TEMPO}$	3/2	-4028.953434	-4028.264375	3.771	5.3	3.8			
$_{\rm HS}{\rm Co^{II}SQ\text{-}TEMPO}$	5/2	-4028.941725	-4028.254331	8.766	12.7	10.1			
II $(R = Et)$									
LSCo ^{III} Cat-TEMPO	1/2	-4107.615549	-4106.867821	0.754	0.0	0.0			
$_{\rm LS}{\rm Co^{II}SQ\text{-}TEMPO}$	3/2	-4107.607851	-4106.862373	3.771	4.8	3.4			
_{HS} Co ^{II} SQ-TEMPO	5/2	-4107.595461	-4106.851488	8.766	12.6	10.2			
II ($R = i$ -Pr)									
LSCo ^{III} Cat-TEMPO	1/2	-4186.265312	-4185.461613	0.754	0.0	0.0			
$_{\rm LS}{\rm Co^{II}SQ\text{-}TEMPO}$	3/2	-4186.260861	-4185.459493	3.771	2.8	1.3			
$_{\rm HS}{\rm Co^{II}SQ\text{-}TEMPO}$	5/2	-4186.250585	-4185.451177	8.765	9.2	6.5			
II $(R = t-Bu)$									
LSCo ^{III} Cat-TEMPO	1/2	-4264.895380	-4264.037976	0.754	3.4	4.2			
$_{\rm LS}{\rm Co^{II}SQ\text{-}TEMPO}$	3/2	-4264.900850	-4264.044631	3.770	0.0	0.0			
_{HS} Co ^{II} SQ-TEMPO	5/2	-4264.889273	-4264.034735	8.766	7.3	6.2			


Рис. 2. Оптимизированные геометрии электромеров комплексов I (R = i-Pr, t-Bu), рассчитанные методом DFT UTPSSh/6-311++G(d,p). Здесь и на рис. 3 длины связей даны в ангстремах.

и $_{\rm HS}{\rm Co^{II}SQ\text{-}TEMPO}$ комплекса II (R = *i*-Pr) (рис. 3) составляет 9.2 (6.5 с учетом *ZPE*) ккал/моль, что указывает на возможность протекания термически инициированной ВТ перегруппировки. В соединении II (R = *t*-Bu), содержащем *трет*-бутильные группы при атомах азота пиридинофанового лиганда, ожидается изменение магнитных свойств в результате СКО (табл. 1, рис. 3).

Анализ значений параметра J_1 , приведенных в табл. 2, показывает сильное ферромагнитное связывание в паре $_{LS}\mathrm{Co^{II}}\mathrm{-SQ}$, в то же время высокоспиновый изомер способен проявлять умеренный антиферромагнитный обмен между ионом металла и семихиноном. Радикал ТЕМРО практически не взаимодействует с другими парамаг

нитными центрами (табл. 2). Примечательно, что характер обмена между ионом металла и SQ в соединениях I и II (R = i-Pr, t-Bu) аналогичен найденному в электромерах изученных ранее 3,5-ди-*трет*-бутил-t-о-бензохиноновых комплексов кобальта [31, 41—43]. Следовательно, рассмотренный способ введения радикала в семихинон не приводит к изменению обменных взаимодействий в редокс-активном фрагменте. В то же время природа радикальной группы (NN или TEMPO) определяет силу обменного связывания, в котором она участвует.

Таким образом, в результате проведенного компьютерного моделирования геометрических, энергетических и магнитных характеристик мо-

Рис. 3. Оптимизированные геометрии электромеров комплексов II (R = i-Pr, t-Bu), рассчитанные методом DFT UTPSSh/6-311++G(d,p).

ноядерных комплексов кобальта с N,N'-диалкил-2,11-диаза[3.3]-(2,6)пиридинофанами и *o*-бензохиноновыми лигандами, содержащими нитронилнитроксил или ТЕМРО, установлено, что разность энергий между изомерами определяется объемностью алкильных заместителей в тетраазамакроцикле, но не зависит от наличия и типа радикальной группы. Соединения с N-метил- и N-этилзамещенными пиридинофанами будут находиться в низкоспиновом состоянии, включающем трехвалентный ион металла. В комплексах с N,N'-диизопропил-2,11-диаза[3.3]-(2,6)пиридинофаном ожидается термически инициированная валентно-таутомерная перегруппировка, а системы, содержащие трет-бутиль-

ные группы при атомах азота пиридинофанового основания, способны претерпевать спин-кроссовер. Преимуществом изученных соединений перед существующими аналогами, не содержащими радикальных заместителей [19—31, 41—43], является парамагнетизм всех электромеров, что расширяет потенциальные области применений соединений данного типа. Рациональный выбор радикала позволяет управлять силой обменных взаимодействий, в которые он вовлечен, при этом обмен между ионом кобальта и семихиноном остается неизменным. Использование при конструировании рассмотренных комплексов синтетически доступных структурных мотивов открывает возможности их получения.

Таблица 2. Спин (S) и параметр обменных взаимодействий (J, см $^{-1}$) в электромерах $_{LS}$ Co II SQ-NN, $_{HS}$ Co II SQ-NN, $_{HS}$ Co II SQ-TEMPO комплексов I и II (R=i-Pr, t-Bu), рассчитанные методом DFT UTPSSh/6- $311++G(d,p)^*$

Электромер	S	J_1	J_2	J_3				
		I(R = i-Pr)						
_{LS} Co ^{II} SQ-NN	3/2	835	-71	529				
_{HS} Co ^{II} SQ-NN	5/2	-34	-59	898				
I(R = t-Bu)								
_{LS} Co ^{II} SQ-NN	3/2	832	-47	438				
_{HS} Co ^{II} SQ-NN	5/2	-51	-14	610				
'		II $(R = i-Pr)$	ı	ı				
LSCo ^{II} SQ-TEMPO	3/2	812	-3	4				
_{HS} Co ^{II} SQ-TEMPO	5/2	-48	-2	3				
II ($R = t$ -Bu)								
_{LS} Co ^{II} SQ-TEMPO	3/2	912	-5	5				
_{HS} Co ^{II} SQ-TEMPO	5/2	-82	-5	2				

 $[*]J_1$ соответствует обмену между Co(II) и SQ, J_2 – между Co(II) и NN (TEMPO), J_3 – между SQ и NN (TEMPO).

Авторы заявляют об отсутствии конфликта интересов.

ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 19-73-00090).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Sato O., Tao J., Zhang Y.Z.* // Angew. Chem. Int. Ed. 2007. V. 46. № 13. P. 2152.
- 2. Molecular Switches / Eds. Feringa B.L., Browne W.R. Weinheim: Wiley-VCH, 2011. 824 p.
- 3. *Aromí G., Aguilà D., Gamez P. et al.* // Chem. Soc. Rev. 2012. V. 41. № 2. P. 537.
- Spin-Crossover Materials: Properties and Applications / Ed. Halcrow M.A. Chichester: John Wiley&Sons, 2013. 564 p.
- 5. Sato O. // Nature Chem. 2016. V. 8. № 7. P. 644.
- Senthil Kumar K., Ruben M. // Coord. Chem. Rev. 2017. V. 346. P. 176.
- Lutsenko I.A., Kiskin M.A., Efimov N.N. et al. // Polyhedron. 2017. V. 137. P. 165.
- 8. Bazhina E.S., Aleksandrov G.G., Kiskin M.A. et al. // Eur. J. Inorg. Chem. 2018. № 47. P. 5075.
- 9. Lutsenko I.A., Kiskin M.A., Nelyubina Y.V. et al. // Polyhedron. 2019. V. 159. P. 426.
- Spin Crossover in Transition Metal Compounds. I: Topics in Current Chemistry. V. 233 / Eds. Gütlich P., Goodwin H.A. Berlin—Heidelberg: Springer-Verlag, 2004.
- 11. *Buchanan R.M., Pierpont C.G.* // J. Am. Chem. Soc. 1980. V. 102. № 15. P. 4951.

- 12. *Halcrow M.A.* // Polyhedron. 2007. V. 26. № 14. P. 3523.
- 13. *Harding D.J., Harding P., Phonsri W.* // Coord. Chem. Rev. 2016. V. 313. P. 38.
- 14. *Hayami S., Kato K., Komatsu Y. et al.* // Dalton Trans. 2011. V. 40. № 10. P. 2167.
- Pierpont C.G. // Coord. Chem. Rev. 2001. V. 216–217. P. 99.
- Shultz D.A. Valence Tautomerism in Dioxolene Complexes of Cobalt // Magnetism: Molecules to Materials II / Eds. Miller J.S., Drillon M. Wiley, New York, 2001. P. 281.
- 17. *Evangelio E., Ruiz-Molina D.* // Eur. J. Inorg. Chem. 2005. № 15. P. 2957.
- 18. Tezgerevska T., Alley K.G., Boskovic C. // Coord. Chem. Rev. 2014. V. 268. P. 23.
- 19. *Benelli C., Dei A., Gatteschi D., Pardi L.* // Inorg. Chim. Acta. 1989. V. 163. № 1. P. 99.
- 20. Caneschi A., Dei A., Gatteschi D., Tangoulis V. // Inorg. Chem. 2002. V. 41. № 13. P. 3508.
- 21. *Bencini A., Caneschi A., Carbonera C. et al.* // J. Mol. Struct. 2003. V. 656. № 1–3. P. 141.
- 22. *Beni A., Dei A., Rizzitano M., Sorace L.* // Chem. Commun. 2007. № 21. P. 2160.
- 23. Beni A., Dei A., Laschi S. et al. // Chem. Eur. J. 2008. V. 14. № 6. P. 1804.
- 24. *Dapporto P., Dei A., Poneti G., Sorace L.* // Chem. Eur. J. 2008. V. 14. № 35. P. 10915.
- Dei A., Feis A., Poneti G., Sorace L. // Inorg. Chim. Acta. 2008. V. 361. P. 3842.
- 26. *Poneti G., Mannini M., Sorace L. et al.* // Chem. Phys. Chem. 2009. V. 10. № 12. P. 2090.
- 27. *Dei A.*, *Sorace L.* // Appl. Magn. Res. 2010. V. 38. № 2. P. 139.

- 28. *Gransbury G.K., Boulon M.-E., Petrie S. et al.* // Inorg. Chem. 2019. V. 58. № 7. P. 4230.
- 29. Старикова А.А., Чегерев М.Г., Стариков А.Г. // Коорд. химия. 2020. Т. 46. № 3. С. 172 (Starikova A.A., Chegerev M.G., Starikov A.G. // Russ. J. Coord. Chem. 2020. V. 46. № 3. P. 193). https://doi.org/10.1134/S1070328420030070
- 30. *Simaan A.J., Boillot M.-L., Carrasco R. et al.* // Chem. Eur. J. 2005. V. 11. № 6. P. 1779.
- 31. *Graf M., Wolmershäuser G., Kelm H. et al.* // Angew. Chem. Int. Ed. 2010. V. 49. № 5. P. 950.
- 32. *Carbonera C., Dei A., Létard J.-F. et al.* // Angew. Chem. Int. Ed. 2004. V. 43. № 24. P. 3136.
- 33. *Tao J., Maruyama H., Sato O.* // J. Am. Chem. Soc. 2006. V. 128. № 6. P. 1790.
- 34. *Min K.S.*, *DiPasquale A.G.*, *Golen J.A. et al.* // J. Am. Chem. Soc. 2007. V. 129. № 8. P. 2360.
- 35. *Min K.S.*, *DiPasquale A.G.*, *Rheingold A.L. et al.* // J. Am. Chem. Soc. 2009. V. 131. № 17. P. 6229.
- 36. *Alley K.G.*, *Poneti G.*, *Aitken J.B. et al.* // Inorg. Chem. 2012. V. 51. № 7. P. 3944.
- 37. *Alley K.G., Poneti G., Robinson P.S.D. et al.* // J. Am. Chem. Soc. 2013. V. 135. № 22. P. 8304.
- 38. *Poneti G., Mannini M., Cortigiani B. et al.* // Inorg. Chem. 2013. V. 52. № 20. P. 11798.
- 39. *Mulyana Y., Alley K.G., Davies K.M. et al.* // Dalton Trans. 2014. V. 43. № 6. P. 2499.
- 40. *Madadi A., Itazaki M., Gable R.W. et al.* // Eur. J. Inorg. Chem. 2015. № 30. P. 4991.
- 41. Стариков А.Г., Старикова А.А., Минкин В.И. // Докл. РАН. 2016. Т. 467. № 3. С. 300 (Starikov A.G., Starikova A.A., Minkin V.I. // Dokl. Chem. 2016. V. 467. № 1. Р. 83).
- 42. Starikova A.A., Chegerev M.G., Starikov A.G., Minkin V.I. // Comp. Theor. Chem. 2018. V. 1124. P. 15.
- 43. *Tezgerevska T., Rousset E., Gable R.W. et al.* // Dalton Trans. 2019. V. 48. № 31. P. 11674.
- 44. *Shultz D.A.*, *Bodnar S.H.*, *Vostrikova K.E.*, *Kampf J.W.* // Inorg. Chem. 2000. V. 39. № 26. P. 6091.
- 45. *Shultz D.A.*, *Vostrikova K.E.*, *Bodnar S.H. et al.* // J. Am. Chem. Soc. 2003. V. 125. № 6. P. 1607.
- 46. *Shultz D.A.*, *Kumar R.K.*, *Bin-Salamon S.*, *Kirk M.L.* // Polyhedron. 2005. V. 25. № 16–17. P. 2876.
- 47. *Kirk M.L.*, *Shultz D.A.* // Coord. Chem. Rev. 2013. V. 257. № 1. P. 218.
- 48. *Tichnell C.R., Shultz D.A., Popescu C.V. et al.* // Inorg. Chem. 2015. V. 54. № 9. P. 4466.
- Bubnov M., Cherkasova A., Teplova I. et al. // Polyhedron. 2016. V. 119. P. 317.
- Bubnov M.P., Teplova I.A., Kopylova E.A. et al. // Inorg. Chem. 2017. V. 56. № 5. P. 2426.
- 51. *Zolotukhin A.A.*, *Bubnov M.P.*, *Arapova A.V. et al.* // Inorg. Chem. 2017. V. 56. № 24. P. 14751.

- 52. Черкасова А.В., Кожанов К.А., Золотухин А.А. и др. // Коорд. химия. 2019. Т. 45. № 7. С. 404 (*Cherkasova A.V., Kozhanov K.A, Zolotukhin A.A. et al.* // Russ. J. Coord. Chem. 2019. V. 45. № 7. Р. 489). https://doi.org/10.1134/S1070328419070029
- 53. Protasenko N.A., Poddel'sky A.I., Bogomyakov A.S. et al. // Inorg. Chim. Acta. 2019. V. 489. P. 1.
- 54. *Третьяков Е.В., Овчаренко В.И.* // Успехи химии. 2009. Т. 78. № 11. С. 1051 (*Tretyakov E.V., Ovcharenko V.I.* // Russ. Chem. Rev. 2009. V. 78. № 11. P. 971).
- 55. Stable Radicals: Fundamental and Applied Aspects of Odd-electron Compounds / Ed. Hicks R. Wiley, Chichester, 2011. 588 p.
- 56. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 16. Revision A. 03. Wallingford: Gaussian, 2016.
- 57. *Tao J.M.*, *Perdew J.P.*, *Staroverov V.N.*, *Scuseria G.E.* // Phys. Rev. Lett. 2003. V. 91. № 14. P. 146401.
- 58. Staroverov V.N., Scuseria G.E., Tao J., Perdew J.P. // J. Chem. Phys. 2003. V. 119. № 23. P. 12129.
- 59. *Bannwarth A., Schmidt S.O., Peters G. et al.* // Eur. J. Inorg. Chem. 2012. № 16. P. 2776.
- 60. Cirera J., Paesani F. // Inorg. Chem. 2012. V. 51. № 15. P. 8194.
- 61. *Старикова А.А.*, *Минкин В.И.* // Коорд. химия. 2018. Т. 44. № 4. С. 229 (*Starikova A.A.*, *Minkin. V.I.* // Russ. J. Coord. Chem. 2018. V. 44. № 8. P. 483). https://doi.org/10.1134/S1070328418080079
- 62. Стариков А.Г., Старикова А.А., Чегерев М.Г., Минкин В.И. // Коорд. химия. 2019. Т. 45. № 2. С. 92 (Starikov A.G., Starikova A.A., Chegerev M.G., Minkin V.I. // Russ. J. Coord. Chem. 2019. V. 45. № 2. Р. 105). https://doi.org/10.1134/S1070328419020088
- 63. *Cirera J.*, *Via-Nadal M.*, *Ruiz E.* // Inorg. Chem. 2018. V. 57. № 22. P. 14097.
- 64. *Старикова А.А.*, *Метелица Е.А.*, *Минкин В.И.* // Коорд. химия. 2019. Т. 45. № 6. С. 350 (*Starikova A.A.*, *Metelitsa E.A.*, *Minkin V.I.* // Russ. J. Coord. Chem. 2019. V. 45. № 6. P. 411). https://doi.org/10.1134/S1070328419060095
- 65. Стариков А.Г., Чегерев М.Г., Старикова А.А., Минкин В.И. // Коорд. химия. 2019. Т. 45. № 10. С. 579 (Starikov A.G., Chegerev M.G., Starikova A.A., Minkin V.I. // Russ. J. Coord. Chem. 2019. V. 45. № 1. P. 675). https://doi.org/10.1134/S1070328419090082
- 66. *Noodleman L.* // J. Chem. Phys. 1981. V. 74. № 10.
- P. 5737. 67. *Shoji M., Koizumi K., Kitagawa Y. et al.* // Chem. Phys.
- Lett. 2006. V. 432. № 1–3. P. 343. 68. Chemcraft. Version 1.7. 2013: http://www.chemcraft-prog.com.
- 69. *Minkin V.I.*, *Starikov A.G.*, *Starikova A.A.* // Pure Appl. Chem. 2018. V. 90. № 5. P. 811.
- 70. *Bally T.* // Nature Chem. 2010. V. 2. № 3. P. 165.