УДК 546.883:539.26

Посвящается памяти академика И.И. Моисеева

ЦИКЛОМЕТАЛЛИРОВАНИЕ ДИМЕТИЛАМИДНОГО ЛИГАНДА В РЕАКЦИИ Та(NMe₂)₅ С CS₂

© 2021 г. П. А. Петров^{1,} *, А. В. Рогачев¹, И. В. Ельцов², Т. С. Сухих¹, Ю. А. Ларичева¹, П. А. Абрамов¹, М. Н. Соколов¹

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия ²Новосибирский государственный университет, Новосибирск, Россия *e-mail: panah@niic.nsc.ru Поступила в редакцию 02.04.2021 г. После доработки 05.05.2021 г. Принята к публикации 06.05.2021 г.

При взаимодействии Ta(NMe₂)₅ с CS₂ выделен азаметаллациклопропановый комплекс состава [Ta(^{Me}Dtc)₃(η^2 -CH₂NMe)] (I, ^{Me}Dtc = диметилдитиокарбамат), охарактеризованный методом рентгеноструктурного анализа в бессольватной форме и в виде сольвата с толуолом (CCDC № 2005837 (I), 2049693 (I · 0.5C₇H₈)), а также ЯМР-спектроскопией и расчетами методом DFT.

Ключевые слова: тантал, амиды, дитиокарбаматы, рентгеноструктурный анализ **DOI:** 10.31857/S0132344X21100066

Амилы металлов играют важную роль в современной координационной химии и являются предшественниками множества других лигандов [1]. Кроме того, диалкиламиды (чаще всего диметиламиды) ранних переходных металлов и их разнолигандные производные – предшественники тонких пленок нитридов металлов, получаемых методом химического осаждения из газовой фазы (Chemical vapor deposition, CVD) [2]. Наличие примеси углерода в полученных пленках (как свободного, так и связанного с металлом) объяснялось образованием в процессе осаждения азаметаллациклопропанов за счет элиминирования протона метильной группы. Кроме того, как предполагается, азаметаллациклопропановые комплексы являются интермедиатами ряда каталитических реакций, например гидроаминирования алкенов [3, 4]. Было структурно охарактеризовано несколько комплексов ранних переходных металлов с дианионом CH₂NMe²⁻, координированным как терминально, так и по мостиковому типу [4-8]. Настоящая работа посвящена синтезу и исследованию азаметаллациклопропанового комплекса тантала [Ta(^{Me}Dtc)₃(η^2 -CH₂NMe)].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез проводили в инертной атмосфере с использованием стандартной аппаратуры Шленка. Растворители подвергали обезвоживанию и дегазации кипячением и перегонкой в атмосфере аргона с использованием соответствующих осушителей [9]. CS₂ (Acros) сушили над молекулярными ситами 3A, после чего дегазировали. Спектры ЯМР регистрировали на спектрометре Bruker Avance III 500 с рабочей частотой 500.03 МГц для ядер ¹H и 125.73 МГц для ядер ¹³С; в качестве стандартов использовали сигналы растворителя ($\delta_{\rm H} =$ = 3.58 м.д., $\delta_{\rm C} = 67.21$ м.д.) [10]. ИК-спектры в таблетках КВг записывали на приборе SCIMITAR FTS 2000. Элементный анализ выполняли в Аналитической лаборатории ИНХ СО РАН.

Синтез [Та(^{Me}Dtc)₃(η^2 -CH₂NMe)] (I). 443 мг (1.10 ммоль) Та(NMe₂)₅ (Далхим, Россия) помещали в сосуд Шленка и последовательно конденсировали в него при пониженном давлении и охлаждении 20 мл толуола и 200 мкл (253 мг, 3.32 ммоль) CS₂. После самопроизвольного отогревания смеси от -196°С до комнатной температуры выпадал светлый осадок, цвет которого постепенно менялся на коричневый. Полученную суспензию нагревали при 65°С в течение суток, после чего охлаждали и упаривали досуха. Остаток экстрагировали 15 мл толуола, желтый экстракт фильтровали через стеклянный фильтр (G4) и запаивали в Г-образную ампулу. После медленного упаривания растворителя в свободном колене ампулы образовались желтые кристаллы $I \cdot 0.5C_7H_8$, пригодные для РСА. Выход 90 мг (15%).

Найдено, %:	C 22.15;	H 3.85;	N 9.50. ¹	
Для С ₁₁ Н ₂₃ N ₄ S ₆ Ta				
вычислено, %:	C 22.60;	Н 3.97;	N 9.58.	

ЯМР ¹H (500 МГц; ТГФ; δ, м.д.): 2.22 (с., 2H, CH₂), 3.27 (м., 18H, CH₃^{Dtc}), 3.96 (с., 3H, CH₃). ЯМР ¹³C (126 МГц; ТГФ; δ, м.д.): 39.0 (CH₃^{Dtc}), 48.2 (<u>C</u>H₃NCH₂), 56.0 (CH₃N<u>C</u>H₂), 204.7 (Me₂N<u>C</u>S₂), 206.7 (Me₂N<u>C</u>S₂).

ИК-спектр (КВг; v, см⁻¹): 2926 сл, 2855 сл, 1533 о.с, 1447 ср, 1395 о.с, 1247 с, 1147 с, 1049 ср, 996 ср, 982 ср, 899 сл, 574 сл.

РСА. Монокристаллы бессольватной формы I получены в качестве примеси в ранее описанном синтезе $[Ta(^{Me}Dtc)_4](^{Me}Dtc) \cdot C_7H_8$ [11]. Измерения I и I · 0.5С₇H₈ проведены по стандартной методике на автоматическом четырехкружном дифрактометре Bruker-Nonius X8 APEX (двухкоординатный CCD детектор, $\lambda = 0.71073$ Å, графитовый монохроматор). Интенсивности отражений измерены методом φ-сканирования узких (0.5°) фреймов. Поглощение учтено эмпирически (SADABS) [12]. Структуры расшифрованы по программе SHELXT [13] и уточнены по программе SHELXL [14] в анизотропном приближении для неводородных атомов с использованием программной оболочки Olex2 [15]. Атомы водорода локализованы геометрически и уточнены в приближении жесткого тела. Кристаллографические характеристики комплекса и детали дифракционного эксперимента приведены в табл. 1. Кристаллографические данные депонированы в Кембриджском банке структурных данных (ССDС № 2005837 (I) и 2049693 (I · 0.5С₇H₈)) и могут быть получены по адресу: http://www.ccdc.cam.ac.uk/ conts/retrieving.html.

Квантово-химические расчеты проводили методом DFT в программном комплексе ADF2019 [16, 17] с использованием полноэлектронного базиса TZ2P и функционалов VWN [18] (приближение локальной плотности) и BP86 [19–21] (обобщенное градиентное приближение) и с учетом релятивистских эффектов методом ZORA [22].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Внедрение CS_2 по связи M-N в амидах ранних переходных металлов является общим методом синтеза их дитиокарбаматов [23, 24]. Ранее по реакции $Ta(NMe_2)_5$ с избытком CS_2 мы получили два сольвата $[Ta(^{Me}Dtc)_4](^{Me}Dtc)$ с додекаэдрическим окружением центрального атома [11]. Наряду с основным продуктом – $[Ta(^{Me}Dtc)_4](^{Me}Dtc)$ – в реакции $Ta(NMe_2)_5$ и CS_2 в толуоле был выделен $[Ta(^{Me}Dtc)_3(\eta^2-CH_2NMe)]$ (I) в качестве побочного с низким выходом. Очевидно, что его образование является следствием стерической перегрузки координационного узла в промежуточном продукте реакции $[Ta(^{Me}Dtc)_3(NMe_2)_2]$ с последующим элиминированием Me_2NH (схема 1).

Комплекс I кристаллизуется в гексагональной пространственной группе $P6_1$. Геометрия координационного полиэдра близка к додекаэдрической, зафиксированной ранее в катионах [Ta(^{Me}Dtc)₄]⁺ [11]. Строение комплекса I представлено на рис. 1. Углы между плоскостями хелатных циклов соседних лигандов (^{Me}Dtc⁻ и CH₂NMe²⁻) близки к 90° и лежат в интервале 88.1°–92.7°. Для каждого дитиокарбаматного лиганда наблюдается два не-

сколько различающихся расстояния Ta–S (2.59 и 2.64 Å), что характерно для данного класса лигандов (табл. 2). Хелатные углы \angle STaS (66.93(10)°– 67.36(9)°) также близки к известным из литературы. Расстояние Ta(1)–N(4) (1.955(10) Å) несколько меньше такового в Ta(NMe₂)₅ (средн. 2.017 Å); расстояние Ta(1)–C(10) равно 2.206(11) Å. Отличительной особенностью I является малый хелатный угол \angle N(4)Ta(1)C(10) (39.1(4)°), который близок к значениям для других комплексов с терминально

 $^{^1}$ Анализ выполнен для образца I \cdot 0.5C $_7$ H $_8$, высушенного в динамическом вакууме до постоянной массы.

Таблица 1. Кристаллографические данные и параметры уточнения структур I и I · 0.5C₇H₈

	Значение				
Параметр	Ι	$I \cdot 0.5C_7H_8$			
Брутто-формула	$C_{11}H_{23}N_4S_6Ta$	$C_{29}H_{54}N_8S_{12}Ta_2$			
M	584.64	1261.42			
Сингония, пр. гр.	Гексагональная, <i>Р</i> 6 ₁	Моноклинная, <i>Р</i> 2 ₁ / <i>с</i>			
Температура, К	296(2)	150(2)			
a, Å	9.813(3)	13.8012(15)			
b, Å	9.813(3)	11.7849(12)			
c, Å	39.048(13)	29.638(3)			
α, град	90	90			
β, град	90	102.878(4)			
ү, град	120	90			
$V, Å^3$	3256(2)	4699.3(9)			
Ζ	6	4			
μ, мм ⁻¹	5.641	5.218			
Размер кристалла, мм	$0.21\times0.12\times0.12$	$0.3 \times 0.25 \times 0.2$			
<i>F</i> (000)	1716.0	2488.0			
Область сбора данных 20, град	4.794-51.626	2.82-52.744			
Диапазон индексов h, k, l	$-11 \le h \le 7,$	$-17 \le h \le 17,$			
	$-3 \le k \le 12,$	$-14 \le k \le 14,$			
	$-47 \le l \le 37$	$-37 \le l \le 37$			
Число измеренных, независимых и наблюдаемых ($I > 2\sigma(I)$) отражений	7792, 3549, 3136	48169, 9611, 8347			
GOOF	0.986	1.044			
R _{int}	0.0448	0.0304			
$R_1, wR_2 (I \ge 2\sigma(I))$	$R_1 = 0.0367, wR_2 = 0.0609$	$R_1 = 0.0387, wR_2 = 0.0967$			
R_1, wR_2 (все отражения)	$R_1 = 0.0444, wR_2 = 0.0635$	$R_1 = 0.0456, wR_2 = 0.1021$			
Параметр Флэка	0.012(12)				
Число уточняемых параметров	199	463			
Число ограничений	1	0			
$\Delta \rho_{\rm max} / \Delta \rho_{\rm min}$, $e {\rm \AA}^{-3}$	0.64/-0.51	2.71/-1.42			

координированным лигандом CH₂NMe^{2–} (39.4°– 40.0°). Для сравнения, N-протонированный азаметаллациклопропановый комплекс молибдена(IV) [Mo(Me₂Pz)₃(HMe₂Pz)(η^2 -CH₂NHMe)] (II; HMe₂Pz = = 3,5-диметилпиразол) характеризуется столь же малым хелатным углом лиганда CH₂NHMe[–] (39.0(2)°) [25]. Вместе с тем расстояние Mo–N (2.145(3) Å) в II сильно увеличено по сравнению с Ta–N в I (1.955(10) Å) при практически одинаковых ионных радиусах Mo⁴⁺ и Ta⁵⁺. Еще одним отличием является сумма углов при азаметаллациклопропановом атоме N: для I она составляет 358.0° и однозначно указывает на отсутствие протона при данном атоме, тогда как для II она (без учета атома H) равна 318.5°.

Комплекс I был получен с несколько большим выходом (15%) при взаимодействии $Ta(NMe_2)_5$ с CS_2 в соотношении 1 : 3 в толуоле. Несмотря на

соотношение реагентов, в данной реакции (как и при избытке CS_2 , см. [11]) преимущественно образуется малорастворимый $[Ta(^{Me}Dtc)_4](^{Me}Dtc) \cdot 0.5C_7H_8$. После его удаления фильтрованием из толуольного раствора были получены кристаллы сольвата I $\cdot 0.5C_7H_8$, в составе которого присутствуют две кристаллографически независимые молекулы I. Геометрические характеристики комплекса в сольватной и бессольватной формах близки (табл. 2). Данные ЯМР полностью согласуются с кристаллографическими данными.

Для исследования особенностей электронной структуры комплекса I были проведены квантово-химические расчеты. Сравнение усредненных значений оптимизированных структурных параметров с рентгеноструктурными данными представлено в табл. 3. Рассчитанные межатомные расстояния хорошо согласуются с данными PCA.

Рис. 1. Строение комплекса I (тепловые эллипсоиды 30%-ной вероятности, атомы водорода не показаны).

При оптимизации геометрии происходит незначительное повышение симметрии оптимизированной структуры по сравнению с исходной. Каждый из лигандов в оптимизированной структуре плоский (без учета атомов водорода), причем фрагмент CH₂NMe^{2–} лежит в одной плоскости с противолежащим дитиокарбаматом. Это приводит к ситуации, в которой из-за повышения симметрии орбитали НОМО и НОМО-1 можно рассматривать как практически вырожденные (рис. 2). Они близки по энергии (разница составляет менее 0.05 эВ), похожи по форме, но различаются по составу (табл. 4). Однако в формировании обеих орбиталей принимают участие как металл, так и (в той

I		$I \cdot 0.5C_7H_8$					
1		моле	кула 1	молекула 2			
Связь	$d, \mathrm{\AA}$	Связь	<i>d</i> , Å	Связь	$d, \mathrm{\AA}$		
Ta(1)–N(4)	1.955(10)	Ta(1)–N(7)	1.925(5)	Ta(2)–N(8)	1.968(6)		
Ta(1) - C(10)	2.206(11)	Ta(1) - C(71)	2.169(6)	Ta(2)–C(81)	2.172(8)		
Ta(1) - S(4)	2.587(3)	Ta(1) - S(11)	2.5627(14)	Ta(2)–S(41)	2.6185(15)		
Ta(1) - S(10)	2.586(3)	Ta(1)-S(12)	2.6001(15)	Ta(2)-S(42)	2.5913(16)		
Ta(1) - S(2)	2.594(3)	Ta(1)-S(21)	2.5667(15)	Ta(2)-S(51)	2.6134(16)		
Ta(1) - S(5)	2.636(3)	Ta(1)-S(22)	2.6403(15)	Ta(2)-S(52)	2.5437(15)		
Ta(1) - S(3)	2.639(3)	Ta(1) - S(31)	2.5885(16)	Ta(2)-S(61)	2.5968(16)		
Ta(1)-S(6)	2.644(3)	Ta(1) - S(32)	2.6044(15)	Ta(2)-S(62)	2.5706(17)		
N(4)-C(10)	1.412(15)	N(7)–C(71)	1.318(10)	N(8)–C(81)	1.330(11)		
N(4)–C(11)	1.430(15)	N(7)–C(72)	1.466(8)	N(8)-C(82)	1.441(11)		
Угол	ω, град	Угол	ω, град	Угол	ω, град		
S(1)Ta(1)S(5)	66.93(10)	S(11)Ta(1)S(12)	67.05(5)	S(42)Ta(2)S(41)	66.44(5)		
S(4)Ta(1)S(3)	67.09(11)	S(21)Ta(1)S(22)	68.34(5)	S(52)Ta(2)S(51)	68.03(5)		
S(2)Ta(1)S(60)	67.36(9)	S(31)Ta(1)S(32)	66.44(6)	S(62)Ta(2)S(61)	66.43(5)		
N(4)Ta(1)C(10)	39.1(4)	N(7)Ta(1)C(71)	36.9(3)	N(8)Ta(2)C(81)	37.1(3)		
N(4)C(10)Ta(1)	60.8(6)	N(7)C(71)Ta(1)	61.4(3)	N(8)C(81)Ta(2)	63.1(4)		
Ta(1)N(4)C(10)	80.1(6)	C(71)N(7)Ta(1)	81.7(4)	C(81)N(8)Ta(2)	79.8(4)		

Таблица 2. Основные длины связей (Å) и углы (град) в структурах I и I · 0.5С7H₈

или иной степени) все лиганды. Этот смешанный характер НОМО и НОМО-1 кардинально отличается от формы и состава орбитали НОМО-2, которая практически полностью центрирована на атомах серы дитиокарбаматных лигандов с небольшим вкладом от атома азота фрагмента $CH_{2}NMe^{2-}$. Низшие вакантные орбитали LUMO и LUMO+1 не вырождены, обе являются лигандцентрированными, однако в LUMO, в отличие от LUMO+1. вклад вносят все лиганды. включая азаметаллациклопропановый фрагмент. Состав НОМО и НОМО-1 преимущественно отвечает связыванию *d*-орбиталей Та с соответствующими орбиталями лиганда CH₂NMe²⁻. Орбитали, отвечающие за связывание с атомами серы, располагаются ниже по энергии и на рис. 2 не показаны.

Топологический анализ электронной плотности методами ELF и QTAIM [26, 27] был выполнен для уточнения характера связывания Та с лигандами обоих типов и связывания внутри азаметаллациклопропанового фрагмента (табл. 5). Из данных ELF и анализа критических точек следует, что для всех лигандов связи металл–лиганд носят характер донорно-акцепторного взаимодействия (координационная связь). Величина электронной плотности в критических точках связи небольшая, значение $\nabla^2 \rho_{\rm cp} > 0, V(r) < 0, H(r) < 0. Критические точки во$

Таблица 3. Средние длины связей (Å) в I по данным РСА (бессольватная форма) и DFT-расчетов

Связь	PCA	DFT
Ta—S	2.614	2.612
C–S	1.729	1.722
$N-CS_2$ (Dtc)	1.330	1.350
$N-CH_3$ (Dtc)	1.466	1.458
C-N*	1.412	1.416
Ta–N*	1.955	1.939
Ta–C*	2.206	2.207

* Длины связей в азаметаллациклопропановом фрагменте.

всех связях, включающих атом Та, смещены по линии связывания к атому металла.

Таким образом, выделен азаметаллациклопропановый комплекс тантала [Ta(^{Me}Dtc)₃(η²-CH₂NMe)], охарактеризованный методами PCA, ЯМР- и ИК-спектроскопии Его электронная структура определена квантово-химическими расчетами методом DFT.

Авторы заявляют об отсутствии конфликта интересов.

Рис. 2. Схема энергетических уровней и граничные орбитали комплекса I (а); проекция НОМО и НОМО-1 (б) (для более наглядной демонстрации сигма-связывания атомы водорода не показаны).

ЦИКЛОМЕТАЛЛИРОВАНИЕ ДИМЕТИЛАМИДНОГО ЛИГАНДА

Орбитац	Энергия	Состав, %						
оронталь		Та	C	N	S	Н		
LUMO+1	-1.62		57.03	18.70	19.27	1.02		
LUMO	-1.74	25.78	34.11	21.78	5.47	0.90		
НОМО	-4.67	14.69	26.98	9.58	26.67	4.03		
HOMO-1	-4.72	11.89	9.07	38.14	13.44	15.91		
HOMO-2	-4.92			2.98	89.25			

Таблица 4. Энергия (эВ) и вклады АО в МО комплекса І

Таблица 5. Значения топологических дескрипторов теории QTAIM*

Связь	Длина, Å	BP, Å	ρ_{cp}	$\nabla^2 \rho_{cp}$	$G_{\rm cp}$	V _{cp}	$H_{\rm cp}$	H_{cp}/ρ_{cp}	$ V_{\rm cp} /G_{\rm cp}$	$ V_{\rm cp} $
Ta-N**	1.939	1.949	0.151	0.497	0.205	-0.286	-0.081	-0.537	1.394	0.286
Ta-C**	2.207	2.216	0.097	0.161	0.086	-0.131	-0.045	-0.468	1.530	0.131
N-C**	1.416	1.418	0.274	-0.572	0.236	-0.614	-0.379	-1.384	2.607	0.614
Ta-S	2.645	2.646	0.056	0.104	0.041	-0.056	-0.015	-0.265	1.362	0.056
Ta-S	2.592	2.593	0.062	0.114	0.047	-0.065	-0.018	-0.297	1.392	0.065
Ta-S	2.639	2.641	0.057	0.105	0.041	-0.057	-0.015	-0.268	1.366	0.057
Ta-S	2.581	2.583	0.064	0.115	0.048	-0.068	-0.020	-0.309	1.408	0.068
Ta-S	2.587	2.588	0.063	0.115	0.047	-0.066	-0.019	-0.299	1.394	0.066
Ta-S	2.628	2.629	0.056	0.126	0.044	-0.057	-0.013	-0.232	1.292	0.057

* ρ – электронная плотность; $\nabla^2 \rho$ – ее лапласиан; *V*, *G*, *H* – плотности потенциальной, кинетической [28] и полной энергий; значения ρ и $\nabla^2 \rho$ приведены в относительных единицах (e/a_0^3 and e/a_0^5 соответственно).

** Связи в азаметаллациклопропановом фрагменте.

ФИНАНСИРОВАНИЕ

Работа выполнена при поддержке РАН (бюджетная программа V55.1.1).

СПИСОК ЛИТЕРАТУРЫ

- 1. Lappert M., Protchenko A., Power P., Seeber A. Metal Amide Chemistry. Wiley, 2008.
- 2. Winter C.H. // Aldrichimica Acta. 2000. V. 33. P. 3.
- Nugent W.A., Ovenall D.W., Holmes S.J. // Organometallics. 1983. V. 2. P. 162.
- Eisenberger P., Ayinla R.O., Lauzon J.M.P., Schafer L.L. // Angew. Chem., Int. Ed. 2009. V. 48. P. 8361.
- Ahmed K.J., Chisholm M.H., Folting K., Huffman J.C. // Chem. Commun. 1985. P. 152.
- 6. *Cai H., Chen T., Wang X. et al.* // Chem. Commun. 2002. P. 230.
- Wang H., Wang Y., Chan H.-S., Xie Z. // Inorg. Chem. 2006. V. 45. P. 5675.
- Zhang F., Song H., Zi G. // Dalton Trans. 2011. V. 40. P. 1547.
- Гордон А., Форд Р. Спутник химика. М.: Мир, 1976. (Gordon A., Ford R., The Chemist's Companion: A Handbook of Practical Data, Techniques, and References, N.Y.: Wiley, 1972).
- Fulmer G.R., Miller A.J.M., Sherden N.H. et al. // Organometallics. 2010. V. 29. P. 2176.
- 11. Петров П.А., Рогачев А.В., Компаньков Н.Б. и др. // Коорд. химия. 2017. Т. 43. № 10. С. 617 (Petrov P.A., Rogachev. A.V., Kompankov N.B. et al. // Russ. J.

КООРДИНАЦИОННАЯ ХИМИЯ том 47 № 10 2021

Coord. Chem. 2017. V. 43. P. 652). https://doi.org/10.1134/S1070328417100074

- APEX2 (version 1.08), SAINT (version 7.03), SADABS (version 2.11), SHELXTL (version 6.12). Madison (WI, USA): Bruker AXS Inc., 2004.
- 13. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
- 14. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
- 15. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
- 16. *Velde G.T., Bickelhaupt F.M., Baerends E.J. et al.* // J. Comput. Chem. 2001. V. 22. P. 931.
- 17. ADF 2017. SCM. Theoretical Chemistry. Amsterdam (The Netherlands): Vrije Universiteit. http://www.scm. com.
- Vosko S.H., Wilk L., Nusair M. // Can. J. Phys. 1980. V. 58. P. 1200.
- 19. Becke A.D. // Phys. Rev. A. 1988. V. 38. P. 3098.
- 20. Perdew J.P. // Phys. Rev. B. 1986. V. 33. P. 8822.
- 21. Perdew J.P. // Phys. Rev. B. 1986. V. 34. P. 7406.
- 22. Lenthe E.V., Ehlers A.E., Baerends E.J. // J. Chem. Phys. 1999. V. 110. P. 8943.
- 23. Bradley D.C., Gitlitz M.H. // Chem. Commun. 1965. P. 289.
- 24. Bradley D.C., Gitlitz M.H. // J. Chem. Soc. A. 1969. P. 1152.
- Most K., Mösch-Zanetti N.C., Vidovic D., Magull J. // Organometallics. 2003. V. 22. P. 5485.
- 26. *Bader R.F.W.* Atoms in Molecules. A Quantum Theory. Clarendon, Oxford, 1990.
- 27. *Popelier P.* Atoms in Molecules. An Introduction. Harlow: Prentice Hall, 2000.
- 28. Abramov Yu.A. // Acta Crystallogr. A. 1997. V. 53. P. 264.