УДК 544.431.24

Памяти выдающегося ученого Ильи Иосифовича Моисеева посвящается

ОСОБЕННОСТИ КАТАЛИТИЧЕСКОГО ГИДРИРОВАНИЯ КАРБОЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ НА ОСНОВЕ НОРБОРНАДИЕНА

© 2021 г. В. В. Замалютин^{1, *}, Е. А. Кацман¹, В. Я. Данюшевский¹, В. Р. Флид^{1, **}, В. В. Подольский ¹, А. В. Рябов¹

¹МИРЭА — Российский технологический университет, Институт тонких химических технологий им. М.В. Ломоносова, Москва, Россия *e-mail: zamalyutin@mail.ru ** e-mail: vitaly-flid@yandex.ru Поступила в редакцию 22.03.2021 г. После доработки 12.05.2021 г. Принята к публикации 13.05.2021 г.

Исследовано газо- и жидкофазное гидрирование бицикло[2.2.1]гепта-2,5-диена (норборнадиена) (НБД) в присутствии промышленного палладиевого катализатора Pd/γ -Al₂O₃ (ПК-25) в среде *н*-гептана при 75–200°С. Идентифицированы продукты реакции, установлены основные маршруты ее протекания, изучен материальный баланс. Подтвержден эффект предпочтительной адсорбции НБД по сравнению с остальными компонентами системы на активном палладиевом центре. Рассмотрена связь между возможными способами координации НБД и строением продуктов. На основании совокупности экспериментальных и теоретических данных предложена параллельно-последовательная схема механизма процесса.

Ключевые слова: НБД и продукты его гетерогенного гидрирования, параллельно-последовательный механизм, палладиевый катализатор, активный центр, теории гетерогенного катализа **DOI:** 10.31857/S0132344X21100091

Теория адсорбции И. Ленгмюра [1, 2] создала условия для качественного понимания и количественного описания кинетики гетерогенно-каталитических химических реакций (ГКХР), а также многих ее закономерностей, включая конкурентное торможение субстратами или продуктами [3–6]. Необходимость адекватной количественной интерпретации кинетических результатов для некоторых сложных ГКХР привела к допущению о множественной адсорбции молекул реактантов на одном активном центре (АЦ) [7]. Такое предположение способно придать кинетическим моделям большую степень гибкости, чем они имели до этого на основе классических положений о механизмах ГКХР.

Одной из общеизвестных систем взглядов на механизмы ГКХР является рассмотрение их особенностей, основанных на аналогиях с гомогенным катализом. Они включают сходные черты по промежуточным продуктам реакции, по характеру связывания реагентов активным центром (например, координация—адсорбция), по роли среды (например, растворитель или поверхность) и т.п. Большой вклад в развитие таких представлений внесли классические работы И.И. Моисеева с сотрудниками по гомогенному катализу на гигантских кластерах металлов, близких по размеру и каталитическим свойствам к частицам металла на поверхности носителя [4, 8–10].

С другой стороны, адекватными примерами реализации множественной адсорбции являются работы по квантово-химическому моделированию взаимодействия фенилацетилена с Рd-поверхностью (111) [11, 12], а также экспериментальные исследования кинетики и особенностей механизма селективного гидрирования фенилацетилена в присутствии Pd/C [13]. Это явление наблюдается при деоксигенации жирных кислот в жидкой фазе на нанесенных палладиевых и никелевых катализаторах [14–16].

Реакции селективного гидрирования широко применяются в нефтехимической промышленности для очистки этилена и стирола от примесей ацетилена и фенилацетилена в газовой и жидкой фазах соответственно [17—19].

Несмотря на наличие значительного количества публикаций по ГКХР, имеющихся данных далеко не всегда достаточно для глубокого понимания строения и функционирования АЦ гетерогенного катализатора (ГК) и направленного подбора условий гидрирования, что необходимо при построении адекватных кинетических моделей.

Понимание закономерностей гетерогенного гидрирования бицикло[2.2.1]гепта-2,5-диена (норборнадиена) (НБД) может стимулировать не только развитие представлений о множественной адсорбции субстратов на одном АЦ ГК, но и создать предпосылки для селективного получения напряженных насыщенных карбоциклических структур с сохранением углеродного каркаса.

Двойные связи в НБД обладают повышенной реакционной способностью из-за особенностей пространственного строения и наличия гомосопряжения. Соединения, получаемые на основе НБД, в том числе продукты гидрирования, — перспективные полупродукты в органическом синтезе, в частности компоненты новых перспективных полимерных материалов или топлив с высокими удельными энергетическими показателями [20].

Практическая целесообразность разработки катализаторов и условий проведения реакций жидкофазного гидрирования напряженных полициклических соединений определяется необходимостью сохранения структуры углеродного каркаса, что актуально для НБД и его производных. Поэтому действие катализатора и условия гидрирования должны быть достаточно мягкими. Разработка таких катализаторов и изучение механизма их действия осуществляется на основе систематических структурных и кинетических исследований. Результаты предварительных экспериментов по газофазному гидрированию НБД при 100-200°С позволяют высказать качественные аналогии, наблюдаемые для некоторых реакций с участием ацетиленов и лиенов на нанесенных паллалиевых ГК. Несмотря на сравнительно большую технологичность гидрирования в газовой фазе, эти процессы приемлемы только для первых представителей рядов – НБД и бицикло[2.2.1]гепт-2-ен (норборнен, НБЕН). Более тяжелые норборненовые производные, такие как дициклопентадиен, 5-винилнорборнен, пента- и гексациклические димеры НБД и многие другие, могут участвовать только в жидкофазных процессах [21].

Цель настоящего исследования — изучение особенностей жидкофазного гидрирования НБД в реакторах периодического и проточного типов, а также создание предпосылок для разработки кинетической модели, адекватно описывающей превращение НБД в бицикло[2.2.1]гептан (норборнан, **НБАН**) в присутствии палладиевого катализатора корочкового типа.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали НБД, который перед опытами сушили над натриевой проволокой и перегоняли, а также растворители *н*-гептан (эталонный, ХИММЕД) и *н*-нонан – внутренний стандарт (для хроматографии "х. ч.", РЕАХИМ) – без дополнительной очистки. Газообразные водород марки А чистотой 99.99% ГОСТ 3022-80 и азот марки "ос. ч." (1 сорт, чистотой 99.999%) применяли без дополнительной очистки.

В качестве ГК использовали промышленный катализатор ПК-25 (ТУ 38.102178-96) (ЗАО "Промкатализ"), применяющийся для селективного гидрирования (удаления) примесей ацетилена и диеновых углеводородов в жидких и газообразных продуктах пиролиза [22].

Методика восстановления катализатора ПК-25 в токе H_2 и анализ продуктов гидрирования НБД в проточном реакторе 1 и в реакторе периодического действия 2. Реакторы 1 (объем рабочей зоны 3 см³) или 2 (объем 100 см³) продували водородом (25°C, 20 мин). Навеску катализатора ПК-25 (0.50–1.50 г) восстанавливали в токе водорода (4 л/ч) в течение 180 мин при температурах опытов (100–200°С) в 1 или 75°С в 2. Визуально наблюдали почернение гранул катализатора.

Для идентификации всех компонентов смеси использовали хроматомасс-спектрометр Agilent 5973N с приставкой Agilent 6890 (тип ионизации – электронный удар, колонка Agilent 122-5536 DB-5ms).

Анализ реакционных проб проводили на хроматографе Кристалл 2000 (колонка VS-101 50 м × × 0.2 мм, фаза 100%-ный диметилполисилоксан). Время анализа 27 мин; температура детектора и испарителя 180°С; начальная температура колонки 70°С; температурный режим колонки 70°С (10 мин) – 15°С (мин) – 250°С (3 мин); газноситель гелий; поток 0.8 мл/мин; деление потока 1 : 125. ГЖХ (газо-жидкостная хроматография)анализ исходного НБД показал наличие в нем ~5% НБЕН. Эти данные учитывали при анализе проб, отобранных в ходе эксперимента. Обработку результатов анализа проводили с помощью программы Хроматэк-аналитик методом внутреннего стандарта по *н*-нонану.

Методика проведения кинетических экспериментов в реакторе 1. Проточный кварцевый реактор (реакционный объем 3 см³) состоит из нескольких частей. В верхнюю часть, снабженную электрообогревом, загружали катализатор. Вторая и третья части реактора представляют собой шариковый холодильник и холодильник-сепаратор. В нижней части находится колба-приемник, помещенная в ледяную баню.

В верхнюю часть реактора непрерывно подавали смесь водорода и жидких реагентов с помощью перистальтического насоса. В колбе-приемнике в те-

ЗАМАЛЮТИН и др.

Условия опыта	Опыт 1	Опыт 2	Опыт 3	Опыт 4	Опыт 5
Температура реактора, °С	200	155	100	125	100
Время опыта, мин	150	150	120	120	120
Расход по H ₂ (25°C), л/ч	2.4	2.4	2.4	4.86	4.86
Расход по исходной смеси, мл/ч	9.52	9.52	9.52	17.6	24.1

Таблица 1. Условия газофазного гидрирования НБД в проточном реакторе

чение опыта собирается жидкая фракция, содержащая продукты гидрирования. Собранный катализат в конце эксперимента анализировали методом ГЖХ.

Методика проведения кинетических экспериментов в реакторе 2. При изучении кинетики жидкофазного гидрирования НБД для обеспечения интенсивного перемешивания использовали вибростенл. на который устанавливался термостатируемый реактор периодического действия объемом 100 мл с обратным холодильником и пробоотборником в нижней части реактора. Реактор соединяли с газометром, наполненным водородом. Контроль за ходом экспериментов осуществляли методами ГЖХанализа реакционных проб и волюмометрически по поглощению водорода. По результатам анализа для каждого эксперимента рассчитывали полный материальный баланс. Отбор проб осуществляли без нарушения реакционного режима. Их количество определяли условиями статистической обработки результатов с целью получения адекватной информации. Конверсия реагентов в кинетических экспериментах достигала 100%.

Специальными опытами подобраны режимы перемешивания. При интенсивности встряхивания выше 380 мин⁻¹ обеспечивается протекание процесса без заметных диффузионных ограничений. С этой же целью оптимизировали форму и размеры гранул катализатора (0.1–0.2 мм).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для подбора условий полного гидрирования НБД в среде н-гептана в проточном реакторе и стабильности катализатора проведена серия опытов в токе водорода в интервале температур 100-200°С при варьировании расхода водорода и реагентов (табл. 1). Время контакта реакционной смеси составляло 0.1–0.3 ч. Результаты ГЖХ-анализа на выходе из реактора приведены в табл. 2. Основными продуктами являются НБАН (84-92%) и трицикло[2.2.1.0^{2,6}]гептан (нортрициклан, **HTAH**) (8-10%), а также некоторое количество НБЕН (1.5-5%) или его полное отсутствие. Другие соединения не обнаружены. Катализатор после 20-кратного использования не теряет своей активности. Таким образом, подобранные условия и режимы гидрирования позволяют полностью избегать деструкции углеродного каркаса в норборнановых структурах и сохранять активность катализатора на протяжении длительного времени.

Из результатов газофазного гидрирования НБД в проточном реакторе следует, что при полной конверсии НБД наблюдается высокая селективность по НБАН, которая возрастает с уменьшением температуры (табл. 2, опыты 1–3). При увеличении расхода по сырью (табл. 2, опыт 5) выход НБЕН как промежуточного продукта гидрирования НБД в конечной смеси повышается и достигает 5%. Во всех опытах наблюдается образование НТАН (до 10%), выход которого повышается с ростом температуры и не зависит от скорости подачи сырья (табл. 1, 2).

Несмотря на то что НТАН является минорным продуктом, механизм его образования представляет интерес с точки зрения вариативности способов координации НБД на активном центре катализатора. Теоретически можно допустить, что НТАН образуется при присоединении атомов водорода в положения 2 и 6 молекулы НБД, а также при изомеризации НБЕН Возможные превращения НБД в ходе газофазного гидрирования представлены на схеме 1.

Схема 1.

Для проверки этих гипотез проведен квантово-химический анализ вероятных превращений НБД и продуктов его гидрирования. При оптимизации геометрии и расчета термодинамических характеристик всех компонентов реагирующей системы использовали пакет квантово-химических программ Gaussian 09W (метод MP2/6-311G(d,p)). Для всех реакций рассчитаны величины ΔG° в газовой фазе (табл. 3).

Состав исходной смеси, % (по данным ГЖХ-анализа)						
Компонент	Опыт 1	Опыт 2	Опыт 3	Опыт 4	Опыт 5	
НБД	95.06	95.38	95.37	95.37	95.42	
НБЕН	4.94	4.62	4.63	4.63	4.58	
Соста	в конечной реак	ционной смеси, 9	% (по данным ГЖ	КХ-анализа)		
нбд	0.69	0	0	0	1.09	
НБЕН	2.10	0	0	1.52	4.94	
НТАН	8.80	10.14	7.68	8.90	9.63	
НБАН	88.41	89.86	92.32	89.58	84.34	
Количественные технологические показатели						
	Опыт 1	Опыт 2	Опыт 3	Опыт 4	Опыт 5	
Температура реактора, °С	200	155	100	125	100	
Степень превращения, %						
Х _{НБД}	99.3	100	100	100	98.8	
Х _{НБЕН}	57.8	100	100	64.9	9.10	
Селективность по НБД, %						
Фнбан	88.3	89.7	92.2	90.8	85.0	
Фнбен	9.44	0	0	0	9.92	
φ _{HTAH}	2.26	10.3	7.80	9.20	5.08	

Таблица 2. Результаты газофазного гидрирования НБД в проточном реакторе

Результаты квантово-химических расчетов подтверждают, что изомеризация НБЕН в НТАН в исследуемых условиях термодинамически возможна, но маловероятна. Для проверки этой гипотезы были проведены модельные эксперименты. В проточный реактор при 200°С в токе азота и при отсутствии водорода подавали смесь, состоящую из 40% НБЕН и 60% *н*-гептана по массе. На выходе из реактора НТАН обнаружен не был. Таким образом, образование НТАН происходит только в результате одностадийного гидрирования НБД.

Таблица 3. Результаты расчета ΔG° в газовой фазе для превращений с участием НБД и продуктов его гидрирования

Реакция	$\Delta G^{\circ},$ кДж/моль
НБД + $H_2 \rightarrow HБЕН$	-123.57
НБЕН + $H_2 \rightarrow HБАН$	-101.44
НБД + $H_2 \rightarrow HTAH$	-138.35
$\mathrm{H}\overline{\mathrm{D}}\mathrm{E}\mathrm{H}\to\mathrm{H}\mathrm{T}\mathrm{A}\mathrm{H}$	-14.78
$\mathrm{HTAH} \rightarrow \mathrm{H}\mathrm{5EH}$	14.78
$\mathrm{HTAH} + \mathrm{H}_2 \! \rightarrow \! \mathrm{H}\overline{\mathrm{b}}\mathrm{AH}$	-86.67

Для изучения особенностей кинетики гидрирования НБД проведена серия из шести опытов в реакторе периодического действия при одинаковой температуре. С целью проверки адекватности получаемых кинетических данных, каждый эксперимент дублировался. Условия некоторых опытов и результаты жидкофазного гидрирования НБД представлены в табл. 4 и 5 соответственно.

На рис. 1-3 представлены характерные кинетические кривые, получаемые при жидкофазном гидрировании НБД (76°С, растворитель н-гептан). Для каждой реакционной пробы методом внутреннего стандарта сводили материальный баланс (суммарная погрешность не более 5%). Во всех опытах в ходе гидрирования НБД наблюдали значительные количества промежуточного продукта – НБЕН. Время достижения максимальной концентрации НБЕН зависит от начальной концентрации НБД (рис. 2, 3) и практически совпалает с временем его полного расходования. Очевидно, при наличии в системе НБД промежуточный продукт в малой степени вступает во вторую стадию с образованием НБАН. После исчерпывания НБД скорость образования НБАН значительно увеличивается. Кинетический порядок по НБД и НБЕН близок нулю в широком временном интервале. Этот факт подтверждает, что подобно

ЗАМАЛЮТИН и др.

Условия опытов	Опыт 6	Опыт 7	Опыт 8	Опыт 9
Температура реактора, °С	76			
Масса катализатора ПК-25, г	1.4750	0.5050	0.5049	0.5070
Форма катализатора	Гранулы 0.1—0.2 мм			
Скорость встряхивания реактора, мин ⁻¹	380			

Таблица 4. Условия некоторых опытов жидкофазного гидрирования НБД в реакторе периодического действия

Таблица 5. Результаты жидкофазного гидрирования НБД в реакторе периодического действия

Состав исходной смеси, % (по данным ГЖХ-анализа)					
Компонент	Опыт б	Опыт 7	Опыт 8	Опыт 9	
НБД	95.49	95.63	48.06	95.92	
НБЕН	4.51	4.37	51.94	4.08	
Состав конечной реакционной смеси, % (по данным ГЖХ-анализа)					
НБД	0.00	0.00	0.00	0.00	
НБЕН	0.00	0.00	0.00	0.00	
HTAH	1.58	1.77	0.70	1.87	
НБАН	98.42	98.23	99.30	98.13	

ацетиленовым соединениям НБД связан с активным палладиевым центром значительно прочнее, чем НБЕН и остальные компоненты реакции.

Анализ полученных кинетических кривых позволяет конкретизировать механизм этого процесса. Механизм гидрирования НБД (катализатор ПК-25) на основании экспериментальных и теоретических данных представлен на схеме 2. Реакция имеет выраженный трехстадийный параллельно-последовательный характер.

Схема 2.

Как в статической, так и в проточной системах реакция протекает с высокими показателями конверсии НБД и селективности по НБАН. Характерной особенностью процесса является наличие минорного продукта — НТАН (до 2%), образующегося непосредственно из НБД и не расходующегося на последующих этапах (рис. 4). На выход НТАН, очевидно, влияет только температура.

Характер кинетических кривых указывает на существенное торможение стадии гидрирования НБЕН в присутствии НБД. Это явление, вероятно, носит термодинамический характер из-за сильного связывания активного центра катализатора молекулой НБД. Аналогичный эффект наблюдается при гидрировании ацетиленов и диенов [4] и подтверждается сравнительными данными по энергиям адсорбции для фенилацетилена и стирола на Pd/C. Разница в значениях ΔG° адсорбции, полученных квантово-химическими методами для различных поверхностей палладия, составляет от 21 до 42 кДж/моль в пользу фенилацетилена [11, 12].

Рис. 1. Характерные кинетические кривые поглощенного водорода, НБД и продуктов его гидрирования (здесь и на рис. 2–4 76°С, *н*-гептан) (табл. 5).

Рис. 2. Кинетические кривые поглощенного водорода, НБД и продуктов его гидрирования при одинаковой начальной концентрации НБД и НБЕН в опыте 8 (табл. 5).

Вариативность форм координации (адсорбции) НБД (моно-/бидентатной, экзо/эндо) приводит к образованию различных продуктов, в частности хелатный характер его координации

Рис. 3. Кинетические кривые поглощенного водорода, НБД и продуктов его гидрирования при уменьшенной в два раза концентрации НБД относительно опытов 6 и 7 (табл. 5, опыт 9).

подтверждается образованием незначительных количеств НТАН. Возможные способы координации НБД на поверхности палладиевого катализатора представлены на схеме 3.

Для более обоснованных выводов о характере координации НБД на активных палладиевых центрах и стерических особенностях процессов гидрирования норборненовых производных требуются дополнительные систематические исследования. Учитывая большой диапазон структурных особенностей соединений этого класса, в том числе связанных с пространственным экранированием двойных связей, для каждого объекта потребуется специфический подход к разработке структуры катализатора и условий проведения процесса.

Более подробные выводы о деталях механизма изучаемой реакции, в дальнейшем, предполагается сделать на основе структурной кинетической модели, построенной по данным специально спланированного эксперимента.

Авторы заявляют об отсутствии конфликта интересов.

Рис. 4. Закономерности образования НТАН (табл. 5).

БЛАГОДАРНОСТИ

Работа выполнена с использованием оборудования ЦКП РТУ МИРЭА при поддержке Минобрнауки России.

СПИСОК ЛИТЕРАТУРЫ

- 1. Langmuir I. // J. Am. Chem. Soc. 1918. V. 40. P. 1361.
- 2. *Masel R.* Principles of Adsorption and Reaction on Solid Surfaces. N.Y.: John Wiley and Sons, Inc., 1996.
- 3. *Nishimura S.* Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis. N.Y.: John Wiley and Sons, Inc., 2001.
- Berenblyum A.S., Danyushevsky V.Ya., Katsman E.A. // Kinetics and Catalysis. 2019. V. 60. № 4. P. 381.
- Berenblyum A.S., Al-Wadhaf H.A., Katsman E.A., Flid V. R. // Kinetics and Catalysis. 2011. V. 52. № 2. P. 296.
- 6. Tagandurdyyeva N., Maltseva N.V., Vishnevskaya T.A. et al. // Fine Chem. Technol. 2020. V. 15. P. 7.
- 7. Кацман Е.А., Данюшевский В.Я., Шамсиев Р.С., Флид В.Р. Теория и практика гетерогенных катали-

заторов и адсорбентов / Под ред. Койф-мана О.И. М.: URSS, 2020. С. 15.

- Moiseev I.I., Vargaftik M.N. Catalysis with giant palladium clusters // Perspectives in Catalysis / Eds. Thomas J.M., Zamaraev K.I. Oxford: Blackwell. 1991. P. 91.
- 9. Moiseev I.I., Vargaftik M.N. // Catalysis by Di- and Polynuclear Metal Complexes. N.Y.: Wiley–VCH, 1998. № 4. P. 395.
- Moiseev I.I., Gekhman A.E., Tsodikov M.V. et al. // Multimetallic Catalyst in Organic Synthesis / Eds. Shibasaki M., Yamamoto Y. Weinheim: Wiley-VHS, 2004. P. 249.
- 11. Shamsiev R.S., Danilov F.O., Morozova T.A. // Russ. Chem. Bull. 2017. V. 66. № 3. P. 401.
- 12. Shamsiev R.S., Danilov F.O., Flid V.R., Shmidt E.Yu. // Russ. Chem. Bull. 2017. V. 66. № 12. P. 2234.
- 13. Беренблюм А.С., Аль-Вадхав Х.А., Кацман Е.А. // Нефтехимия. 2015. Т. 55. № 2. С. 125.
- Berenblyum A.S., Podoplelova T.A., Katsman E.A. et al. // Kinetics and Catalysis. 2012. V. 53. № 5. P. 595.
- 15. Katsman E.A., Danyushevsky V.Ya., Kuznetsov P.S. et al. // Kinetics and Catalysis. 2017. V. 58. № 2. P. 147.
- 16. Katsman E.A., Danyushevsky V.Ya., Kuznetsov P.S. // Petroleum Chemistry. 2017. V. 57. № 12. P. 1190.
- 17. Басимова Р.А., Павлов М.Л., Мячин С.И. // Нефтехимия. 2009. Т. 5. № 5. С. 360.
- 18. *Назаров М.В., Ласкин А.И., Ильясов И.Р. и др.* // Катализ в промышленности. 2013. № 2. С. 39.
- Стыценко В.Д., Мельников Д.П. // Журн. физ. химии. 2016. Т. 90. № 5. С. 691.
- Flid V.R., Gringolts M.L., Shamsiev R.S., Finkelshtein E.Sh. // Russ. Chem. Rev. 2018. V. 87. P. 1169.
- Shorunov S.V., Zarezin D.P., Samoilov V.O. et al. // Fuel. 2021. V. 283. P. 118935.
- Каталог. Редкинский катализаторный завод. http://www.recatalys.ru/katalog/.