УДК 541.49;546.02;548

КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ ПЕРЕХОДНЫХ МЕТАЛЛОВ С РОДАНИН-3-УКСУСНОЙ КИСЛОТОЙ

© 2021 г. А. Витиу^{1, 2}, Э. Коропчану², П. Боурош^{1, 3, *}

¹Институт прикладной физики, Кишинев, Республика Молдова ²Тираспольский государственный университет, Кишинев, Республика Молдова ³Институт химии, Кишинев, Республика Молдова *e-mail: bourosh.xray@phys.asm.md Поступила в редакцию 19.03.2021 г.

Поступила в редакцию 19.03.2021 г. После доработки 12.04.2021 г. Принята к публикации 14.04.2021 г.

Представлен синтез и структурные исследования методом PCA семи соединений, полученных взаимодействием переходных металлов с роданин-3-уксусной кислотой (RdaH). Состав этих соединений можно представить формулами: [Co(Rda)₂(H₂O)₄] (I), [Ni(Rda)₂(H₂O)₄] (II), [Zn(Rda)₂(H₂O)₄] (III), [Zn(5,5'-Rda-Rda)(Dmf)₂(H₂O)₂]_n (IV), [Co(Rda)₂(Bipy)(H₂O)₂]_n (V), [Cd(Rda)₂(Bpe)]_n (VI) и [Co(Gly)₃] · H₂O (VII), где 5,5'-Rda-RdaH₂ – новый лиганд, продукт конденсации двух молекул RdaH, Bipy – 4,4-бипиридин, Bpe – *бис*(4-пиридил)этан, Gly – глицин (CIF files CCDC № 2070334– 2070339 (I–VI) соответственно). Соединения I–III и VII – моноядерные молекулярные комплексы, IV–VI – 1D-координационные полимеры. В I–III Rda координируется через один атом кислорода карбоксильной группы как монодепротонированный монодентатный лиганд, а в VII – этот лиганд в результате сольвотермального синтеза претерпевает распад с образованием молекул глицина. Полимер IV образован новым лигандом (5,5'-Rda-Rda)²⁻, который координируется как *бис*-депротонированный бидентатно-мостиковый лиганд, а в V и VI мостиковыми нейтральными лигандами выступают молекулы класса *бис*-пиридиновых – Віру и Вре. При этом в V Rda координируется как в I–III, а в VI – два кристаллографически независимых лиганда Rda координируются различно: один – бидентатно-хелатным способом к одному атому кадмия, другой – тридентатно-хелатным – к двум атомам металла.

Ключевые слова: комплексы переходных металлов, роданин-3-уксусная кислота, координационные полимеры, конденсация лиганда, РСА

DOI: 10.31857/S0132344X21110062

Химия роданина и его различных производных вызывает особый интерес как важный класс гетероциклических соединений с различными донорными атомами и широким спектром свойств, связанных в основном с их биологической активностью [1, 2], включая их применение в качестве потенциальных фармацевтических препаратов [1, 3–5]. При этом известны своей биологической активностью и их соединения с различными металлами [6, 7], так как установлено, что действие лекарств интенсифицируется, когда они вводятся в форме комплексов металла [8, 9]. Анализ результатов Кембриджского банка структурных данных (КБСД) [10] показал, что для синтеза различных соединений используются такие роданин-3-карбоновые кислоты, как роданин-3-уксусная кислота и ее два гомолога – роданин-3-пропионовая и роданин-3-масляная кислоты [11]. При этом структура роданин-3уксусной кислоты определена как в виде безводного соединения, так и моногидрата [12]. С помощью 1,3-диполярного циклоприсоединения получены различные производные, которые показали антимикробную и антидиабетическую активность [13– 15]. Для выяснения влияния гетероатома на структуру оловоорганических соединений исследованы карбоксилатсодержащие лиганды, которые имеют дополнительный гетеродонорный атом (например, N, O или S), связанный с циклом, и являются потенциально тридентатными лигандами [16]. При этом электроноакцепторное производное роданина (Rd) – роданин-3-уксусная кислота (RdaH, схема 1) – было признано перспективным кандидатом как компонент сенсибилизированных красителей для солнечных элементов [17].

Схема 1.

Одним из важнейших направлений в координационной химии является сборка молекул, в состав которых входят более одного атома металла, с целью получения полимерных материалов, проявляющих ряд полезных свойств [18, 19]. Введение в синтетическую среду бидентатных мостиковых лигандов дипиридинового класса способствует образованию би- [20] или полиядерных комплексов [21].

В настоящей работе представлен синтез и структурные исследования методом РСА семи соединений, полученных взаимодействием различных солей переходных металлов с роданин-3-уксусной кислотой (**RdaH**). Состав полученных комплексов Co(II), Ni(II), Zn(II) и Cd(II) можно представить формулами: [Co(Rda)₂(H₂O)₄] (I), [Ni(Rda)₂(H₂O)₄] (II), [Zn(Rda)₂(H₂O)₄] (II), [Zn(S,5'-Rda-Rda)(Dmf)₂(H₂O)₂]_n (IV), [Co(Rda)₂-(Bipy)(H₂O)₂]_n (V), [Cd(Rda)₂(Bpe)]_n (VI) и [Co(Gly)₃] · H₂O (VII), где 5,5'-Rda-RdaH₂ – новый лиганд, полученный конденсацией двух молекул RdaH, Bipy – 4,4-бипиридин, Bpe – *бис*(4-пиридил)этан, Gly – глицин. Соединение [Co(Gly)₃] · H₂O (VII) получено в результате распада лиганда RdaH.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза использовали коммерческие реактивы и растворители ("х. ч.") без дополнительной очистки.

Синтез [Co(Rda)₂(H₂O)₄] (I). Соль Co(BF₄)₂ · $6H_2O$ (0.036 г, 1 ммоль) и RdaH (0.039 г, 1 ммоль) растворяли в смеси 4 мл воды, 2 мл метанола и 10 капель диметилформамида (**Dmf**). Полученный раствор перемешивали в течении 10 мин при комнатной температуре (25°C). Желтоватый раствор отфильтровывали и оставляли в закрытом сосуде. Медленное испарение раствора привело к образованию монокристаллов, которые отфильтровывали и высушивали при комнатной температуре. Выход ~20%.

Найдено, %:	C 26.36;	H 4.40;	N 5.98.
Для C ₁₀ H ₁₆ N ₂ O ₁₀ S	₄ Co		
вычислено, %:	C 26.53;	H 3.56;	N 6.19.

Синтез [Ni(Rda)₂(H₂O)₄] (II). Смесь NiCl₂ \cdot 6H₂O (0.013 г, 1 ммоль) и RdaH (0.039 г, 1 ммоль) растворяли в смеси 4 мл воды, 2 мл метанола и 10 капель Dmf. Раствор желтого цвета, полученный после перемешивания при комнатной температуре (25°C), оставляли в закрытом сосуде. При медленном испарении получены монокристаллы, которые отфильтровывали и высушивали

на воздухе при комнатной температуре. Выход ~25%.

Найдено, %:	C 26.37;	H 4.42;	N 5.98.
Для C ₁₀ H ₁₆ N ₂ O ₁	$_0S_4Ni$		
вычислено, %:	C 26.59;	Н 3.56;	N 6.19.

Синтез [Zn(Rda)₂(H₂O)₄] (III). Соль Zn(BF₄)₂ · 6H₂O (0.036 г, 1 ммоль) и RdaH (0.039 г, 1 ммоль) растворяли в смеси 4 мл воды, 2 мл метанола и 10 капель Dmf. Полученный раствор желтого цвета после перемешивания при комнатной температуре (25°С) фильтровали и оставляли в закрытом сосуде. Медленное испарение раствора привело к образованию монокристаллов коричневого цвета, которые отфильтровывали и высушивали при комнатной температуре. Выход ~40%.

Найдено, %:	C 26.37;	H 4.42;	N 5.98.
Для C ₁₀ H ₁₆ N ₂ O ₁₀	$_{0}S_{4}Zn$		
вычислено, %:	C 26.59;	Н 3.56;	N 6.19.

Синтез $[Zn(5,5'-Rda-Rda)(Dmf)_2(H_2O)_2]_n$ (IV). Навески 0.025 г (1 ммоль) $Zn(BF_4)_2 \cdot 6H_2O$ и 0.078 г (2 ммоль) RdaH растворяли в смеси 4 мл воды, 2 мл метанола и 10 капель Dmf. Раствор желтого цвета, полученный после перемешивания при комнатной температуре (25°C), фильтровали и оставляли в закрытом сосуде. Медленное испарение раствора привело к образованию игольчатых монокристаллов коричневого цвета, которые отфильтровывали, промывали эфиром и высушивали на воздухе при комнатной температуре. Выход ~70%.

Найдено, %:	C 30.62;	Н 3.35;	N 8.82.
Для C ₁₆ H ₂₂ N ₄ O ₁₀	$_{0}S_{4}Zn$		
вычислено, %:	C 30.80;	H 3.55;	N 8.98.

Синтез $[Co(Rda)_2(Bipy)(H_2O)_2]_n$ (V). Соль $Co(BF_4)_2 \cdot 6H_2O$ (0.036 г, 1 ммоль), RdaH (0.039 г, 1 ммоль) и Віру (0.019 г, 1 ммоль) растворяли в смеси 4 мл воды, 2 мл метанола и 10 капель Dmf. Полученный раствор желтого цвета перемешивали при комнатной температуре (25°C) и оставляли в закрытом сосуде. Медленное испарение раствора привело к появлению коричневых монокристаллов, которые отделяли фильтрованием и высушивали при комнатной температуре. Выход ~35%.

Найдено, %:	C 41.76;	Н 3.34;	N 9.69.
Для $C_{20}H_{20}N_4O_8$	S ₄ Co		
вычислено, %:	C 41.94;	H 3.51;	N 9.78.

Синтез [Cd(Rda)₂(Bpe)]_{*n*} (VI). Навески Cd(BF₄)₂ · · 6H₂O (0.025 г, 1 ммоль), RdaH (0.039 г, 1 ммоль) и Вре (0.018 г, 0.1 ммоль) растворяли в смеси 4 мл воды, 2 мл метанола и 10 капель Dmf. Полученный после перемешивания при комнатной температуре (25°С) раствор желтого цвета отфильтровывали и оставляли в закрытом сосуде. Медленное испарение раствора привело к образованию игольчатых оранжевых монокристаллов, которые отфильтровывали, промывали диэтиловым эфиром и высушивали на воздухе при комнатной температуре. Выход ~30%.

Найдено, %:	C 46.62;	H 3.42;	N 9.75.
Для $C_{22}H_{20}N_4O_6S_4$	Cd		
вычислено, %:	C 46.79;	Н 3.59;	N 9.92.

Синтез [Co(Gly)₃] · (H₂O) (VII). Co(BF₄)₂ · $6H_2O$ (0.036 г, 1 ммоль), RdaH (0.039 г, 1 ммоль) и Вре (0.018 г, 0.1 ммоль) растворяли в смеси 4 мл воды, 2 мл метанола и 10 капель Dmf. Образовавшийся раствор помещали в тефлоновый сосуд объемом 8 мл герметически закрытого металлического реактора и нагревали при 100°С в течении 48 ч при постоянной температуре. После этого раствор охлаждали до комнатной температуры со скоростью 0.06°С/мин. Полученный раствор желтого цвета отфильтровывали и оставляли в закрытом сосуде. При медленном испарении раствора получены игольчатые монокристаллы коричневого цвета, которые отделяли фильтрованием, промывали этиловым эфиром и высушивали на воздухе при комнатной температуре.

Найдено, %:	C 30.05;	H 4.96;	N 17.57.
Для C ₆ H ₁₂ N ₃ O ₇ C	Co		
вычислено, %:	C 30.25;	H 5.07;	N 17.64.

РСА. Экспериментальные данные для I-VII получали при комнатной температуре на дифрактометре Xcalibur E (графитовый монохроматор, MoK_{α} -излучение). Определение параметров элементарной ячейки и обработку экспериментальных данных выполняли с использованием программы CrysAlis Oxford Diffraction Ltd. [22]. Структуру соединений определяли прямыми методами и уточняли методом наименьших квадратов в анизотропном полноматричном варианте для неводородных атомов, используя комплекс программ SHELX-97 [23]. Позиции атомов водорода молекул воды получены из разностных синтезов Фурье, а остальных – рассчитаны геометрически. Координаты всех атомов Н уточнены изотропно в модели "жесткого тела" с $U_{3\phi\phi} = 1.2 U_{3\kappa B}$ или $1.5 U_{3\kappa B}$, соответствующих атомов C, N и O. Кристаллографические данные и характеристики эксперимента структур I–VII приведены в табл. 1, некоторые межатомные расстояния и валентные углы соединений I-VI – в табл. 2, а геометрические параметры внутри- и межмолекулярных водородных связей (**BC**) для I–VI – в табл. 3.

Позиционные и тепловые параметры для структур I–VI депонированы в КБСД (№ 2070334– 2070339; deposit@ccdc.cam.ac.uk или http:// www.ccdc.cam.ac.uk).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Соединения [Co(Rda)₂(H₂O)₄] (I), [Ni(Rda)₂-(H₂O)₄] (II), [Zn(Rda)₂(H₂O)₄] (III), [Zn(5,5'-Rda-Rda)(Dmf)₂(H₂O)₂]_n (IV), [Co(Rda)₂(Bipy)(H₂O)₂]_n (V), [Cd(Rda)₂(Bpe)]_n (VI) и [Co(Gly)₃] · H₂O (VII) получены при взаимодействии тетрафтороборатов Co(II), Ni(II), Zn(II) и Cd(II) с роданин-3-уксусной кислотой (RdaH). Сольвотермальный метод синтеза использовался только для VII. При этом для получения координационных полимеров в синтезе V–VII были вовлечены дополнительно лиганды с мостиковой функцией класса *бис*(пиридинов). В результате удалось получить как моноядерные комплексные соединения (I–III, VII), так и координационные полимеры (IV–VI) молекулярного типа.

Взаимодействием $M(BF_4)_2 \cdot 6H_2O$ (M = Co, Ni, Zn) с RdaH в смеси вода-метанол с добавлением нескольких капель Dmf получены три изоструктурных изоморфных соединения I-III. Эти соединения кристаллизуются в пространственных группах P2₁/c и P2₁/n моноклинной сингонии (табл. 1). Молекулярные комплексы Co(II), Ni(II) и Zn(II) центросимметричны (рис. 1) и в них к центральному атому металла координированы монодентатно через один атом кислорода карбоксильной группы два монодепротонированных органических лиганда Rda⁻, а дополняют координационный полиэдр металла четыре молекулы воды. В результате октаэдрические координационные полиэдры металлов образованы одинаковым набором донорных атомов О₆. Межатомные расстояния в I-III: Co(1)-O(1), Co(1)-O(1w) и Co(1)-O(2w) равны 2.106(2), 2.141(2) и 2.087(2) Å соответственно, Ni(1)-O(1), Ni(1)-O(1w) и Ni(1)-O(2w) равны 2.076(5), 2.114(5) и 2.042(5) Å соответственно, а Zn(1)-O(1), Zn(1)-O(1w) и Zn(1)-O(2w) равны 2.112(2), 2.057(2) и 2.177(2) Å соответственно (табл. 2). При этом найдено, что в трех соединениях Sn(IV) лиганл Rda⁻ связывается с атомами металла бидентатно-хелатным или бидентатномостиковым способом, используя оба или один атом кислорода карбоксильной группы соответственно [16]. Таким образом, хотя этот лиганд имеет O_3S набор донорных атомов, но и в I–III, и в соединениях Sn(IV) он координируется, используя только атомы кислорода карбоксильной группы.

Координированные молекулы воды в I–III играют важную роль в образовании кристаллических структур (табл. 3). Во-первых, одна молекула

Таблица 1. Кристаллографиче	еские данные, хар	актеристики эксп	еримента и пара	метры уточнения	структуры I-VII		
Соединение	Ι	Π	III	ΛI	Λ	Ν	ΝI
Coctab	$C_{10}H_{16}N_2O_{10}S_4Co$	$C_{10}H_{16}N_2O_{10}S_4Ni$	$C_{10}H_{16}N_2O_{10}S_4Zn$	$C_{16}H_{22}N_4O_{10}S_4Zn$	$C_{20}H_{20}N_4O_8S_4Co$	$C_{22}H_{20}N_4O_6S_4Cd$	$C_6H_{12}N_3O_7Co$
M	511.42	511.20	517.86	639.98	631.57	677.06	297.12
Сингония	Моноклинная	Моноклинная	Моноклинная	Моноклинная	Моноклинная	Триклинная	Моноклинная
Пр. гр.	$P2_{1/c}$	$P2_1/n$	$P2_1/n$	$P2_{1/c}$	C2/c	$\overline{P1}$	$P2_{1/c}$
a, Å	5.2319(5)	5.2163(5)	5.2532(3)	15.6602(12)	11.1768(10)	9.4114(5)	6.2298(12)
$b, m \AA$	26.3588(18)	26.347(2)	26.3076(13)	5.1186(3)	11.3964(9)	11.6492(7)	14.230(2)
$c, { m \AA}$	7.1645(10)	6.9610(5)	7.0027(3)	17.3621(15)	21.0680(18)	13.1979(6)	12.128(2)
α, град	06	90	90	06	90	110.653(5)	90
В, град	113.342(9)	110.103(9)	110.365(5)	114.245(10)	99.367(8)	100.339(4)	101.46(2)
ү, град	06	90	90	06	90	98.007(5)	90
$V, Å^3$	907.17(17)	898.38(14)	907.27(8)	1268.97(16)	2647.8(4)	1299.33(13)	1053.7(3)
Z	2	2	2	2	4	2	4
р(выч.), г/см ³	1.872	1.890	1.896	1.633	1.584	1.731	1.873
μ, мм ⁻¹	1.461	1.600	1.869	1.354	1.015	1.208	1.660
F(000)	522	524	528	640	1292	680	608
Размеры кристалла, мм	$0.40\times0.14\times0.03$	$0.28\times0.18\times0.05$	$0.42\times0.22\times0.06$	$0.40\times0.20\times0.04$	$0.38\times0.22\times0.05$	$0.34 \times 0.28 \times 0.12$	$0.42\times0.09\times0.02$
Область θ, град	3.09 - 25.04	3.09-25.05	3.10-25.50	2.96 - 24.99	3.05-25.50	3.02-25.50	3.34-25.05
Интервалы индексов отражений	$-6 \le h \le 5,$ $-29 \le k \le 30,$ $-5 \le l \le 8$	$-5 \le h \le 6$, $-31 \le k \le 21$, $-6 \le l \le 8$	$-6 \le h \le 4$, $-20 \le k \le 31$, $-8 \le l \le 8$	$-18 \le h \le 17$, $-6 \le k \le 5$, $-13 \le l \le 20$	$-13 \le h \le 13$, $-7 \le k \le 13$, $-22 \le l \le 25$	$-11 \le h \le 9$, $-13 \le k \le 14$, $-15 \le l \le 15$	$-7 \le h \le 4,$ $-7 \le k \le 16,$ $-14 \le l \le 14$
Число измеренных/ независимых рефлексов (R _{int})	2908/1605 (0.0266)	2905/1582 (0.0319)	3222/1690 (0.0240)	3959/2216 (0.0311)	4751/2463 (0.0683)	8249/4807 (0.0268)	3431/1863 (0.0494)
Заполнение, %	9.66	99.1	99.8	99.4	99.5	8.66	99.5
Число рефлексов с $I > 2\sigma(I)$	1294	1284	1472	1547	1671	4204	1394
Число уточняемых парметров	124	125	125	162	171	335	154
GOOF	1.000	1.002	1.000	1.005	1.000	1.003	1.007
R факторы ($I > 2 \sigma(I)$)	$R_1 = 0.0384$	$R_1 = 0.0740$	$R_1 = 0.0369$	$R_1 = 0.0587$	$R_1 = 0.0706$	$R_1 = 0.0345$	$R_1 = 0.0646$
	$wR_2 = 0.0787$	$wR_2 = 0.2207$	$wR_2 = 0.0886$	$wR_2 = 0.1598$	$wR_2 = 0.1721$	$wR_2 = 0.0804$	$wR_2 = 0.1526$
<i>R</i> факторы (по всему массиву)	$R_1 = 0.0529$ $P_1 = 0.0621$	$R_1 = 0.0890$ $P_1 = 0.0316$	$R_1 = 0.0438$ <i>P</i> - 0.0076	$R_1 = 0.0891$ $P_1 = 0.1825$	$R_1 = 0.1031$ $P_1 = 0.0052$	$R_1 = 0.0421$ <i>P</i> - 0.0864	$R_1 = 0.0889$ $P_{-0.1699}$
	$wK_2 = 0.0841$	$WK_2 = 0.2310$	$WK_2 = 0.0920$	6650 = 0.1850	$4K_2 = 0.202$	$wK_2 = 0.0804$	$wK_2 = 0.1000$
$\Delta ho_{ m max} ho_{ m min}, e { m \AA}^{-3}$	0.294/-0.327	0.702/-0.689	0.307/-0.328	0.628/-0.543	0.908/-0.646	0.541/-0.501	1.501/-0.765

КООРДИНАЦИОННАЯ ХИМИЯ

том 47

№ 11

2021

658

ВИТИУ и др.

KO	Связь	$I(M = C_0)$	II $(M = Ni)$	III $(M = Zn)$	IV (M = Zn)	$V(M = C_0)$	VI (M = Cd)
I ЭРД			$d, \mathrm{\AA}$				
≥ шн	4(1)-O(1)	2.106(2)	2.076(5)	2.112(2)	2.087(3)	2.062(3)	2.307(2)
≥ AЦ	$A(1)-(1w)/O(2)^{**}$	2.141(2)	2.114(5)	2.177(2)	2.067(3)	2.144(3)	2.356(2)
2 ИО	4(1) - O(2w)/O(4)/N(2)	2.087(2)	2.042(5)	2.057(2)	2.138(4)	2.158(6)	2.380(2)
≥ HH4	Ae(1)-O(1w)/O(4)/N(3)*/O(5)					2.165(6)	2.397(2)
≤ Х R4	$Ae(1)-O(1)^{**}$						2.660(3)
≥ хих	Ae(1)-N(3)						2.326(2)
≥ мия	Ac(1)-N(4)*						2.300(2)
I	Угол			0, Г	рад		
о Гом	O(1)Me(1)O(1w)/O(2)**	89.32(9)	90.2(2)	90.00(9)	88.8(1)	90.0(1)	123.50(10)
0 47	0(1)Me(1)O(1)**						74.91(9)
O N	0(1)Me(1)O(2w)/O(4)/N(2)/O(4)	90.68(8)	91.5(2)	90.79(8)	92.3(2)	90.03(9)	91.07(10)
○ 11	0(1)Me(1)O(1)*/O(5)	180	180	180	180	180.0(2)	146.01(10)
0	O(1)Me(1)O(1w)*/N(3)	90.68(9)	89.8(2)	90.00(9)	91.2(1)	90.0(1)	90.54(9)
202	O(1)Me(1)O(2w)*/N(3)*/N(4)*	89.32(8)	88.5(2)	89.21(8)	87.7(2)	89.97(9)	91.58(10)
0	0(1w)/O(2)**Me(1)O(2w)/O(4)*/N(2)/O(4)	89.59(9)	90.3(2)	89.56(8)	88.5(2)	87.37(10)	144.76(8)
0	0(1w)/O(2)**Me(1)O(1)*/O(5)	90.68(9)	89.8(2)	90.00(9)	91.2(1)	90.0(1)	90.13(8)
0	$O(1w)/O(2)^{**}Me(1)O(1w)^{*}/N(3)$	180	180	180	180	174.7(2)	85.56(8)
0	$O(1w)/O(2)^{**}Me(1)O(2w)^*/O(4)^*/N(3)^*/N(4)^*$	90.40(9)	89.7(2)	90.45(8)	91.5(2)	92.63(10)	91.72(8)
0	0(2)**Me(1)O(1)**						51.05(8)
0	0(2w)/O(4)/N(2)Me(1)O(2w)*/O(4)*/N(3)*/O(5)	180	180	180	180	180	54.97(7)
0	0(4)Me(1)O(1)**						163.35(9)
0	0(4)Me(1)N(3)						87.65(9)
0	0(4)Me(1)N(4)*						94.16(9)
0	0(5)Me(1)N(3)						87.04(9)
0	0(5)Me(1)N(4)*						92.23(9)
0	0(5)Me(1)O(1)**						138.75(9)
Z	V(3)Me(1)O(1)**						101.15(8)
Z	J(4)*Me(1)O(1)**						77.62(8)
Z	V(3)Me(1)N(4)*						177.19(8)
Ŀ	* $-x - 2$, $-y$, $-z - 2$; III: * $-x + 2$, $-y$, $-z$; IIII: * $-x + 1$, $-z$	-y + 1, -z + 1; IV: *	x - x + 2, -y + 1, -z	(+1; V; *-x, y, z+1)	[/2; ** x, y - 1, z; V]	x = x - 1, y - 1, z; **	-x, -y + 1, -z + 1.

КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ ПЕРЕХОДНЫХ МЕТАЛЛОВ

Таблица 2. Межатомные расстояния и валентные углы в координационных полиэдрах структур I–VI

659

66	0
----	---

Таблица 3. Геометрические параметры водородных связей в I-VI Τ Расстояние Å 37 DIL

		Расстояние, Å		Угол DHA,	Симметрическое
D-nA	D–H	Н…А	D…A	град	преобразование для А
			Ι		
$O(1w)-H(1)\cdots O(1)$	0.93	2.05	2.961(3)	165	-x-1, -y, -z-2
$O(1w)-H(2)\cdots O(2)$	0.93	2.00	2.916(3)	168	-x-1, -y, -z-1
$O(2w)-H(1)\cdots O(2)$	0.91	1.79	2.649(3)	157	<i>x</i> , <i>y</i> , <i>z</i>
$O(2w)-H(2)\cdots O(3)$	0.80	2.03	2.821(3)	170	-x-1, -y, -z-1
$C(4)-H(4)\cdots S(2)$	0.97	3.02	3.728(4)	131	x + 1, $-y + 1/2$, $z + 1/2$
			II		'
$O(1w)-H(1)\cdots O(1)$	0.83	2.22	2.969(7)	150	x + 1, y, z
$O(1w)-H(2)\cdots O(2)$	0.88	2.03	2.912(7)	178	<i>x</i> , <i>y</i> , $z - 1$
$O(2w)-H(1)\cdots O(3)$	0.86	1.95	2.798(8)	167	-x + 2, -y, -z + 1
$O(2w)-H(2)\cdots O(2)$	0.86	1.83	2.637(8)	157	<i>x</i> , <i>y</i> , <i>z</i>
$C(4)-H(4)\cdots S(2)$	0.97	3.03	3.728(9)	130	x - 1/2, -y + 1/2, z + 1/2
			III	•	'
$O(1w)-H(1)\cdots O(1)$	0.89	2.08	2.959(3)	172	-x+2, -y+1, -z+1
$O(1w)-H(2)\cdots O(2)$	0.89	2.04	2.908(3)	168	-x + 1, -y + 1, -z
$O(2w)-H(1)\cdots O(2)$	0.89	1.85	2.634(3)	147	<i>x</i> , <i>y</i> , <i>z</i>
$O(2w)-H(2)\cdots O(3)$	0.88	1.94	2.809(3)	168	-x + 1, -y + 1, -z
$C(4)-H(4)\cdots S(2)$	0.97	3.00	3.714(3)	131	x + 1/2, -y + 3/2, z - 1/2
IV					
$O(1w)-H(1)\cdots O(1)$	0.82	2.32	3.129(5)	167	-x+2, -y, -z+1
$O(1w)-H(1)\cdots O(2)$	0.86	1.94	2.608(5)	134	-x+2, -y+1, -z+1
C(2)-H(2)O(2)	0.97	2.54	3.424(7)	151	<i>x</i> , <i>y</i> − 1, <i>z</i>
C(6)-H(6)O(1)	0.93	2.60	3.212(8)	124	<i>x, y, z</i>
$C(7)-H(7A)\cdots S(2)$	0.96	2.91	3.553(10)	126	<i>x, y, z</i>
$C(7)-H(7B)\cdots O(2)$	0.96	2.60	3.447(11)	147	x, -y + 3/2, z - 1/2
$C(8)-H(8A)\cdots O(1w)$	0.96	2.56	3.450(11)	154	x, y + 1, z
			V	•	'
O(1w) - H(1) - O(3)	0.85	1.99	2.837(6)	174	x - 1/2, y - 1/2, z
$O(1w)-H(2)\cdots O(2)$	0.87	1.97	2.718(6)	144	x , y, z
C(4)-H(4)O(2)	0.97	2.52	3.076(7)	117	-x + 1/2, -y + 3/2, -z + 1
C(7)-H(7)…O(1)	0.93	2.59	3.409(6)	147	-x + 1/2, y + 1/2, -z + 1/2
$C(8)-H(8A)\cdots O(1w)$	0.96	2.56	3.450(11)	154	x, y + 1, z
			VI	•	'
$C(4)-H(1B)\cdots O(6)$	0.97	2.34	3.255(7)	157	-x - 1, -y + 1, -z + 1
C(9)-H(9A)····O(5)	0.97	2.45	3.015(4)	117	-x, -y + 2, -z + 2
C(9)-H(9 <i>B</i>)····O(2)	0.97	2.52	3.298(5)	138	x, y + 1, z + 1
C(15)-H(15)····O(2)	0.93	2.51	3.158(4)	127	-x, -y + 1, -z + 1
C(22)-H(22)···O(4)	0.93	2.56	3.406(4)	151	-x, -y + 2, -z + 1

воды вовлечена в формировании внутримолекулярной BC O(w)-H…O с некоординированным атомом кислорода карбоксильной группы, образуя псевдогексаметаллоцикл, стабилизируя тем самым комплекс (рис. 2а). Эта же молекула воды

участвует в образовании межмолекулярной ВС, объединяя комплексы металлов в цепочки, вовлекая как акцептор карбонильный атом кислорода связанный с пентациклом. Вторая молекула воды участвует в образовании двух межмолекулярных ВС

Рис. 1. Молекулярная структура комплексов I-III.

O(w)—H···O, в результате одна BC стабилизирует сформированные цепочки, а другая — объединяет цепочки в слои (рис. 26). В супрамолекулярный 3Dкаркас комплексы ассоциируются посредством взаимодействий S···S, расстояния в I—III равны 3.619, 3.608 и 3.615 Å соответственно (рис. 3). Длина R-алкильной цепи и межмолекулярные взаимодействия S···S влияют на упаковку молекул в кристалле, обеспечивая превосходную долговременную стабильность тонкопленочных транзисторов на воздухе [24]. При этом можно отметить вовлечение атомов серы и в образование слабых межмолекулярных BC C(4)—H···S(2) (табл. 3).

Соединение IV кристаллизируется в моноклинной пространственной группе P2₁/c (табл. 1). Независимая часть элементарной ячейки содержит один атом цинка, который находится в центре симметрии, 1/2 лиганда (5,5'-Rda-Rda)²⁻, одну молекулу Dmf и одну молекулу воды. В кристалле эти компоненты образуют центросимметричный координационный 1Dполимер, мостиковую *ехо*-бидентатную функцию выполняет дважды депротонированный новый органический лиганд 5,5'-Rda-Rda²⁻, полученный реакцией конденсации двух лигандов Rda⁻ (схема 2). Этот эффект конденсации был выявлен ранее для различных производных RdaH [25, 26].

Схема 2.

КООРДИНАЦИОННАЯ ХИМИЯ том 47 № 11 2021

Рис. 2. Строение цепочки в соединении II (а), объединение цепочек из комплексов Ni(II) с образованием слоя в II (б).

Октаэдрический координационный полиэдр металла в IV образован донорным набором атомов O_6 , два атома кислорода принадлежащие двум органическим дианионам 5,5'-Rda-Rda²⁻, а остальные четыре – двум координированным молекулам Dmf и двум молекулам воды (рис. 4а). Межатомные расстояния в координационном полиэдре металла: Zn–O(1) 2.087(3) Å, Zn– O(Dmf) 2.138(4) Å, Zn–O(w) 2.067(3) Å (табл. 2).

Координационные 1D-полимеры в кристалле стабилизированы внутримолекулярными BC $O(1w) - H \cdots O(1)$, донором протона выступает молекула воды, а акцептором - некоординированный атом кислорода карбоксильной группы лиганда 5,5'-Rda-Rda²⁻, с образованием гексапсевдометаллоцикла, подобно найденными в I-III. Эта же молекула воды вовлечена в образование и более слабой межмолекулярной BC $O(w) - H \cdots O(1)^*$ (табл. 3). В результате, в кристалле цепочки объединены межмолекулярными BC как O(w)- $H \cdots O(1)$, так и $C - H \cdots O$ в слои (рис. 4б). Трехмерный каркас формируют взаимодействия S…S (3.493 Å), образующие между органическими лигандами координационных полимеров гексамакроциклы SCSSCS (рис. 5).

Попытки получить комплексы переходных металлов с RdaH и дополнительными мостиковыми лигандами класса *бис*(пиридина) привели к образованию двух новых координационных 1Dполимеров V и VI, однако взаимодействие соли Co(II) с RdaH и Вре привело к получению уже известного комплексного соединения Co(II) с глицином VII [27].

Соединение V кристаллизуется в моноклинной пространственной группе C2/c (табл. 1). В независимой части элементарной ячейки выявлен атом металла и лиганд Віру с симметрией С₂, один монодепротонированный лиганд Rda⁻ и одна молекула воды, последние в общем положении. Октаэдрический координационный полиэдр Co(II) образован набором донорных атомов N2O4 (рис. 6а). В экваториальной плоскости полиэдра расположены все атомы кислорода, два из которых принадлежат двум органическим анионам Rda⁻ и двум молекулам воды, межатомные расстояния Co-O(Rda) и Co-O(w) равны 2.062(3) и 2.144(3) Å соответственно (табл. 2). При этом в аксиальных позициях полиэдра расположены два атома азота, принадлежащих двум лигандам Віру, межатомное расстояние Co-N равно 2.158(6) Å. Так как Віру координируется к двум атомам металла как *ехо*-бидентатный лиганд, то в кристалле выявлены цепочки координационных 1D-полимеров. Межатомное расстояние между двумя атомами металла, связанными лигандом Віру, равно 11.396 Å, а диэдральный угол между ароматическими циклами последнего равен 121.18°. Так как лиганды Rda- координируются к атому металла монодентатно, вовлекая лишь один атом кислорода карбоксильной группы, последние вместе с

Рис. 3. Формирование супрамолекулярного 3D-полимера за счет взаимолействия S…S в кристалле II.

Рис. 4. Формирование координационного 1D-полимера в IV (а), объединение координационных полимеров в слои в IV посредством водородных связей (б).

КООРДИНАЦИОННАЯ ХИМИЯ том 47 № 11 2021

Рис. 5. Фрагмент кристаллической структуры IV.

(б)

Рис. 6. Формирование координационного 1D-полимера посредством Віру в V (а), формирование слоя посредством межмолекулярных BC O(w)-H···O между координационными полимерами в V (б).

Рис. 7. Фрагмент кристаллической структуры V.

молекулами воды не развивают, а лишь украшают координационные цепочки в кристалле.

Позиции всех компонентов координационного полимера стабилизировны внутримолекулярными BC O(w)–H···O с образованием гексаметаллоциклов, в которых донорами протонов служат молекулы воды, а акцепторов – некоординированные атомы кислорода карбоксильных групп (табл. 3). В кристалле координационные цепочки объединены в слои посредством межмолекулярных ВС О(w)-Н…О, в которых донорами протонов служат молекулы воды, а акцепторов – карбонильные атомы кислорода лиганда Rda⁻, связанные с пентациклом (табл. 3, рис. 6б). Формирование трехмерного каркаса в кристалле обеспечено лишь слабыми взаимодействиями типа С-Н-О (табл. 3) и O(2)…S(1)* (3.122 Å) между мостиковыми органическими лигандами соседних координационных полимеров (рис. 7).

Использование соли Cd(II) и Вре вместо Со(II) и Віру привело к образованию соединения VI, нового как по составу, так и по строению. Соединение VI кристаллизуется в триклинной пространственной группе $P\overline{1}$ (табл. 1). В элементарной ячейке кристалла выявлены один атом металла. два монодепротонированных лиганда Rda⁻ и один лиганд Вре в общих положениях. В результате не только различного способа координации двух кристаллографически независимых лигандов Rda-, но и отличного от найденного способа в I-III и V, в кристалле формируются центросимметричные биядерные фрагменты $[Cd(Rda)_2]_2$, в которых два органических лиганда координируются тридентатно-мостиковым способом: бидентатно-хелатным способом к одному атому металла и монодентатно – к другому, а два лиганда – только бидентатно-хелатным способом к одному атому металла, все четыре лиганда используют лишь атомы кислорода карбоксильных групп (рис. 8а). Такие способы координации для этого лиганда ранее найдены в соединениях Sn(IV) [16]. Эти биядерные фрагменты развиваются дальше в координационные 1D-полимеры в виде ленты посредством мостиковых ехо-бидентатных лигандов Вре. Координационный полиэдр атома Cd(1) образован набором донорных атомов N₂O₅, т.е. КЧ атома металла равно 7 и форма координационного полиэдра — пентагональная бипирамида (рис. 8а). Межатомные расстояния Cd–O(Rda) находятся в интервале 2.307(2)-2.660(3) Å, а Cd-N равны 2.300(2) и 2.326(2) Å (табл. 2). Межатомное расстояние Cd…Cd в центросимметричном биядерном фрагменте равно 3.949 Å, а вдоль лиганда Вре – 13.919 Å (рис. 8б). В кристалле ленточные координационные 1D-полимеры связаны между собой лишь слабыми межмолекулярными ВС С-Н-О с вовлечением донорных групп как лигандов Rda-, так и Вре, а как акцепторы участвуют атомы кислорода лиганда Rda⁻ (табл. 3, рис. 9).

Попытка получить комплексы Co(II) с RdaH и Вре сольватотермальным способом привела к распаду лиганда RdaH и получения соединения с глицином VII (рис. 10), уже известного в литературе, но полученного прямым способом [27].

Таким образом, структурное исследование соединений [Co(Rda)₂(H₂O)₄] (I), [Ni(Rda)₂(H₂O)₄] (II), [Zn(Rda)₂(H₂O)₄] (III), [Zn(5,5'-Rda-Rda)(Dmf)₂-(H₂O)₂]_n (IV), [Co(Rda)₂(Bipy)(H₂O)₂]_n (V) и [Cd-(Rda)₂(Bpe)]_n (VI) показало, что роданин-3-уксусная кислота (RdaH) в комплексах ведет себя как монодепротонированный лиганд, который может координироваться к атомам металла моно-,

Рис. 8. Формирование биядерного фрагмента в VI (а), объединение биядерных фрагментов посредством Вре с образованием двойного координационного 1D-полимера в VI (б).

Рис. 9. Фрагмент кристаллической структуры VI.

Рис. 10. Молекулярная структура комплекса VII.

би- или тридентатно, используя только атомы кислорода карбоксильной группы. В определенных условиях конденсация двух подобных лигандов привела к образованию нового лиганда с *ехо*мостиковой функцией. Однако в основном получить координационные полимеры с RdaH можно, привлекая лишь дополнительные лиганды класса *бис*-пиридинов с мостиковой функцией.

ФИНАНСИРОВАНИЕ

Работа выполнена в рамках проектов Государственных программ 20.80009.5007.15 и 20.80009.5007.28 Национального агентства исследований и развития Республики Молдова.

СПИСОК ЛИТЕРАТУРЫ

- Gendy El.Z., Abdel Rahman R.M., Fazy M.M., Mahmoud M.B. // J. Ind. Chem. Soc. 1990. V. 67. P. 927.
- Shah V., Pant C.K., Joshi P.C. // Asian J. Chem. 1993. V. 5. P. 83.
- Vicini P., Geronikaki A., Anastasia K. et al. // Bioorg. Med. Chem. 2006. V. 14. P. 3859.
- 4. Zervosen A., Lu W.P., Chen Z. et al. // Antimicrob. Agents Chemother. 2004. V. 48. P. 961.
- Liu H.L., Li Z., Anthonsen T. // Molecules. 2000. V. 5. P. 1055.
- Sen M., Sathya C.D. // Ind. J. Exp. Bio. 1994. V. 13. P. 279.
- Kshirsagar V., Gandhe S., Gautam M. D. // Asian J. Chem. 2008. V. 20. № 6. P. 4955.
- Gupta P.N., Raina A. // Asian J. Chem. 1990. V. 2. P. 73.
- Kodama M., Mahatma A.B., Raut A.K. // Bull. Chem. Soc. 1994. V. 63. P. 592.

КООРДИНАЦИОННАЯ ХИМИЯ том 47 № 11 2021

- Allen F.H. // Acta Crystallogr. B. 2002. V. 58. № 1–3. P. 380.
- 11. Tejchman W., Skorska-Stania A., Zesławska E. // J. Chem. Crystallogr. 2016. V. 46. P. 181.
- 12. Barakat A., Ali M., Al-Majid A.M., Ghabbour H.A. // Z. Kristallogr. New Crystal Struct. 2017. V. 232. P. 141.
- Barakat A., Ghabbour H.A., Al-Majid A.M. et al. // Z. Kristallogr. New Crystal Struct. 2016. V. 231. P. 319.
- 14. Jin X., Zheng C.J., Song M.X. et al. // Eur. J. Med. Chem. 2012. V. 56. P. 203.
- 15. *Murugan R., Anbazhagan S., Sriman Narayanan S. //* Eur. J. Med. Chem. 2009. V. 44. № 8. P. 3272.
- *Zhang R., Sun J., Ma C.* // J. Organomet. Chem. 2005. V. 690. P. 4366.
- Liang M., Xu W., Cai F. et al. // J. Phys. Chem. 2007. V. C111. P. 4465.
- Coropceanu E., Croitor L., Gdaniec M. et al. // Inorg. Chim. Acta. V. 362. № 7. P. 2151.
- Croitor L., Coropceanu E.B., Siminel A.V. et al. // Cryst-EngComm. 2012. V. 14. P. 3750.
- 20. *Coropceanu E., Rija A., Lozan V. et al.* // Cryst. Growth Des. 2016. V. 16. № 2. P. 814.
- 21. *Croitor L., Coropceanu E., Chisca D. et al.* // Cryst. Growth Des. 2014. V. 14. № 6. P. 3015.
- 22. CrysAlis RED. O.D.L. Version 1.171.34.76. 2003.
- 23. *Sheldrick G.* // Acta Crystallogr. A. 2008. V. 64. № 1. P. 112.
- 24. *Iijima K., Le Gal Y., Lorcy D., Mori T. //* RSC Adv. 2018. V. 8. P. 18400.
- 25. Allendorf M.D., Bauer C.A., Bhakta R.K., Houk R.J. // Chem. Soc. Rev. 2009. V. 38. P. 1330.
- 26. Mohamed G., Omar M., Ibrahim A. // Eur. J. Med. Chem. 2009. V. 44. № 12. P. 4801.
- 27. *Zhao X.-J., Du M., Wang Y., Bu X.-H.* // J. Mol. Struct. 2004. V. 692. № 1–3. P. 155.