УДК 541.54

ТЕТРА-, ПЕНТА- И ГЕКСАКООРДИНИРОВАННЫЕ СТЕРЕОИЗОМЕРЫ БИСЛИГАНДНЫХ КОМПЛЕКСОВ Zn(II) И Cd(II) НА ОСНОВЕ (N,O,S(Se))-ТРИДЕНТАТНЫХ АЗОМЕТИНОВ. КВАНТОВО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ

© 2021 г. Н. Н. Харабаев*

НИИ физической и органической химии Южного федерального университета, Ростов-на-Дону, Россия

*e-mail: kharabayev@sfedu.ru Поступила в редакцию 09.07.2020 г. После доработки 05.08.2020 г. Принята к публикации 07.08.2020 г.

Методом теории функционала плотности и неэмпирическим методом Хартри–Фока рассчитаны молекулярные структуры и относительные энергии тетра-, пента- и гексакоординированных стереоизомеров бислигандных комплексов Zn(II) и Cd(II) на основе (N,O,Y (Y = S, Se))-тридентатных азометинов (координационные узлы конкурирующих стереоизомеров, соответственно, MN_2O_2 , MN_2O_2Y , $MN_2O_2Y_2$). Моделирование механизма формирования тетра-, пента- и гексакоординированных стереоизомеров с учетом возможной последующей стереоизомеризации позволило установить для комплексов цинка предпочтительность тетракоординации (в виде псевдотетраэдра), а для комплексов кадмия пента- или гексакоординации в зависимости от особенностей строения лигандов.

Ключевые слова: квантово-химическое моделирование, координационные соединения, полидентатные лиганды, стереоизомеризация, азометины

DOI: 10.31857/S0132344X2102002X

Бис-лигандные тетракоординированные комплексы 3*d*-переходных металлов на основе ароматических азометинов хелатного типа подробно изучены ранее [1–3] и установлено, что их строение, спектральные, магнитные и другие физические свойства определяются (главным образом) составом и конфигурацией координационного узла MN_2X_2 (X = NR, O, S, Se). Формирование одной из возможных псевдотетраэдрической, *цис*- или *транс*-планарной конфигурации координационного узла MN_2X_2 зависит от типа центрального иона, природы лигатирующих атомов и структурных особенностей лигандов, что экспериментально установлено [1–3] и теоретически (на основе квантово-химических исследований) интерпретировано [4, 5]. В случае *бис*-лигандных комплексов ML_2 на основе азометинов, включающих дополнительные координационно-активные Y-донорные центры (II, III), ситуация существенно усложняется, так как возможность образования дополнительных координационных связей Y \rightarrow M переводит бидентатные лиганды (N,O)-хелатного типа I в потенциально (N,O,Y)-тридентатные лиганды II, III.

Для потенциально тридентатных азометинов II, III комплексы ML_2 на их основе поливариантны по составу и конфигурации координационного узла (MN_2O_2 , MN_2O_2Y , $MN_2O_2Y_2$) (Y = S, Se)), что проявляется в рядах конкурирующих межу собой тетра-, пента- и гексакоординированных стереоизомеров **IIa**, **IIb**, **IIc** и **IIIa**, **IIIb**, **IIIc**.

M = Co(II), Ni(II), Zn(II), Cd(II); Y = S, Se

Роль электронной конфигурации центрального атома металла в конкуренции тетра-, пента- и гексакоординированных стереоизомеров IIa, IIb, IIc и IIIa, IIIb, IIIc комплексов ML_2 на основе азометинов II и III, соответственно, исследована ранее [6] на примере комплексов кобальта ($d^7(\text{Co}^{2+})$) и никеля ($d^8(\text{Ni}^{2+})$). Для определения роли и влияния размера центрального иона на конкуренцию тетра-, пента- и гексакоординации при формировании комплексов ML_2 квантово-химическое исследование относительной устойчивости стереоизомеров IIa, IIb, IIc и IIIa, IIIb, IIIc продолжено в настоящей работе на примере комплексов d^{10} -металлов: цинка(II) и кадмия(II). По аналогии с [6] изучено также влияние особенностей строения лигандов типа II (содержащих фенилтио(селено)эфирные фрагменты с атомом Y в тиольной форме) и лигандов типа III (содержащих тио(селено)бензимидазольные фрагменты с атомом Y в тионной форме) на конкуренцию тетра-, пента- и гексакоординации в комплексах ZnL₂ и CdL₂.

Следует отметить, что, согласно результатам PCA, для *бис*-лигандных комплексов d^{10} -метал-лов (Zn²⁺, Cd²) на основе азометинов хелатного

	Стереоиз	омеры IIa, I	Ib, IIc (Y)		Стереоизомеры IIIa, IIIb, IIIc (Y)					
	DFT/B3LYP			HF		DFT/B3LYP		RHF		
$ZnL_2(Y)$ Y = S, Se		ккал/	иоль		$ZnL_2(Y)$ Y = S, Se	ккал/моль				
	ΔE	$\Delta E_{\rm ZPE}$	ΔE	$\Delta E_{ m ZPE}$		ΔE	$\Delta E_{\rm ZPE}$	ΔE	$\Delta E_{\rm ZPE}$	
IIa (S) IIb (S) IIc (S)	0.0 1.3 1.2	0.0 1.1 0.9	0.0 1.0 1.7	0.0 0.7 1.6	IIIa (S) IIIb (S) IIIc (S)	0.0 2.2 7.1	0.0 1.7 6.3	0.0 2.2 11.1	0.0 1.8 10.5	
IIa (Se) IIb (Se) IIc (Se)	0.0 1.8 2.1	0.0 1.5 1.8	0.0 0.6 3.6	0.0 0.3 3.5	IIIa (Se) IIIb (Se) IIIc (Se)	0.0 1.8 7.3	0.0 1.5 6.8	0.0 2.2 12.2	0.0 1.8 11.5	

Габлица	 Относительная 	энергия без	з учета (Δ <i>Е</i>	, ккал/мол	ь) и с учетом	нулевых к	олебаний ($\Delta E_{\text{ZPE}},$	ккал/м	иоль)
стереоиз	омеров IIa, IIb, II	с и IIIa, IIIb	, IIIс комп	лексов ZnI	$L_2 (Y = S, Se)$					

типа I характерна псевдотетраэдрическая конфигурация [1], а при наличии у лигандов дополнительных донорных центров для комплексов d^{10} -металлов свойственно расширение состава координационного узла (от тетра- до пента- и гексакоординации) как в комплексах Zn(II) [7–13], так и в комплексах Cd(II) [8, 12, 14–16].

МЕТОДИКА РАСЧЕТОВ

Квантово-химические расчеты молекулярной структуры комплексов Zn(II) и Cd(II) (как и аналогичных комплексов Co(II) и Ni(II) в предыдущем исследовании [6]) проведены по программе Gaussian09 [17] методом теории функционала плотности (DFT) [18] с использованием гибридного функционала B3LYP [19, 20]. Вместе с тем, учитывая известное влияние на результаты DFTисследований типа выбранного функционала плотности [21, 22], DFT/B3LYP-расчеты в настоящей работе продублированы расчетами стереоизомеров комплексов Zn(II) и Cd(II) неэмпирическим методом Хартри–Фока для молекулярных систем с закрытой оболочкой (RHF). В DFT- и RHF-расчетах использован базис 6-311++G(d,p)для комплексов Zn(II) и базис SDD для комплексов Cd(II). Локализация и анализ стационарных точек на поверхности потенциальной энергии проведены путем полной оптимизации геометрии молекул в сопровождении с расчетом колебательных спектров для основных состояний стереоизомеров комплексов Zn(II) и Cd(II) и переходных состояний в реакции стереоизомеризации в комплексах Zn(II). При проведении расчетов учтено, что основным у тетра-, пента- и гексакоординированных стереоизомеров комплексов Zn(II) и Cd(II)

является низкоспиновое электронное состояние. Графические изображения молекулярных структур построены по программе ChemCraft [23].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Согласно результатам квантово-химических расчетов, проведенных DFT-методом и продублированных RHF-методом, более выгодными, судя по относительной энергии тетра-, пента- и гексакоординированных стереоизомеров *бис*-ли-гандных комплексов Zn(II) на основе потенциально тридентатных азометинов II и III (Y = S, Se), являются тетракоординированные изомеры (табл. 1) в виде псевдотетраэдров (табл. 2). Отметим согласие на качественном уровне результатов RHF- и DFT-расчетов (табл. 1).

В табл. 2 собраны рассчитанные (DFT-метод) геометрические параметры координационных узлов тетра-, пента- и гексакоординированных стереоизомеров IIa, IIb, IIc и IIIa, IIIb, IIIc комплексов ZnL₂ (Y = S, Se) на основе азометинов типа II и III (числовые значения в скобках относятся к лигандам, проявившим бидентатность при формировании пентакоординированных стереоизомеров).

Для тетракоординированных стереоизомеров IIa и IIIa комплексов ZnL_2 (Y = S, Se), как наиболее выгодных по полной энергии (табл. 1), проведена оценка возможности их формирования с использованием предложенной ранее [24, 25] постадийной модели механизма реакции образования *бис*-лигандных комплексов ML₂. Первая стадия в этой модели: $M^{++} + (L)^- \rightarrow (ML)^+$, т.е. связывание ионом металла первого лиганда, вторая стадия: $(ML)^+ + (ML)^+$

ХАРАБАЕВ

Таблица 2. Рассчитанные (DFT-метод) геометрические параметры координационных узлов ZnN_2O_2 , ZnN_2O_2Y , $ZnN_2O_2Y_2$ стереоизомеров IIa, IIb, IIc и IIIa, IIIb, IIIc комплексов ZnL_2 на основе азометинов II и III (Y = S, Se)

$C_1 = 5, 5C$										
$ZnL_2(Y, KY)$ $Y = S, Se$	Zn–N, Å	Zn–O, Å	∠NZnO, град	∠NZnN, град	∠OZnO, град	Zn–Y, Å				
IIa (S, KY 4)	2.031	1.947	95.0	124.8	120.7					
IIb (S, KY 5)	2.078 (2.035)	1.987 (1.958)	91.1 (95.7)	121.3	103.1	3.019				
IIc (S, КЧ 6)	2.128	2.030	88.1	166.4	94.8	2.757				
IIa (Se, KH 4)	2.032	1.950	94.9	128.6	121.6					
IIb (Se, КЧ 5)	2.078 (2.037)	1.993 (1.961)	90.8 (95.5)	124.1	102.1	3.100				
IIc (Se, КЧ 6)	2.134	2.031	88.0	167.5	93.9	2.871				
	Стере	еоизомеры IIIa,	IIIb, IIIс компле	ексов ZnL_2 (Y =	S, Se)					
IIIa (S, KY 4)	2.042	1.936	93.6	117.1	115.4					
IIIb (S, KH 5)	2.181 (2.102)	1.988 (1.976)	84.4 (90.1)	101.9	100.0	2.613				
IIIс (S, КЧ 6)	2.165	2.044	83.6	169.5	91.3	2.684				
IIIa (Se, KH 4)	2.039	1.937	93.5	118.0	115.2					
IIIb (Se, KH 5)	2.204 (2.109)	1.990 (1.984)	83.9 (89.6)	100.9	99.3	2.685				
IIIc (Se, KH 6)	2.184	2.049	82.8	169.1	89.9	2.786				

Стереоизомеры IIa, IIb, IIc комплексов ZnL_2 (Y = S, Se)

 $+ (L)^{-} \rightarrow ML_2$, т.е. связывание ионом $(ML)^+$ второго лиганда и формирование исходного стереоизомера комплекса ML_2 , третья стадия: стереоизомеризация от исходного до энергетически наиболее выгодного изомера комплекса ML_2 , оценка величины барьера которой характеризует возможность формирования конечной структуры. Если же исходный стереоизомер комплекса ML_2 , как продукт реакции $(ML)^+ + (L)^- \rightarrow ML_2$, является (в то же время) энергетически наиболее выгодным, то

Рис. 1. Циклические фрагменты рассчитанных (DFT-метод) структур катиона $(ZnL)^+$, аниона $(L)^-$ и пентакоординированного изомера типа IIb комплекса ZnL_2 (Y = S).

Рис. 2. Циклические фрагменты рассчитанных (DFT-метод) молекулярных структур тетра- и пентакоординированных изомеров IIa (KЧ 4) и IIb (KЧ 5) комплекса ZnL_2 (Y = S).

именно для этого изомера прогнозируется предпочтительность.

Для первой стадии модельной реакции – стадии формирования катионов $(ZnL)^+$ на основе азометинов II, проведены квантово-химические расчеты молекулярной структуры катионов $(ZnL)^+$. На основании этих расчетов установлено, что дополнительный Y-донорный центр первого лиганда (Y = S, Se) участвует в образовании координационной связи Y→Zn и первый лиганд при формировании катионов $(ZnL)^+$ проявляет тридентатность (рис. 1). Это использовано при построении модели для второй стадии – стадии связывания катионом $(ZnL)^+$ аниона второго лиганда $(L)^-$ и формирования исходного (для возможной последующей стереоизомеризации) изомера комплекса ZnL_2 (рис. 1).

Для второй стадии модельной реакции (рис. 1) при стартовом расстоянии, равном 5 Å, между атомом цинка катиона $(ZnL)^+$ и атомом азота аниона второго лиганда $(L)^-$ локализована (DFT-метод) пентакоординированная структура IIb комплексов ZnL₂ (Y = S, Se), в которой тридентатность первого лиганда сочетается с бидентатностью второго.

Поскольку пентакоординированный изомер IIb комплексов ZnL_2 (Y = S, Se), построенный на второй стадии модельной реакции (рис. 1), не является наиболее выгодным по полной энергии (табл. 1), то он может рассматриваться в качестве исходного изомера для последующего межконфигурационного перехода IIb \rightarrow IIa в сторону энергетически более выгодного тетракоординированного изомера IIa (рис. 2).

Механизм реакции стереоизомеризации IIb → IIa в комплексах ZnL₂ сводится к разрыву координационной связи $Y \rightarrow Zn$ (Y = S, Se) за счет поворота вокруг связи С-N фенильного фрагмента первого лиганда (рис. 2). При этом стереоизомер На может быть образован из исходного IIb за счет поворота фенильного фрагмента как по. так и против часовой стрелки. Переходное состояние для реакции стереоизомеризации IIb → IIa (как показывают квантово-химические расчеты) достигается при повороте по часовой стрелке на 124° и на 121° для S- и Se-содержащих комплексов ZnL₂ соответственно, а величина барьера реакции IIb → IIa равна 6.9 ккал/моль (Y = S) и 7.3 ккал/моль (Y = Se). При повороте вокруг связи С-N фенильного фрагмента первого лиганда против часовой стрелки переходное состояние достигается для Sи Se-содержащих комплексов ZnL₂ при повороте на 51° и 55° соответственно, при этом значение барьера реакции IIb → IIa равно 2.8 и 2.9 ккал/моль. Такие значения барьера реакции стереоизомеризации IIb \rightarrow IIa от исходного IIb до энергетически наиболее выгодного тетракоординированного изомера IIa (псевдотетраэдра (табл. 2)) позволяют заключить о его доступности при форми- ZnL_2 ровании комплексов на основе азометинов II (Y = S, Se).

Для энергетически наиболее выгодного тетракоординированного изомера IIIa (табл. 1) исследование его доступности при формировании комплексов ZnL_2 на основе азометинов III (Y = S,

Рис. 3. Циклические фрагменты рассчитанных (DFT-метод) молекулярных структур тетра- и пентакоординированных изомеров IIIa (KЧ 4) и IIIb (KЧ 5) комплекса ZnL_2 (Y = S).

Se) проведено в рамках постадийной модели механизма реакции образования *бис*-лигандных комплексов ML_2 [24] и привело к таким же заключениям, что и сделанные выше для комплексов ZnL₂ на основе азометинов II (Y = S, Se). Во-первых, для стадии формирования катионов (ZnL)⁺ на основе азометинов III (Y = S, Se) квантово-химические расчеты позволили также установить участие Y-донорного центра первого лиганда в образовании дополнительной координационной связи Y→Zn. Во-вторых, в модели связывания катионом (ZnL)⁺ аниона второго лиганда (L)⁻, также локализована (DFT-метод) пентакоординированная структура IIIb комплексов ZnL₂ (рис. 3). В-третьих, не являясь энергетически наиболее выгодным (табл. 1), пентакоординированный изомер IIIb также может рассматриваться как исходный для последующего межконфигурационного перехода в сторону более выгодного тетракоординированного изомера IIIa (рис. 3).

	Стереоиз	омеры IIa, I	Ib, IIc (Y)		Стереоизомеры IIIa, IIIb, IIIc (Y)					
	DFT/B3LYP RHF					DFT/B3LYP		RHF		
$CdL_{2}(Y)$ $Y = S, Se$		ккал/	′моль		$CdL_2 (Y)$ Y = S, Se	ккал/моль				
	ΔE	$\Delta E_{\rm ZPE}$	ΔE	ΔE_{ZPE}		ΔE	$\Delta E_{\rm ZPE}$	ΔE	$\Delta E_{\rm ZPE}$	
IIa (S) IIb (S) IIc (S)	5.6 3.4 0.0	5.8 3.6 0.0	5.4 3.0 0.0	5.4 2.9 0.0	IIIa (S) IIIb (S) IIIc (S)	3.1 0.0 2.9	3.4 0.0 2.4	1.4 0.0 6.1	1.7 0.0 5.8	
IIa (Se) IIb (Se) IIc (Se)	4.5 2.6 0.0	4.7 2.6 0.0	2.3 0.5 0.0	2.4 0.5 0.0	IIIa (Se) IIIb (Se) IIIc (Se)	3.0 0.0 2.4	3.1 0.0 1.9	2.0 0.0 6.6	2.4 0.0 6.2	

Таблица 3. Относительная энергия без учета (ΔE , ккал/моль) и с учетом нулевых колебаний (ΔE_{ZPE} , ккал/моль) стереоизомеров IIa, IIb, IIc и IIIa, IIIb, IIIc комплексов CdL₂ (Y = S, Se)

$CdL_2 (Y, K\Psi)$ $Y = S, Se$	Cd–N, Å	Cd–O, Å	∠NCdO, град	∠NCdN, град	∠OCdO, град	Cd–Y, Å
IIa (S, KY 4)	2.226	2.154	88.2	136.6	129.597.2	
IIb (S, KY 5)	2.294 (2.232)	2.201 (2.176)	83.5 (88.1)	136.2	109.0	2.913
IIc (S, KH 6)	2.319	2.219	82.5	159.5	97.2	2.911
IIa (Se, KH 4)	2.220	2.156	87.9	137.1	128.2	
IIb (Se, KH 5)	2.296 (2.237)	2.197 (1.183)	83.9 (87.4)	134.3	107.2	2.977
IIc (Se, KH 6)	2.318	2.227	82.4	171.1	94.2	2.968
	Стер	еоизомеры IIIa,	IIIb, IIIс компле	ексов CdL_2 (Y =	S, Se)	
IIIa (S, KЧ 4)	2.248	2.134	85.9	114.9	115.4	
IIIb (S, KH 5)	2.342 (2.298)	2.187 (2.155)	79.1 (83.9)	102.0	100.0	2.811
IIIc (S, KH 6)	2.368	2.226	77.3	164.6	90.7	2.835
IIIa (Se, KЧ 4)	2.242	2.134	86.1	116.0	119.4	
IIIb (Se, KH 5)	2.357 (2.301)	1.191 (2.165)	78.8 (83.4)	101.1	106.1	2.854
IIIc (Se, KЧ б)	2.387	2.233	76.6	166.7	89.5	2.903

Таблица 4. Рассчитанные (DFT-метод) геометрические параметры координационных узлов CdN₂O₂, CdN₂O₂Y, CdN₂O₂Y₂ стереоизомеров IIa, IIb, IIc и IIIa, IIIb, IIc комплексов CdL₂ на основе азометинов II и III (Y = S, Se)

Стереоизомеры IIa, IIb, IIc комплексов CdL_2 (Y = S, Se)

Межконфигурационный переход от исходного пентакоординированного IIIb до наиболее выгодного тетракоординированного изомера IIIа комплексов ZnL₂ на основе азометинов III, так же как и в случае комплексов ZnL₂ на основе азометинов II, сводится к разрыву координационной связи $Y \rightarrow Zn$ (Y = S, Se) за счет поворота участвующего в дополнительной координации бензимидазольного фрагмента вокруг связи N–N (рис. 3). При повороте этого фрагмента против часовой стрелки значение барьера реакции IIIb → IIIа для комплексов ZnL_2 (Y = S) и ZnL_2 (Y = Se) равно 2.0 и 2.5 ккал/моль соответственно [24]. Это позволяет сделать вывод о возможности формирования наиболее выгодного тетракоординированного изомера IIIa (табл. 1), как и для рассмотренного выше тетракоординированного изомера На комплексов ZnL_2 на основе азометинов II (Y = S, Se).

Таким образом, согласно квантово-химическому исследованию тетра-, пента- и гексакоординиро-

ванных стереоизомеров комплексов ZnL_2 на основе потенциально тридентатных азометинов III (Y = S, Se) с учетом возможных межконфигурационных переходов, более предпочтительным является тетракоординированный стереоизомер IIIa.

Согласно результатам квантово-химических расчетов молекулярной структуры и относительной энергии тетра-, пента- и гексакоординированных стереоизомеров *бис*-лигандных комплексов Cd(II) на основе тридентатных азометинов II и III (табл. 3, 4), наиболее выгодными являются, с одной стороны, гексакоординированный изомер IIс комплексов CdL₂ на основе азометинов II, с другой — пентакоординированный изомер IIIb комплексов CdL₂ на основе азометинов III. Для комплексов CdL₂ также можно отметить согласие на качественном уровне результатов RHF- и DFT-расчетов (табл. 3).

В табл. 4 собраны рассчитанные (DFT-метод) геометрические параметры координационных уз-

Рис. 4. Циклические фрагменты рассчитанных (DFT-метод) структур катиона $(CdL)^+$, аниона $(L)^-$ и гексакоординированного изомера IIс комплекса CdL_2 (Y = S).

лов тетра-, пента- и гексакоординированных стереоизомеров комплексов CdL_2 на основе азометинов II и III (Y = S, Se).

Для оценки возможности формирования наиболее выгодных по энергии гексакоординированного изомера IIс для комплексов CdL_2 на основе азометинов II и пентакоординированного изомера IIIb для комплексов CdL_2 на основе азометинов III в рамках постадийной модели механизма реакции образования *бис*-лигандных комплексов ML_2 [24, 25] проведены квантово-химические расчеты молекулярной структуры катионов (CdL)⁺, как результата связывания ионом металла аниона первого лиганда. Согласно расчетам, Y-донорный центр первого лиганда участвует в дополнительной координации Y \rightarrow Cd (Y = S, Se) при формировании катионов (CdL)⁺ на основе азометинов II и III. Это учтено в модели второй стадии формирования комплексов ML₂ (рис. 4, 5), в которой при стартовом расстоянии (5 Å) между атомом кадмия катиона (CdL)⁺ и атомом азота аниона второго лиганда (L)⁻ локализованными оказались, с одной стороны, гексакоординированный изомер IIс, с другой – пентакоординированный изомер IIIb.

Таким образом, гексакоординированный изомер IIс комплексов Cd(II) на основе азометинов II и пентакоординированный изомер IIIb комплексов Cd(II) на основе азометинов III являют-

Рис. 5. Циклические фрагменты рассчитанных (DFT-метод) структур катиона $(CdL)^+$, аниона $(L)^-$ и пентакоординированного изомера IIIb комплекса CdL_2 (Y = S).

ся, с одной стороны, исходными изомерами для последующих межконфигурационных переходов (как продукты реакции $(CdL)^+ + (L)^- \rightarrow CdL_2$ (рис. 4, 5)). С другой стороны, эти же изомеры наиболее выгодны по полной энергии (табл. 3), что позволяет заключить о предпочтительности гексакоординации в комплексах CdL_2 на основе азометинов II и пентакоординации в комплексах CdL_2 на основе азометинов III.

Следует отметить, что выявленная (в случае комплексов CdL_2 на основе азометинов II и III) зависимость структуры предпочтительного стереоизомера (с гекса- и пентакоординацией соответственно) от особенностей строения лигандов аналогична проанализированнай ранее при исследовании бис-лигандных комплексов Ni(II) на основе азометинов II и III [6]. С учетом этого формирование пентакоординации кадмия в исходном изомере комплексов CdL₂ на основе азометинов III (рис. 5) можно отнести к высокой степени акопланарности аниона (L)⁻ (диэдральный угол поворота φ бензимидазольного фрагмента вокруг связи N-N равен 140°). В результате донорный атом У выведен из реакционного пространства аниона (L)⁻, что придает ему четко выраженный (N,O)-хелатный тип. Такое строение аниона (L)⁻ азометинов III способствует проявлению бидентатности вторым лигандом при формировании исходного (пентакоординированного) изомера комплекса CdL_2 (рис. 5). В отличие от азометинов III для азометинов II строение аниона (L)⁻ более уплощенное (диэдральный угол поворота ф фенильного фрагмента вокруг связи C-N равен 37°). В этом случае атом Y находится вместе с другими донорными атомами N и O в реакционном пространстве аниона (L)⁻, что способствует проявлению им тридентатности при формировании исходного (гексакоординированного) изомера комплекса CdL₂ (рис. 4).

Таким образом, квантово-химическое исследование механизма формирования с учетом межконфигурационных переходов для тетра-, пентаи гексакоординированных стереоизомеров *бис*лигандных комплексов Zn(II) и Cd(II) на основе (N,O,S(Se))-тридентатных азометинов позволило установить, что для комплексов цинка предпочтительна тетракоординация (в виде псевдотетраэдра), а для комплексов кадмия пента- или гексакоординация в зависимости от особенностей строения лигандов. Для азометиновых лигандов с N-фенилтио(селено)эфирным заместителем в комплексах CdL₂ предпочтительна гексакоординация, в отличие от пентакоординации, предпочтительной для

КООРДИНАЦИОННАЯ ХИМИЯ том 47 № 2 2021

комплексов CdL₂ на основе азометинов с тио(селено)бензимидазольными фрагментами.

Авторы заявляют об отсутствии конфликта интересов.

БЛАГОДАРНОСТИ

Автор выражает глубокую признательность академику В.И. Минкину за плодотворные консультации в процессе проведения данного исследования.

ФИНАНСИРОВАНИЕ

Исследование выполнено при финансовой поддержке Министерства науки и высшего образования РФ в рамках государственного задания в сфере научной деятельности (№ 0852-2020-0019).

СПИСОК ЛИТЕРАТУРЫ

- 1. Garnovskii A.D., Nivorozhkin A.L., Minkin V.I. // Coord. Chem. Rev. 1993. V. 126. № 1. P. 1.
- 2. *Bourget-Merle. L., Lappert M.F., Severn J.R.* // Chem. Rev. 2002. V. 102. № 6. P. 3031.
- Garnovskii A.D., Vasilchenko I.S., GarnovskiiD.A., Kharisov B.I. // J. Coord. Chem. 2009. V. 62. № 2. P. 151.
- 4. *Харабаев Н.Н., Стариков А.Г., Минкин В.И.* // Докл. РАН. 2014. Т. 458. № 5. С. 555.
- Харабаев Н.Н., Стариков А.Г., Минкин В.И. // Коорд. химия. 2015. Т. 41. № 7. С. 387 (Kharabayev N.N., Starikov A.G., Minkin V.I. // Russ. J. Coord. Chem. 2015. V. 41. № 7. Р. 421). https://doi.org/10.1134/ S1070328415070039
- 6. *Харабаев Н.Н.* // Коорд. химия. 2019. Т. 45. № 8. C. 485 (*Kharabayev N.N.* // Russ. J. Coord. Chem. 2019. V. 45. № 8. Р. 673). https://doi.org/10.1134/S1070328419080050
- 7. *Ali M.A., Mirza A.H., Fong G.A.* // Transition Met. Chem. 2004. V. 29. P. 613.
- Ali M.A., Bakar H.J.H.A., Mirza A.H. et al. // Polyhedron. 2008. V. 27. P. 71.
- Patra A., Sarkar S., Chakraborty R. et al. // J. Coord. Chem. 2010. V. 63. P. 1913.
- Hashimoto Y., Yashinari N., Naruse D. et al. // Inorg. Chem. 2013. V. 52. P. 14368.
- 11. *Mirza A.H., Hamid M.H.S.A., Aripin S. et al.* // Polyhedron. 2014. V. 74. P. 16.
- Pastor-Medrano J., Jancik V., Bernabe-Pabio E. et al. // Inorg. Chim. Acta. 2014. V. 412. P. 52.
- Patra C., Bhanja A.K., Sen C. et al. // RSC Advances. 2016. V. 6. P. 53378.
- Lee S.-G., Park K.-M., Habata Y., Lee S.-S. // Inorg. Chem. 2013. V. 52. P. 8416.
- Li L., Li W., Yang S. et al. // J. Coord. Chem. 2013. V. 66. P. 2948.

- 16. Nogueira V.S., Bresolin L., Nather C. et al. // Acta Crystallogr. E. 2015. V. 71. P. m234.
- 17. *Frisch M.J., Trucks G.W., Schlegel H.B. et al.* Gaussian 09. Revision D.01. Wallingford (CT, USA): Gaussian, Inc., 2013.
- 18. *Parr R., Yang W.* Density-Functional Theory of Atoms and Molecules. N.Y.: Oxford Univ. Press, 1989. 333 p.
- 19. Becke A.D. // Phys. Rev. A. 1988. V. 38. P. 3098.
- Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785.

- 21. *Burke K., Wagner L.O.* // Int. J. Quantum Chem. 2013. V. 113. № 2. P. 96.
- 22. Tsipis A.C. // Coord. Chem. Rev. 2014. V. 272. P. 1.
- 23. *Zhurko G.A., Zhurko D.A.* Chemcraft. Version 1.6. URL: http://www.chemcraftprog.com.
- 24. *Харабаев Н.Н. //* Журн. общ. химии. 2017. Т. 87. № 4. С. 756.
- 25. *Харабаев Н.Н.* // Коорд. химия. 2017. Т. 43. № 12. C. 709 (*Kharabayev N.N.* // Russ. J. Coord. Chem. 2017. V. 43. № 12. Р. 807). https://doi.org/10.1134/S107032841712003X