УДК 546.881.4:547.76

КОМПЛЕКС ОКСОВАНАДИЯ(IV) С 1-ГИДРОКСИЭТАН-1,1-ДИФОСФОНОВОЙ КИСЛОТОЙ И бис(2-ПИРИДИЛ-1,2,4-ТРИАЗОЛ-3-ИЛ)МЕТАНОМ

© 2021 г. В. Ф. Шульгин^{1,} *, Ю. И. Балуда¹, А. Н. Гусев¹, М. А. Крюкова²

¹Крымский федеральный университет им. В.И. Вернадского, Симферополь, Россия

²Институт химии Санкт-Петербургского государственного университета, Санкт-Петербург, Россия *e-mail: shulvic@gmail.com

> Поступила в редакцию 21.08.2020 г. После доработки 08.10.2020 г. Принята к публикации 14.10.2020 г.

Описан синтез комплекса оксованадия(IV) с анионом 1-гидроксиэтан-1,1-дифосфоновой кислоты (H₄EDP) и *бис*(2-пиридил-1,2,4-триазол-3-ил)метаном (H₂L). Установлено, что взаимодействие VOSO₄ с H₄EDP и H₂L с последующей нейтрализацией реакционной смеси Et₃N ведет к образованию тетраядерного комплекса [(VO)₄(H₂L)₂(EDP)₂(H₂O)₂] · 4H₂O (I), исследованного методами ИК-спектроскопии и ЭПР. Молекулярная и кристаллическая структура комплекса I исследована методом PCA (CIF file CCDC № 2022772).

Ключевые слова: оксованадий(IV), спейсерированный 1,2,4-триазол, рентгеноструктурный анализ **DOI:** 10.31857/S0132344X21030051

Фосфонаты и бифосфонаты переходных металлов и лантанидов вызывают повышенный интерес исследователей как основа новых гибридных материалов [1–10]. В сравнении с традиционными неорганическими материалами бифосфонаты металлов могут быть получены в мягких условиях; они проявляют более высокую термическую и химическую стабильность [1]. Лиганды данного типа способны к реализации различных способов связывания с катионами металлов [2], что в сочетании с разнообразием координационных полиэдров ведет к образованию нетривиальных молекулярных и супрамолекулярных структур. Введение дополнительных органических экстралигандов, таких как ароматические или алифатические амины, создает дополнительные возможности для управления структурой и свойствами образующихся гибридных материалов [7].

Цель настоящей работы — изучение взаимодействия сульфата оксованадия(IV) с 1-гидроксиэтан-1,1-дифосфоновой кислотой (H_4EDP) и *бис*(2пиридил-1,2,4-триазол-3-ил)метаном (H_2L). Ранее было показано, что спейсерированный триазол H_2L — удобная матрица для синтеза комплексов различной ядерности и топологии [11]. Координационные соединения и гибридные материалы на основе бисфосфонатов ванадия ранее описаны в [8–10].

Рис. 1. Общий вид комплексной молекулы I. Атомы водорода, метильные и гидроксильные группы дифосфонатных лигандов не показаны для ясности.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали *бис*(2-пиридил-1,2,4триазол-3-ил)метан, полученный по ранее описанной методике [11] и 1-гидроксиэтан-1,1-дифосфоновую кислоту (этидроновая кислота, моногидрат), препарат фирмы MERCK, а также VOSO₄ · 7H₂O ("х. ч.").

Синтез [(VO)₄(H₂L)₂(EDP)₂(H₂O)₂] · 4H₂O (I). К суспензии, содержащей 0.152 г (0.5 ммоль) H₂L в 10 мл воды, добавляли раствор 0.224 г (1 ммоль) H₄EDP и перемешивали при температуре 70– 80°С до полного растворения реагентов. К полученному раствору добавляли раствор 0.137 г (0.5 ммоль) VOSO₄ в 5 мл воды и охлаждали при перемешивании, после медленно добавляли 5 ммоль триэтиламина до pH 6–7. Образовавшийся осадок выдерживали 3 сут под маточным раствором при комнатной температуре. Выделившиеся синие кристаллы отделяли фильтрованием и сушили на воздухе. Выход 40% (в расчете на сульфат оксованадия(IV)).

Найдено, %:	C 29.46;	Н 3.15;	N 15.55.
Для C ₃₄ H ₄₂ N ₁₆ O ₂	$_4P_4V_4$		
вычислено, %:	C 29.45;	H 3.05;	N 16.16.

По данным элементного анализа состав комплекса отвечает формуле $[(VO)_4(H_2L)_2(EDP)_2(H_2O)_2] \cdot 4H_2O$ (I). Из образовавшегося осадка отобрали монокристалл комплекса I, пригодный для PCA.

В ИК-спектрах поглощения комплекса I, наряду с полосами поглощения спейсерированного 2-пиридил-1,2,4-триазола (1615, 1575, 1512, 1474, 1405, 1294 см⁻¹), наблюдаются широкие полосы с максимумами поглощения при 1094, 965, 794, 754 и 710 см⁻¹, обусловленные валентными колебаниями связей атомов ванадия и фосфора с атомами кислорода [8, 12]. В области 3500—3000 см⁻¹ наблюдается широкая огибающая, включающая полосы валентных колебаний воды, деформационные колебания которых наблюдаются в виде слабой полосы с максимумом при 1645 см⁻¹.

РСА проведен на дифрактометре Agilent Technologies SuperNova Dual, оснащенном плоским ССD детектором, при температуре 100 К с использованием монохроматического Cu K_{α} -излучения ($\lambda = 1.54184$ Å) по стандартной процедуре [13]. Параметры элементарной ячейки уточняли методом наименыших квадратов. Структура расшифрована прямым методом и уточнена с помощью программы SHELX [14], встроенной в программный пакет OLEX2 в полноматричном анизотропном приближении для всех неводородных атомов.

Кристаллографические параметры и детали уточнения структур для I: $C_{34}H_{44}N_{16}O_{24}P_4V_4$, M = 1388.49, размер кристалла $0.2 \times 0.1 \times 0.1$ мм, синие кристаллы, T = 100(2) К, триклинная сингония, пр. гр. \overline{P} , a = 13.2081(3) b = 13.4290(2) c = 17.5381(3) Å, $\alpha = 91.4236(15)^\circ$, $\beta = 101.3159(16)^\circ$, $\gamma = 101.1159(17)^\circ$, V = 2986.71(10) Å³, Z = 2, $\rho = 1.544$ г/см³, $\mu = 6.875$ мм⁻¹, $\theta = 6.722^\circ - 153.04^\circ$, $-15 \le h \le 16$, $-16 \le k \le 16$, $-21 \le l \le 21$; всего 59468 отражений с $I \ge 2\sigma(I)$ 10648, $R_{int} = 0.0748$, $T_{min}/T_{max} = 0.357/1.000$, F = 1.058, $R_1 = 0.0544$, $wR_2 = 0.1537$ (для всех данных), $R_1 = 0.0637$, $wR_2 = 0.1623$ (для $I \ge 2\sigma(I)$), $\Delta\rho_{min}/\Delta\rho_{max} = -0.47/0.82$ e Å⁻³.

Координаты атомов и другие параметры структуры I депонированы в Кембриджском банке структурных данных (ССDС № 2022772); deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk/ data_request/cif).

Элементный анализ выполняли на автоматическом анализаторе EURO Vector 3000А. ИКспектры записывали на ИК-спектрометре с Фурье-преобразованием Spectrum Two, снабженном приставкой однократно нарушенного полного внутреннего отражения (Perkin Elmer). Спектры ЭПР записывали на приборе SpinscanX (ADANI, Беларусь).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Установлено, что исследуемый комплекс имеет сложную молекулярную структуру, построенную из четырех кристаллографически независимых атомов ванадия, двух молекул H_2L и двух мостиковых дифосфонат-анионов (рис. 1).

Расстояния между атомами ванадия составляют: V(1)...V(2) 5.39, V(1)...V(3) 6.01, V(1)...V(4) 3.59, V(2)...V(3) 4.76, V(2)...V(4) 7.33, V(2)...V(4)

6.76 Å. Длины связей атомов ванадия и фосфора с донорными атомами лигандов приведены в табл. 1 и имеют значения, типичные для известных комплексов оксованадия(IV) с фосфонатными лигандами [9, 10].

Молекулы спейсерированных триазолов связывают атомы ванадия попарно, координируясь с атомами азота пиридильного фрагмента и триазольного гетероцикла. Длины связей атома ванадия с триазольными атомами азота близки и варьируют в дипазоне 2.100–2.109 Å, длины большинства связей атомов ванадия с пиридильными атомами азота лежат в диапазоне 2.146–2.160 Å, но связь пиридильного атома азота N(17) с атомом ванадия V(1) удлинена и составляет 2.327(3) Å. Плоскости триазольных гетероциклов повернуты относительно друг друга на 60° и 68° (рис. 2а).

Дифосфонат-анионы связывают попарно атомы ванадия V(1), V(4), а также V(2) и V(3) и выполняют функции мостиковых лигандов, при этом один дифосфонат-анион связывает атомы V(1), V(2) и V(3), выполняя μ_3 -мостиковую функцию (рис. 26).

Длины связей фосфор-кислород лежат в узком диапазоне 1.541—1.544 Å, длины связей Р=О лежат в диапазоне 1.497—1.507 Å. Атомы ванадия V(2) и V(3) имеют искаженное октаэдрическое окружение, которое образовано двумя атомами азота, двумя атомами кислорода мостикового дифосфонатаниона, атомом кислорода молекулы воды и оксогруппой.

Длина связи V=O составляет 1.599-1.603 Å, связи атома ванадия с координированной молекулой воды равны 2.222(2) и 2.260(3) Å для атомов V(2) и V(3) соответственно. Атомы V(1) и V(4) связаны мостиковым атомом кислорода оксогруппы атома V(1), длины связей составляют 1.613(2) Å для V(1)–O(19) и 2.309(2) Å для V(4)– O(19), валентный угол V(1)O(19)V(4) равен 131.5° . Хелатные циклы, образованные дифосфонатным лигандом и атомом ванадия, изогнуты и имеют конформацию "ванна" для V(2) и конформацию "кресло" для V(1), V(3) и V(4).

В кристаллической структуре комплекса I наблюдается перенос одного атома водорода от триазольного кольца на дифосфонат-анион и связывание двух комплексных молекул в центросимметричный димер за счет разупорядоченной водородной связи, в которой атомы водорода локализованы в двух позициях с заселенностью 1/2, расстояния O(28)–H(28) и O(28)'–H(28) равны 1.14 и 1.32 Å, а расстояние O(28)...O(28)' составляет 2.43 Å и угол O(28)H(28)O(28)' равен 160°. Остальные атомы водорода равномерно распределены между четырьмя триазольными циклами. Частично депротонирование лигандов и делокализация атомов водорода между триазольными циклами наблюдалось ранее в комплексах спейсерированных пиТаблица 1. Наиболее важные длины связей с участием атомов ванадия и атомов фосфора в структуре I

	=		
Связь	<i>d,</i> Å	Связь	<i>d</i> , Å
V(1)–N(2)	2.108(3)	V(2)-N(36)	2.146(3)
V(1)–N(17)	2.327(3)	V(2)-N(47)	2.101(3)
V(1)–O(3)	2.004(2)	V(2)-O(13)	1.957(2)
V(1)–O(6)	1.989(2)	V(2)-O(24)	1.599(2)
V(1)–O(11)	1.958(2)	V(2)-O(41)	2.222(3)
V(1)–O(19)	1.614(2)	V(2)-O(7)	1.987(2)
V(3)–N(18)	2.109(3)	V(4)-N(26)	2.100(3)
V(3)–N(25)	2.160(3)	V(4)-N(63)	2.151(4)
V(3)–O(1)	1.971(2)	V(4)-O(8)	1.984(2)
V(3)–O(4)	2.260(2)	V(4)-O(14)	1.591(3)
V(3)–O(10)	1.978(2)	V(4)-O(16)	1.957(3)
V(3)–O(21)	1.603(2)	V(4)-O(19)	2.309(2)
P(5)–O(1)	1.527(2)	P(6)-O(5)	1.506(2)
P(5)–O(6)	1.517(2)	P(6)-O(8)	1.531(2)
P(5)–O(13)	1.522(2)	P(6)-O(11)	1.544(2)
P(7)–O(7)	1.518(2)	P(8)-O(3)	1.543(2)
P(7)–O(10)	1.521(2)	P(8)-O(15)	1.496(3)
P(7)–O(28)	1.535(2)	P(8)-O(16)	1.541(3)

ридил-1,2,4-триазолов [11, 15]. Фактически состав комплекса I отвечает формуле [(VO)₄(H₂L)(HL)-(EDP)(HEDP)(H₂O)₂]₂ · 8H₂O. Образование димеров за счет связывания фосфорильных групп водородными связями было описано при исследовании кристаллической структуры некоторых дифосфоновых кислот и дифосфонатов металлов [2].

Некоординированные молекулы воды занимают полости кристаллической решетки и связаны прочными водородными связями между собой. Кристаллическая структура комплекса характеризуется сложной системой водородных связей, образованных с участием молекул воды, гетероциклических атомов азота и атомов кислорода дифосфонатных лигандов (табл. 2). Интересной особенностью кристаллической структуры комплекса является сближенность атомов кислорода, связанных с атомами ванадия V(2) и V(3), расстояние O(21)...O(41) составляет 2.811 Å.

В спектре ЭПР поликристаллического комплекса (рис. 3) наблюдается одиночная уширенная линия с *g*-фактором 1.96, типичная для комплексов оксованадия(IV) (S = 1/2) [16].

Результаты проведенного исследования показывают, что совместная координация спейсерированного 1,2,4-триазола и дифосфонат-аниона, выполняющих мостиковую функцию, приводит к реализации нетривиальной молекулярной и кри-

Рис. 2. Способ связывания спейсерированного 2-пиридил-1,2,4-триазола (а) и дифосфонат-анинов (б) в структуре I (атомы водорода метильных групп не показаны для ясности)

сталлической структуры, которая может быть использована при конструировании новых гибридных материалов.

Рис. 3. Спектр ЭПР поликристаллического образца комплекса I при комнатной температуре.

Авторы заявляют, что у них нет конфликта интересов.

БЛАГОДАРНОСТИ

Рентгеноструктурный анализ выполнен на оборудовании ресурсного центра Научного парка СПбГУ "Рентгенодифракционные методы исследования".

ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке Российского научного фонда (проект 18-13-00024).

Контакт D–Н…А	Расстояние, Å			Угол DHA,	Координаты
	D–H	Н…А	D…A	град	атомов А
O(4)-H(4A)···O(48)	0.86	1.86	2.643(4)	152	-1 + x, y, z
O(4)-H(4B)N(25)	0.85	2.32	2.881(4)	124	<i>x</i> , <i>y</i> , <i>z</i>
O(9)-H(9)…O(4)	0.82	2.01	2.824(3)	172	<i>x</i> , <i>y</i> , <i>z</i>
N(20)-H(20)···O(29)	0.86	1.82	2.667(4)	169	-x, -y, 1-z
O(22)-H(22A)···O(6)	0.85	2.39	2.900(3)	119	-x, -y, 1-z
O(22)-H(22A)···O(11)	0.85	1.98	2.806(3)	164	1 + x, y, z
O(22)-H(22B)···O(9)	0.85	2.18	3.023(4)	175	1 + x, y, z
O(28)-H(28)···O(28)'	1.14	1.32	2.432(3)	160	<i>x</i> , <i>y</i> , <i>z</i>
O(29)-H(29B)···O(3)	0.91	2.06	2.967(3)	179	1 + x, y, z
N(40)-H(40)···O(5)	0.86	1.71	2.567(4)	171	-1 - x, 1 - y, -z
O(48)-H(48A)…N(31)	0.85	2.02	2.860(4)	172	-x, 1-y, -z
O(61)-H(61B)···O(5)	0.85	2.00	2.819(4)	164	1 + x, y, z
O(48)-H(48B)…O(22)	0.84	1.95	2.767(4)	165	<i>x</i> , <i>y</i> , <i>z</i>
O(61)-H(61A)····O(22)	0.84	2.06	2.809(5)	147	<i>x</i> , <i>y</i> , <i>z</i>

Таблица 2. Геометрические параметры водородных связей в структуре I

СПИСОК ЛИТЕРАТУРЫ

- 1. *Maeda K.* // Microporous and Mesoporous Mater. 2004. V. 73. P. 47.
- Matczak-Jon E., Videnova-Adrabinska V. // Coord. Chem. Rev. 2005. V. 249. P. 2458.
- Fu R., Hu S., Wu X. // Cryst. Growth Des. 2014. V. 14. P. 6197.
- 4. Mao J.-G. // Coord. Chem. Rev. 2007. V. 251. P. 1493.
- Bao S-S., Zheng L.-M. // Coord. Chem. Rev. 2016. V. 319. P. 63.
- 6. *Ma Yu-Juan, Hu Ji-Xiang, Han Song-De et al.* // J. Am. Chem. Soc. 2020. V. 142. P. 2682.
- Pan Jie, Ma Yu-Juan, Han Song-De et al. // Cryst. Growth Des. 2019. V. 19. P. 2919.
- Rocha J., Paz F.A.A., Shi Fa-Nian et al. // Eur. J. Inorg. Chem. V. 2009. P. 4931.

- 9. Александров Г.Г., Сергиенко В.С., Афонин Е.Г. // Кристаллография. 2001. Т. 46. С. 53.
- 10. Ban R., Liang Y., Ma P. et al. // Inorg. Chem. Commun. 2016. V. 71. P. 65.
- 11. Gusev A.N., Shul'gin V.F., Ryush I.O. et al. // Eur. J. Inorg. Chem. 2017. P. 704.
- 12. Pan Ling-ling, Yuan Yi-xuan, Xiao Y. et al. // J. Mol. Structure. 2008. V. 892. P. 272.
- SMART (control) and SAINT (integration) Sofware. Version 5.0. Madison (WI, USA): Bruker AXS Inc., 1997.
- Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. № 1. P. 112.
- 15. *Гусев А.Н., Шульгин В.Ф., Кискин М.А.* // Журн. структур. химии. 2019. Т. 60. № 3. С. 353.
- 16. *Куска Х., Роджерс М.* ЭПР комплексов переходных металлов. М.: Мир, 1970. 220 с.