УДК 546.47/.49

НИТРАТНЫЕ КОМПЛЕКСЫ КАДМИЯ С МОСТИКОВЫМ 3-АМИНОХИНОЛИНОМ МОЛЕКУЛЯРНОГО И ПОЛИМЕРНОГО СТРОЕНИЯ: СИНТЕЗ, СТРУКТУРА И ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА¹

© 2021 г. В. В. Ковалев^{1,} *, Ю. В. Кокунов¹, М. А. Шмелев¹, Ю. К. Воронина¹, М. А. Кискин¹, Л. Д. Попов², И. Л. Еременко^{1, 3}

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия ²Южный федеральный университет, Ростов-на Дону, Россия ³Институт элементоорганических соединений им. А.Н. Несмеянова РАН, Москва, Россия *e-mail: kovavlad@igic.ras.ru Поступила в редакцию 10.07.2020 г. После доработки 29.09.2020 г.

Принята к публикации 02.10.2020 г.

При взаимодействии $Cd(NO_3)_2 \cdot 4H_2O$ с 3-аминохинолином (3-Aq), в зависимости от соотношения pearentoв и состава среды, получены молекулярный и полимерный комплексы $[Cd(NO_3)_2(H_2O)(3-Aq)] \cdot 2MeCN$ (I) и $\{[Cd(NO_3)_2(3-Aq)_2] \cdot MeCN\}_n$ (II) соответственно. Соединения I, II изучены методами элементного анализа, PCA (CIF files CCDC Nº 2015059 (I), 2015060 (II)), PФA и люминесценции. В обоих случаях окружение атома кадмия представляет собой пентагональную бипирамиду. Молекулы 3-Aq в димере I являются мостиковыми лигандами, в полимере наряду с указанной функцией имеет место монодентатный характер связывания с Cd(II). Наличие H-связей между атомами H NH₂-группы и атомом N сольватной молекулы MeCN и атомом O NO₃-группы приводит к образованию трехмерной супрамолекулярной сетки, которая дополнительно усилена межмолекулярными стекинг-взаимодействиями между ароматическими фрагментами 3-Aq соседних молекул. Оба соединения люминесцируют в красной области спектра. По сравнению со свободным 3-Aq смещение полос эмиссии димера I и полимера II в этой области составляет 93 и 38 нм соответственно.

Ключевые слова: нитрат кадмия, 3-аминохинолин, димер, полимер, структура, люминесценция **DOI:** 10.31857/S0132344X21040046

В последние годы синтез новых координационных полимерных соединений вызывает повышенный интерес. Основные цели в этой области - получение соединений с полезными физическими свойствами и построение корреляций структурасвойства. Топология комплексов во многом зависит от координационного поведения ионов металлов, природы противоионов, электронных и геометрических параметров лигандов, поэтому особый интерес представляет ион кадмия, координационные числа (КЧ) которого изменяются от 4 до 8. При выборе органического лиганда основное внимание уделяется N- и N,O-донорным гетероциклическим соединениям, в частности производным пиридина, что обусловлено устойчивостью образующихся соединений и высокой вероятностью реализации лиганд-центрированной люминесценции.

Хинолин и его производные часто используются для получения соединений, обладающих люминесцентными свойствами [1-3]. З-Аминохинолин (3-Аq) способен связываться ионами металла обеими N-донорными функциональными группами (атомами N гетероцикла и аминогруппы). Два объединенных ароматических цикла могут участвовать в образовании *π*-*π*-стэкинг-взаимодействий. Богатая π-система хинолина создает условия для реализации люминесцентных свойств координационных соединений с его участием. Слабые нековалентные взаимодействия (п-пстэкинг и водородные связи) существенно влияют на образование структуры, растворимость, термическое поведение, электронные и оптические свойства соединения. Наличие NH₂-группы и π-системы в комплексах с 3-Аq создает условия для образования межмолекулярных взаимодействий в кристаллах. придавая им и нелинейно-оптические свойства.

Комплексы кадмия(II) вызывают повышенный интерес из-за его способности одновременно об-

¹ Дополнительная информация для этой статьи доступна по doi 10.31857/S0132344X21040046 для авторизованных пользователей.

разовывать связи с различными донорами, проявляющими разнообразные способы координации. Данные о соединениях кадмия с 3-Ад ограничены работой, в которой описаны синтез и строение комплекса [CdI₂(3-Aq)₂] с тетраэдрической коорлинацией иона калмия с монолентатно связанными молекулами 3-Аq [4]. Аналогичное строение имеет комплекс $[ZnCl_2(3-Aq)_2] \cdot H_2O$ [5]. В обоих случаях координация 3-Ад осуществляется через гетероциклический атом азота. Значительно больше информации о соединениях 3-аминопиридина (3-Атру) с ионами кадмия, в которых 3-Атру проявляет как монодентатную, так и бидентатно-мостиковую функции, координируясь к иону Cd²⁺ обоими атомами азота. Характер присоединения 3-Атру зависит от состава соединения, координационной сферы иона металла и соотношения 3-Ampy : Сd в реакционной смеси.

В некоторых координационных полимерах соотношение связывающий лиганд : металл сопровождается изменением его размерности [6]. Ранее мы на примере координационных полимерных соединений нитрата кадмия с 2-амино-5-бромпиридином (**Abp**) [7] показали, что изменение соотношения Abp : Сd приводит к росту размерности продукта реакции от биядерного комплекса к 1D-координационному полимеру.

С целью расширения информации о получении и строении соединений кадмия с 3-Aq и определения факторов, влияющих на характер его координации, мы синтезировали димерный и полимерный соединения нитрата кадмия с 3-Aq с разным соотношением металл : лиганд, определили их состав, структуру и изучили спектры люминесценции.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали $Cd(NO_3)_2 \cdot 4H_2O$ ("х. ч.") и 3-аминохинолин (97%; Aldrich), ацетонитрил и метиловый спирт без дополнительной очистки (Химмед).

Синтез [Cd(NO₃)₂(H₂O)(3-Aq)] \cdot 2MeCN (I). Навески Cd(NO₃)₂ \cdot 4H₂O (0.68 г, 2.22 ммоль) и 3-Aq (0.32 г, 2.22 ммоль) раздельно растворяли в 10 и 8 мл MeCN соответственно. Растворы смешивали, нагревали до 30–35°C и после охлаждения до комнатной температуры отфильтровывали. Полученный фильтрат выдерживали 2 ч в условиях медленной кристаллизации продукта реакции, затем образовавшиеся призматические кристаллы отделяли декантацией жидкой фазы и высушивали на воздухе. По данным элементного анализа, кристаллы отвечали составу I.

Найдено, %:	N 15.25;	C 30.07;	H 3.07.
Для C ₁₁ H ₁₃ N ₅ O ₇	Cd		
вычислено, %:	N 15.92;	C 30.02;	H 2.95.

Синтез {[Cd(NO₃)₂(3-Aq)₂] · MeCN}_n (II). Реакцию нитрата кадмия с двукратным избытком 3-Aq и выделение продукта реакции проводили аналогичным для I образом, но в качестве растворителя использовали смесь ацетонитрила с метанолом в объемном соотношении 3 : 1. После окончания реакции раствор фильтровали и выдерживали фильтрат в течение 3 сут в условиях медленного удаления растворителя. Выделенные кристаллы, по данным элементного анализа, отвечали составу комплекса II.

Найдено, %:	N 17.28;	C 42.35;	H 3.90.
Для C ₂₀ H ₁₉ N ₇ O ₆	Cd		
вычислено, %:	N 17.28;	C 42.32;	Н 3.37.

РСА монокристалла соединений I и II выполнен на дифрактометре Bruker SMART APEX II, оборудованном CCD-детектором (Мо K_{α} , $\lambda = 0.71073$ Å, графитовый монохроматор) [8]. Введена полуэмпирическая поправка на поглощение [9]. Структура расшифрована прямыми методами и уточнена полноматричным МНК в анизотропном приближении для всех неводородных атомов. Атомы водорода при атомах углерода органических лигандов генерированы геометрически и уточнены в модели "наездника". Расчеты проведены по комплексу программ SHELX-2014/2018 [10]. Кристаллографические параметры и детали уточнения структур для I и II приведены в табл. 1, основные длины связей и углы – в табл. 2.

Полный набор рентгеноструктурных данных депонирован в Кембриджском банке структурных данных (ССDС № 2015059 (I), 2015060 (II); http://www.ccdc.cam.ac.uk/data_request/cif).

РФА мелкокристаллических образцов I и II выполнен на дифрактометре Bruker D8 Advance (Cu K_{α} , Ni-фильтр, LYNXEYE детектор, геометрия на отражение).

Спектры возбуждения и эмиссии твердых образцов регистрировали при комнатной температуре в видимом диапазоне спектра с использованием спектрометра Perkin-Elmer LS-55.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Соединение I кристаллизуется в виде сольвата с двумя молекулами MeCN в триклинной пространственной группе $P\overline{1}$, центр инверсии лежит между двумя атомами кадмия, связанными в би-

НИТРАТНЫЕ КОМПЛЕКСЫ КАДМИЯ

Таблица	1. Кристал	лографически	ие параметры и д	детали уточнени	ия структур I и II
---------	------------	--------------	------------------	-----------------	--------------------

	Значение		
Параметр	Ι	II	
Брутто-формула	$C_{22}H_{26}N_{10}O_{14}Cd_2$	C ₂₀ H ₁₉ N ₇ O ₆ Cd	
М	879.33	565.82	
<i>Т,</i> К	150(2)		
Сингония	Трикл	инная	
Пр. гр.		<u>P1</u>	
Размер кристалла, мм	$0.24 \times 0.20 \times 0.18$	0.40 imes 0.34 imes 0.28	
Цвет	Бесцветные	Бесцветные	
<i>a</i> , Å	8.3365(2)	6.5810(12)	
b, Å	10.4583(3)	9.2749(18)	
<i>c</i> , Å	10.4888(3)	17.932(6)	
α, град	111.0900(10)	80.779(11)	
β, град	94.8920(10)	89.001(9)	
ү, град	112.9110(10)	87.983(10)	
$V, Å^3$	758.41(4)	1079.6(4)	
Ζ	1	2	
ρ(выч.), г/см ³	1.925	1.741	
μ, мм ⁻¹	1.487	1.066	
<i>F</i> (000)	436	568	
Область сбора данных по θ, град	2.34-28.99	2.66-30.56	
Интервалы индексов отражений	$-11 \le h \le 11,$	$-8 \le h \le 9,$	
	$-14 \le k \le 14,$	$-13 \le k \le 11,$	
	$-14 \le l \le 14$	$-25 \le l \le 25$	
$T_{\rm min}/T_{\rm max}$	0.410/0.494	0.608/0.746	
Число измерено отражений	9191	12664	
Число независимых отражений	4062	6536	
Число отражений с <i>I</i> > 2σ(<i>I</i>)	3158	6101	
<i>R</i> _{int}	0.0214	0.0217	
Количество переменных уточнения	234	324	
GOOF	0.996	1.080	
R -факторы по $F^2 > 2\sigma(F^2)$	$R_1 = 0.0220$	$R_1 = 0.0317$	
	$wR_2 = 0.0490$	$wR_2 = 0.0728$	
<i>R</i> -факторы по всем отражениям	$R_1 = 0.0245$	$R_1 = 0.0355$	
	$wR_2 = 0.0499$	$wR_2 = 0.0744$	
$\Delta \rho_{\min} / \Delta \rho_{\max}, e / Å^3$	-0.531/0.475	-1.179/1.099	

ядерную молекулу двумя мостиковыми молекулами 3-Aq (рис. 1а). Каждый атом кадмия достраивает свое окружение (CdN_2O_5) до пентагональной бипи-

рамиды координацией двух хелатных анионов NO₃⁻ и молекулы воды (табл. 2). Экваториальные позиции заняты атомами O NO₃-групп и пиридиного атома N молекулы 3-Aq. Между атомами H NH₂группы и атомом N сольватной молекул MeCN и атомом О NO₃-группы соседней молекулы комплекса образованы H-связи (табл. 2). Координированная молекула образует две H-связи с атомами O NO₃-групп соседних молекул комплекса. Такое H-связывание приводит к образованию трехмерной супрамолекулярной сетки, которая дополнительно усилена межмолекулярными стекинг-взаимодействиями между ароматическими фрагментами 3-Аq соседних молекул (расстояние между центроида-

Ι		II		
Связь	d, Å	Связь	d, Å	
Cd(1)-O(4)	2.2771(14)	Cd(1)–O(1)	2.466(2)	
Cd(1)-O(21)	2.3969(13)	Cd(1)–O(2)	2.510(2)	
Cd(1)-O(22)	2.5439(14)	Cd(1)–O(4)	2.3552(17)	
Cd(1)-O(31)	2.3765(14)	Cd(1)–O(5)	2.5026(18)	
Cd(1)-O(32)	2.4525(14)	Cd(1) - N(1)	2.3426(17)	
Cd(1)-N(1)	2.3240(15)	$Cd(1) - N(2)^{a}$	2.3818(19)	
$Cd(1)-N(4)^{a}$	2.3877(16)	Cd(1)–N(4)	2.419(2)	
Угол	ω, град	Угол	ω, град	
O(4)Cd(1)N(1)	108.73(5)	N(1)Cd(1)O(4)	140.91(6)	
O(4)Cd(1)O(31)	89.10(5)	$N(1)Cd(1)N(2)^{a}$	92.80(6)	
N(1)Cd(1)O(31)	127.63(5)	$O(4)Cd(1)N(2)^{a}$	89.27(6)	
$O(4)Cd(1)N(4)^{a}$	160.95(6)	N(1)Cd(1)N(4)	89.71(7)	
$N(1)Cd(1)N(4)^{a}$	88.52(5)	O(4)Cd(1)N(4)	84.81(6)	
O(31)Cd(1)N(4) ^a	86.43(5)	$N(2)Cd(1)N(4)^{a}$	173.21(6)	
O(4)Cd(1)O(21)	82.83(5)	N(1)Cd(1)O(1)	95.95(6)	
N(1)Cd(1)O(21)	99.23(5)	O(4)Cd(1)O(1)	122.05(6)	
O(31)Cd(1)O(21)	132.32(5)	$N(2)Cd(1)O(1)^{a}$	100.32(7)	
N(4)Cd(1)O(21) ^a	86.52(5)	N(4)Cd(1)O(1)	85.68(7)	
O(4)Cd(1)O(32)	80.53(5)	N(1)Cd(1)O(5)	88.06(6)	
N(1)Cd(1)O(32)	80.85(5)	$N(2)Cd(1)O(5)^{a}$	86.56(6)	
$N(4)Cd(1)O(32)^{a}$	111.04(5)	N(4)Cd(1)O(5)	87.23(7)	
O(21)Cd(1)O(32)	162.41(5)	O(1)Cd(1)O(5)	171.83(6)	
O(4)Cd(1)O(22)	81.61(5)	N(1)Cd(1)O(2)	147.00(6)	
N(1)Cd(1)O(22)	149.16(5)	O(4)Cd(1)O(2)	71.88(6)	
O(31)Cd(1)O(22)	80.18(5)	$N(2)Cd(1)O(2)^{a}$	90.90(7)	
N(4)Cd(1)O(22) ^a	79.38(5)	N(4)Cd(1)O(2)	90.42(7)	
O(32)Cd(1)O(22)	129.96(4)	O(5)Cd(1)O(2)	124.91(6)	
$d(\text{HA}), d(\text{DA}), \angle \text{DHA}$				
O(4)-HO(21) ^b	2.18, 2.901, 176.7	N(2)-HN(3) ^b	2.30, 3.172, 173.5	
O(4)-HO(33) ^c	2.00, 2.785, 167.6	N(2)–HN(1S)	2.19, 3.001, 171.8	
N(4)-HO(23) ^d	2.10, 2.948, 159.6	N(4)-HO(2) ^c	2.42, 3.236, 158.0	
N(4)-HN(13)	2.29, 3.093, 166.9			

Таблица 2. Основные длины связей (Å), углы (град) и параметры водородных связей в І и ІІ*

* Коды симметрии: ^a 1 – x, 1 – y, 1 – z; ^b 1 – x, –y, –z, ^c 1 – x, –y, 1 – z, ^d 1 + x, 1 + y, 1 + z (I); ^a 1 + x, y, z; ^b 1 – x, 1 + y, z; ^c 1 – x, y, z (II).

ми пиридинового и бензольного колец составляет 3.686 Å, кратчайшее расстояние – C(4)...C(10) (2 – x, 1 – y, 1 – z) 3.346 Å (рис. 16).

Соединение II кристаллизуется в виде сольвата с одной молекулой MeCN в триклинной пространственной группе $P\overline{1}$. Центр инверсии располагается между атомами Cd двух полимерных цепочек. Элементарным звеном координационного полимера является моноядерный фрагмент, состоящий из двух хелатных анионов NO₃⁻, моно-

Рис. 1. Молекулярное строение (а) и фрагмент кристаллической упаковки (б) комплекса I. Атомы H при атомах углерода 3-Аq не показаны, пунктиром обозначены межмолекулярные H-связи.

дентатной молекулы 3-Aq, координированной атомом NH_2 -группы и двух атомов N двух мостиковых молекул 3-Aq (рис. 2а, табл. 2). Геометрия окружения атома Cd (CdN₃O₄) соответствует пентагональной бипирамиде с атомами O и атомом N

пиридинового цикла в экваториальных позициях. Атомы Н NH₂-группы мостиковой молекулы Aq участвуют в образовании Н-связей с атомами N сольватной молекулы MeCN и некоординированного пиридинового цикла соседней цепочки

Рис. 2. Фрагменты полимерной цепи (а) и кристаллической упаковки (б) комплекса II. Атомы Н при атомах углерода 3-Аq не показаны, пунктиром обозначены межмолекулярные Н-связи.

(табл. 2); также наблюдается внутримолекулярная H-связь между атомом H NH_2 -группы монодентатно координированной молекулы 3-Aq и атомом O NO_3 -группы. Дополнительно цепочки связаны между собой межмолекулярными стекинг-взаимодействиями между ароматическими фрагментами 3-Aq (расстояния между центроидами ароматических колец составляют 3.587–3.778 Å, кратчайшее расстояние — N(3)...C(9) (x, -1 + y, z) 3.366 Å.

Фазовая чистота образцов I и II подтверждена методом РФА (рис. Sl).

На рис. 3 представлены спектры эмиссии и возбуждения лиганда 3-Аq и комплексов I и II. Спектры эмиссии образцов содержат интенсивные широкие несимметричные линии: 417 нм

Рис. 3. Спектры возбуждения ($\lambda_{3M} = 417$ (*1*), 510 (*3*), 455 нм (*6*)) и эмиссии ($\lambda_{B036} = 280$ (*2*), 280 (*4*), 365 (*5*), 275 (*7*), 390 нм (*8*)) для твердых образцов 3-Aq (a), I (6) и II (в) соответственно, при комнатной температуре.

 $(\lambda_{B036} = 280 \text{ нм})$ для 3-Аq, 510 нм $(\lambda_{B036} = 280 \text{ и } 365 \text{ нм})$ для I и 455 нм $(\lambda_{B036} = 275 \text{ и } 390 \text{ нм})$ для II. Отмечено смещение полос эмиссии в красную область для I и II на 93 и 38 нм соответственно, по сравнению со свободным 3-Аq. Подобное красное смещение наблюдалось в спектрах эмиссии соединений d^0 -металлов с 8-аминохинолином [11–13]. Указанная

эмиссия связана с π - π -внутрилигандными переходами. Смещение полосы люминесценции в красную область в спектре димера I больше, чем полимера II. Хотя в обоих случаях КЧ иона Cd равно 7, окружение у них различается: в димере I координационные места у иона Cd занимают аминогруппы 3-Aq, в полимере II — одна NH₂группа 3-Aq и один атом O молекулы воды.

Таким образом, при взаимодействии нитрата кадмия с 3-аминохинолином при различных соотношениях реагирующих компонентов и вариации составов растворителей были получены два новых координационных соединения нитрата кадмия, в которых 3-Аq выполняет мостиковую функцию. Полученные соединения представляют собой биядерный комплекс (L : Cd = 1 : 1) и 1D-полимер (L : Cd = 2 : 1). В обоих случаях координационное число атомов кадмия равно семи, геометрия полиэдров соответствует пентагональной бипирамиде. Нитрат-анионы координированы к атомам кадмия по хелатному типу. Оба соединения люминесцируют в красной области спектра.

Авторы заявляют, что у них нет конфликта интересов.

БЛАГОДАРНОСТИ

Соединения получены и исследованы в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований. РСА монокристаллов, РФА, люминесценция и элементный анализ выполнены на оборудовании ЦКП ФМИ ИОНХ РАН в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

ФИНАНСИРОВАНИЕ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Gao S., Fan R.Q., Wang M. et al.* // RSA Advances. 2015. V. 5. № 54. P. 43705.
- Mirzaei M., Eshtiagh-Hosseini H., Bolouri Z. et al. // Cryst. Growth. Des. 2015. V. 15. № 3. P. 1351.
- Pairu M.K., Dinda J., Lu T.-H. // Polyhedron. 2007. V. 26. P. 4131.
- 4. *Azam M., Al-Resayes S.I., Pallepogu R. et al.* // J. Saudi Chem. Soc. 2016. V. 20. P. 120.
- 5. Azam M., Al-Resayes S.I., Pallepogu R. // Helv. Chim. Acta. 2016. V. 99. P. 20.
- Nather C., Jess I., Germann L.S. et al. // Eur. J. Inorg. Chem. 2017. P. 1245.
- Ковалев В.В., Кокунов Ю.В., Воронина Ю.В. и др. // Коорд. химия. 2020. Т. 46. № 6. С. 376 (Kovalev V.V., Kokunov Yu.V., Voronina Yu.K. et al. // Russ. J. Coord.

Chem. 2020. V. 46. № 6. P. 420). https://doi.org/10.1134/S1070328420060032

- SMART (control) and SAINT (integration). Software. Version 5.0. Madison (WI, USA): Bruker AXS Inc., 1997.
- Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 3.
- 10. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112.
- 11. *Niu C., Wan X., Zheng X. et al.* // J. Coord. Chem. 2008. V. 61. P. 1997.
- 12. *Bai Y., Gao H., Dang D.-B. et al.* // Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2009. V. 39. P. 518.
- 13. Xu H., Xue C., Huang R.-Y. // Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2015. V. 45. P. 1565.