УДК 546.865:547.564.4:546.814:544.653:547.305.1:547.279.3

КОМПЛЕКСЫ Sb(V), Sn(IV) С РЕДОКС-АКТИВНЫМ О,N,O-ДОНОРНЫМ ЛИГАНДОМ В ЭЛЕКТРОСИНТЕЗЕ СИММЕТРИЧНЫХ ДИСУЛЬФИДОВ

© 2021 г. В. А. Лаврентьев¹, Е. В. Шинкарь¹, И. В. Смолянинов¹, Ю. И. Рябухин¹, Н. Т. Берберова^{1, *}

¹Астраханский государственный технический университет, Астрахань, Россия

*e-mail: berberova@astu.org Поступила в редакцию 09.09.2020 г. После доработки 15.10.2020 г. Принята к публикации 16.10.2020 г.

Исследованы реакции электрохимически генерированных форм комплексов сурьмы(V) и олова(IV), содержащих тридентантный O,N,O-донорный лиганд, с тиолами различного строения. В ряду комплексов непереходных металлов с N,N-*бис*-(2-гидрокси-ди-3,5-*mpem*-бутилфенил)аминовым лигандом (CatH₂–NH–CatH₂): [Me₂Sn(Cat-N-SQ)] (I), [Et₂Sn(Cat-N-SQ)] (II), [Ph₂Sn(Cat-N-SQ)] (III), [(c-C₆H₁₁)₂Sb(Cat-N-Cat)] (IV), [Ph₃Sb(Cat-NH-Cat)] (V) – определены наиболее активные, способные выступать в роли медиаторов окисления тиолов (гексантиола-1, циклогексантиола и 4-метокситиофенола) до симметричных дисульфидов. Анодная активация комплексов Sb(V), Sn(IV) протекает с участием органических лигандов и ведет к образованию интермедиатов, взаимодействующих с тиолами. В ходе медиаторного электросинтеза происходит регенерация исходной формы комплекса в растворе. Применение металлокомплексных медиаторов позволяет снизить анодное перенапряжение процесса окисления тиолов по сравнению с прямым электрохимическим синтезом. Выход полученных соединений зависит от строения комплекса, тиола и их соотношения. Наиболее высокую эффективность в электрокаталитических превращениях проявляет комплекс [Ph₃Sb(Cat-NH-Cat)], который целесообразно применять для получения дисульфидов.

Ключевые слова: комплексы сурьмы(V) и олова(IV), редокс-активные лиганды, редокс-медиаторы, тиолы, симметричные дисульфиды, анодная активация, электросинтез **DOI:** 10.31857/S0132344X21050030

В химии металлоорганических соединений уделяется большое внимание органическим редокс-активным лигандам, координированным металлоцентром - атомом переходного или непереходного металла. Аналогичного типа комплексы металлов проявляют особые свойства: способность к редокс-изомерии, различным типам магнитных обменных взаимодействий и редокс-переходам по лигандному окружению. Лиганды переменной валентности применяются в качестве резервуаров для хранения/переноса электронов в химических превращениях, для формирования или разрыва связей [1-4]. Координация редокс-активных лигандов на металлоцентр открывает новые возможности для проведения реакций, требующих нескольких редокс-эквивалентов, или переноса атомов и функциональных групп.

Способность редокс-активных лигандов изменять степень окисления, находясь в координационной сфере металла, представляет особый интерес для химии различных производных непереходных элементов. Это связано с тем фактом, что подобные металлы, как правило, не обладают большим количеством различных окислительновосстановительных состояний. Наличие редоксактивных лигандов в координационной сфере непереходного элемента существенно расширяет реакционные возможности комплексов за счет участия органических фрагментов в реакциях переноса электронов [5, 6]. Достаточно успешно металлокомплексы применяются в органическом электросинтезе в роли окислителей/восстановителей или медиаторов [7]. Данный подход, основанный на принципах "зеленой" химии, позволяет уменьшить энергозатраты, негативное влияние на окружающую среду и решить ряд экологических проблем [8]. Преимуществами медиаторного электросинтеза являются мягкие условия протекания химических реакций (25°С, 1 атм.), высокая селективность по целевому направлению, цикличность электродных процессов и снижение перенапряжения по сравнению с прямым электросинтезом [9].

Ранее мы показали эффективность применения комплексов переходных металлов – хрома(III), ни-келя(II), индия(III) с бидентатными О,О-, S,S-

Соединение	m/z(I, %)
C ₆ H ₁₃ SH	118 [M] ⁺ (31), 84 (12), 69 (33), 56 (100), 47 (18), 41 (48)
$(C_6H_{13}S)_2$	234 [M] ⁺ (10), 208 (5), 192 (5), 150 (13), 117 (15), 85 (26), 69 (10), 43 (100)
C ₆ H ₁₁ SH	116 [M] ⁺ (25), 83 (23), 67 (40), 55 (100), 43 (20)
$(C_6H_{11}S)_2$	230 [M] ⁺ (14), 147 (16), 83 (100), 55 (27)
4-MeOPhSH	140 [M] ⁺ (100), 125 (79), 97 (46), 77 (5), 69 (16), 53 (16), 45 (15)
(4-MeOPhS) ₂	278 [M] ⁺ (31), 139 (100), 124 (15), 96 (25), 70 (14), 45 (5)

Таблица 1. Данные масс-спектрометрического анализа синтезированных дисульфидов и исходных тиолов

координированными лигандами в роли медиаторов окисления H_2S с целью получения продуктов тиолирования циклоалканов, алкенов, аренов [9–11].

Известны примеры использования органических и неорганических медиаторов в реакциях окисления тиолов до дисульфидов, проводимых в полярных растворителях при комнатной температуре [12–15]. Интерес к синтезу дисульфидов обусловлен их применением в производстве ядохимикатов, присадок к маслам, одорантов, ароматизаторов и лекарственных препаратов (противовоспалительных, противоопухолевых, противоаллергенных) [16]. Комплексы непереходных металлов с редокс-активными лигандами не рассматривались ранее в качестве электромедиаторов окисления тиолов. Однако изученные ранее электрохимические свойства комплексов сурьмы(V) и олова(IV) с тридентатным O,N,O-донорным лигандом, находящимся в различных состояниях окисления, свидетельствуют о возможности генерирования стабильных редокс-форм [17, 18]. Перспективность использования комплексов с лигандами подобного типа подтверждают данные по их каталитической активности в реакциях трифторметилирования [19, 20].

Цель настоящей работы — исследование новых медиаторов на основе комплексов сурьмы(V) и олова(IV) с N,N-*бис*-(2-гидрокси-ди-3,5-*трет*-бутилфенил)аминовым лигандом ($CatH_2$ -NH-CatH_2) — [Me₂Sn(Cat-N-SQ)] (I), [Et₂Sn(Cat-N-SQ)] (II), [Ph₂Sn(Cat-N-SQ)] (II), [(c-C₆H₁₁)₂Sb(Cat-N-Cat)] (IV), [Ph₃Sb(Cat-NH-Cat)] (V) — в реакциях окисления тиолов различного строения до симметричных дисульфидов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Комплексы сурьмы(V), олова(IV) I-V синтезировали по известным методикам [17. 18. 21]. Коммерчески доступные гексантиол-1 (98%, Aldrich), циклогексантиол (97%, Alfa Aesar), 4-метокситиофенол (97%, Aldrich) и гексан (х. ч.) использовали без дополнительной очистки. Очистку хлористого метилена (х. ч.) проводили по известной методике [22] с последующим обезвоживанием над CaH₂. Для электрохимических измерений использовали потенциостат IPC-Pro, Pt-анод (d = 2 мм) в CH₂Cl₂ в присутствии 0.1 М *n*-Bu₄NClO₄ (+99%), предварительно высушенного в вакууме 48 ч при 50°С. Электрод сравнения – насыщенный хлорсеребряный (Ag/AgCl/KCl) с водонепроницаемой диафрагмой. Электролиз смеси (тиол-комплекс) проводили на платиновом аноде ($S = 70 \text{ мм}^2$) в ячейке с неразделенным катодно-анодным пространством в дихлорметане с предварительной деаэрацией раствора аргоном (5 мин) при использовании потенциостата ПИ-50.1 в потенциостатическом режиме. Медиаторный электросинтез дисульфидов осуществляли при более положительном потенциале (на 0.2 В), чем значение потенциала окисления медиаторов: 0.63-0.85 В (I-IV) и 1.20 В (V). Рабочая концентрация комплексов составляла 0.001 моль/л. Мольное соотношение тиол/комплекс было равно 1:1;2:1. Время электролиза варьировали от 1.5 до 3.0 ч.

Полученные дисульфиды после электролиза выделяли поэтапно: реакционную смесь концентрировали; фоновый электролит осаждали гексаном; разделяли серосодержащие соединения и комплексы методом колоночной хроматографии (адсорбент — силикагель, элюент — смесь этилацетат—гексан (1:1)). Раствор продуктов реакции и непрореагировавших тиолов подвергали электрохимическому анализу (метод циклической вольтамперометрии (**ЦВА**)). Оценку выхода по току полученных дисульфидов проводили на основании данных ЦВА. Синтезированные соединения идентифицировали методом хроматомасс-спектрометрии на спектрометре GCMS-QP2010 Ultra, Shimadzu с совмещенным пламенно-фотометрическим детектором. Газ-носитель — гелий, капиллярная колонка SPB — 1 SULFUR (30 м × 0.32 мм), адсорбент — силикагель, $T_{max} = 320^{\circ}$ С. Результаты ана-

лиза серосодержащих соединений методом хроматомасс-спектрометрии представлены в табл. 1.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Рассмотрено взаимодействие серии комплексов сурьмы(V) и олова(IV): $[Me_2Sn(Cat-N-SQ)]$ (I), $[Et_2Sn(Cat-N-SQ)]$ (II), $[Ph_2Sn(Cat-N-SQ)]$ (III), $[(c-C_6H_{11})_2Sb(Cat-N-Cat)]$ (IV), $[Ph_3Sb(Cat-NH-Cat)]$ (V) (схема 1) с тиолами в условиях их анодной активации.

Исследуемые комплексы I–V отличаются состоянием окисления лиганда: дважды восстановленная парамагнитная (Cat–N–SQ), трианионная (Cat–N–Cat), дианионная (Cat–NH–Cat). Указанные редокс-формы лиганда при координации на атом металла способны к взаимопревращениям путем переноса электрона и протона. Методом ЦВА изучены электрохимические свойства комплексов на платиновом электроде. Значения анодных потенциалов соединений I–V коррелируют с опубликованными ранее результатами, полученными при использовании СУ-электрода [18]. Комплексам I–III свойственны две стадии окисления в анодной области: первый квазиобратимый пик наблюдается в диапазоне потенциалов 0.43–0.65 В и характеризует генерирование монокатионного комплекса, содержащего моноанионную форму лиганда; второй (необратимый) – свидетельствует о более глубоком окислении лиганда. Взаимодействие соединений I–III с гексантиолом-1 без использования электроактивации не приводит к образованию дисульфидов. Однако электролиз при контролируемом значении потенциала (0.63–0.85 В) ведет к формированию монокатионного комплекса, который реагирует с тиолом в растворе с последующей регенерацией медиатора (**Med**) и получением дигексилдисульфида (схема 2).

Для соединений олова(IV) наибольшую эффективность продемонстрировал комплекс III с фенильными группами при атоме металла, что связано с более высокой стабильностью его окисленной формы, подтверждаемой данными ЦВА — значениями коэффициентов обратимости ($I_c/I_a = 0.67$ (I), 0.72 (II), 0.81(III)) для первой анодной стадии.

В случае комплекса IV на ЦВА фиксировали две квазиобратимые стадии окисления, приводящие к моно- и дикатионным формам комплекса ($E_{pa}^1 = 0.58$ B; $E_{pa}^2 = 1.10$ B). Электролиз соединения IV в присутствии гексантиола-1, независимо от величины накладываемого потенциала, не приводит к формированию соответствующего дисульфида. Это объясняется снижением концентрации Med в ходе электролиза, что обусловлено возможностью разрыва связи Sb–C в металлоорганическом фрагменте. Для соединения V на ЦВА наблюдали один необратимый пик окисления, отвечающий генерированию реакционноспособного катион-радикала в приэлектродной области. Как было показано ранее [18], результатом электрохимического окисления комплекса V является образование парамагнитного интермедиата, содержащего дианионную парамагнитную форму лиганда. С целью установления механизма взаимодействия соединения V с гексантиолом-1 предварительно генерировали монокатионный комплекс. При добавлении тиола не происходило восстановления комплекса до исходного состояния и образования дисульфида (схема 3, А).

В отличие от данного направления реакции электролиз смеси комплекса V с гексантиолом-1

(мольное соотношение 1:1) при контролируемом потенциале 1.2 В приводил к формированию

Рис. 1. ЦВА-кривые окисления эквимолярной смеси комплекса V с гексантиолом-1 (кривая *I*); после электролиза при потенциале 1.20 В (1.5 ч) (кривая *2*) (CH₂Cl₂, Pt-анод, 0.1 М *n*-Bu₄NClO₄, $c(V) = c(C_6H_{13}SH) = 0.005$ моль/л, Ag/AgCl/KCl, аргон).

КООРДИНАЦИОННАЯ ХИМИЯ том 47 № 5 2021

 $(C_6H_{13}S)_2$ (схема 3, В). Этот факт подтверждается данными метода ЦВА: на вольтамперограмме первоначально наблюдали два анодных пика, отвечающих исходному комплексу и гексантиолу-1 при потенциале 1.80 В (рис. 1, *I*). После электролиза фиксировали снижение интенсивности пика окисления тиола и появление нового пика продукта реакции — дигексилдисульфида при потенциале 1.58 В (рис. 1, *2*). Полученные ЦВА кривые комплекса V до и после электролиза указывают на его стабильность.

Следовательно, соединения III, V можно использовать в качестве редокс-медиаторов в процессе окисления тиолов до дисульфидов с учетом различий в значениях их анодных потенциалов. Для соединений III, V проведен медиаторный электросинтнез дисульфидов на основе гексантиола-1, циклогексантиола и 4-метокситиофенола в потенциостатических условиях ($E_{3Л} = 0.85$ (III), 1.20 В (V), $E_{3Л} =$ потенциал электролиза). В результате электролиза получены соответствующие симметричные дисульфиды с выходом по току 47—68% (табл. 2).

В случае комплекса V выход продуктов реакции превышает данный параметр, характеризующий активность комплекса III. Аналогичные закономерности прослеживаются для величины конверсии тиолов в дисульфиды. Анализ значений анодного перенапряжения при использовании медиаторов свидетельствует о снижении энергозатрат на проведение электросинтеза по сравнению с прямой анодной активацией тиолов. Несмотря на то, что выход дисульфидов в ходе электролиза (1.5 ч) при потенциале окисления тиолов (1.90 В) достигает более высоких значений (75-79%), эффективность медиаторного синтеза обусловлена уменьшением расхода электричества. Степень регенерации комплексов III, V для всех проведенных реакций составляла 93-95%. Показатель анодного перенапряжения электросинтеза (ΔE) для комплекса V является оптимальным, поскольку имеет более близкие значения (табл. 2) по сравнению с комплексом III, требуемые для редокс-медиаторов [23].

Далее было изучено влияние увеличения содержания тиола по отношению к Med (2 : 1) при различной продолжительности электросинтеза дисульфидов (рис. 2).

В процессе реакции (1.5 ч) наблюдали незначительное возрастание выхода дисульфида по сравнению с эквимолярным соотношением медиатор—тиол, что объясняется отсутствием выраженного каталитического эффекта. На основании полученных результатов по выходу симметричных дисульфидов отмечена более высокая реакционная способность алифатического тиола в отличие от циклогексантиола и 4-метокситиофенола. При увеличении времени электролиза в

Рис. 2. Диаграмма зависимости выхода по току различных дисульфидов от времени медиаторного электросинтеза в присутствии комплекса V ($c_{\text{Med}} = 0.001 \text{ моль/л, соотношение Med : тиол = 1 : 2}$).

два раза не фиксировали пропорционального возрастания выхода дисульфидов, что связано с алсорбшией последних на платиновом аноде, способствующей снижению числа циклов регенерации Med на электроде. Следовательно, в данных условиях проведения реакции не рекомендуется создавать избыток тиола по отношению к комплексу. Возрастание продолжительности электросинтеза до 3 ч способствовало незначительному снижению (86-91%) степени регенерации комплекса V. Применение комплексов непереходных металлов в качестве медиаторов переноса электрона в реакциях тиолов показало, что возможность лиганда находиться в различных редоксформах позволяет увеличивать реакционную способность соединений подобного типа. Отметим, что исходные комплексы и их электрохимически генерированные формы остаются стабильными и не подвергаются деструкции в присутствии тиолов, несмотря на увлечение их содержания и продолжительности электросинтеза. В отличие от прямого электросинтеза симметричных дисульфидов на основе тиолов использование редокс-медиаторов имеет ряд преимуществ. Реакция протекает в растворе, поэтому снижается вероятность адсорбции тиолов на поверхности электрода. Кроме того, имеется возможность варьирования накладываемого электродного потенциала в зависимости от типа выбранного медиатора: органический, неорганический, металлокомплексный [24]. Для редокс-медиаторов характерна способность к циклической регенерации в растворе, позволяющая применять их многократно для синтеза дисульфидов в отличие от одноэлектронных окислителей – о-бензохинонов, о-иминобензохинонов [25].

Таким образом, впервые в настоящем исследовании предложено использовать комплексы

Соединение	Выход $R_2S_2, \%$	Конверсия RSH, %	$\Delta E, \mathbf{B}$
Гексантиол-1	59/68**	60/72	1.05/0.71
Циклогексантиол	57/60	62/71	0.86/0.53
4-Метокситиофенол	47/63	59/69	1.00/0.65

Таблица 2. Выход симметричных дисульфидов, конверсия тиолов и анодное перенапряжение электросинтеза (ΔE) с применением комплексов III, V*

* Соотношение Med : тиол = 1 : 1 (τ = 1.5 ч, CH₂Cl₂, 0.1 M *n*Bu₄NClO₄, Pt-анод (*S* = 70 мм²), c_{Med} = 0.001 моль/л, аргон). ** Значения выхода, конверсии и ΔE , представленные в таблице через косую линию, получены в случае использования комплексов III или V.

непереходных металлов – сурьмы(V), олова(IV) с тридентатным О, N, О-донорным лигандом в качестве электромедиаторов окисления (шикло-)алкан-, арентиолов, до симметричных дисульфидов. Применение изученных медиаторов позволило снизить анодное перенапряжение электродного процесса по сравнению с прямой анодной активацией тиолов на 0.53-1.05 В. Диапазон потенциалов варьируется в зависимости от редокс-формы координированного лиганда и электрохимических свойств тиолов. Более высокую активность в медиаторном электросинтезе дисульфидов продемонстрировали комплексы Sn(IV), Sb(V), содержащие фенильные группы при атоме металла. Выход дисульфида, полученного на основе гексантиола-1. оказался наибольшим (84%) в случае применения комплексы сурьмы. Использование комплексов непереходных металлов с редокс-активными лигандами в роли медиаторов окисления тиолов оказалось целесообразным ввиду энергоэффективности данного экологически безопасного метода по сравнению с прямым электросинтезом дисульфидов.

Авторы заявляют, что у них нет конфликта интересов.

ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 19-29-08003).

СПИСОК ЛИТЕРАТУРЫ

- 1. Van der Vlugt J.I. // Chem. Eur. J. 2019. V. 25. P. 2651.
- Ершова И.В., Пискунов А.В.// Коорд. химия. 2020. Т. 46. № 3. С. 132 (Ershova I.V., Piskunov A.V. // Russ. J. Coord. Chem. 2020. V. 46. № 3. Р. 154). https://doi.org/10.1134/S1070328420030021

- Nikolaevskaya E.N., Druzhkov N.O., Syroeshkin M.A., Egorov M.P. // Coord. Chem. Rev. 2020. V. 417. P. 213353.
- 4. Ершова И.В., Пискунов А.В., Черкасов В.К. // Успехи химии. 2020. Т. 89. № 11. С. 1157.
- 5. Piskunov A.V., Ershova I.V., Fukin G.K., Shavyrin A.S. // Inorg. Chem. Comm. 2013. V. 38. P. 127.
- 6. *Chegerev M.G., Piskunov A.V., Maleeva A.V. et al.* // Eur. J. Inorg. Chem. 2016. № 23. P. 3813.
- Будникова Ю.Г. Современный органический электросинтез. Принципы, методы исследования и практические приложения. Монография. М.: Изд-во ИНФРА-М, 2016. 440 с.
- Francke R., Little R.D. // Chem. Soc. Rev. 2014. V. 43. P. 2492.
- 9. Охлобыстин А.О., Охлобыстина А.В., Шинкарь Е.В. и др. // Докл. РАН. 2010. Т. 435. № 3. С. 1.
- Берберова Н.Т., Шинкарь Е.В., Смолянинов И.В. и др. // Коорд. химия. 2017. Т. 43. № 9. С. 540 (Berberova N.T., Shinkar' Е.V., Smolyaninov I.V. et al. // Russ. J. Coord. Chem. 2017. V. 43. № 9. Р. 578). https://doi.org/10.1134/S107032841707003X
- Охлобыстин А.О., Смолянинов И.В., Охлобыстина А.В. и др. // Коорд. химия. 2013. Т. 39. № 1. С. 36 (Okhlobystin A.O., Smolyaninov I.V., Okhlobystina A.V et al. // Russ. J. Coord. Chem. 2013. V. 39. № 1. Р. 33). https://doi.org/10.1134/S1070328413010077
- Смолянинов И.В., Шинкарь Е.В., Кузьмин В.В., Берберова Н.Т. // Журн. общ. химии. 2019. Т. 89. № 4. С. 552.
- 13. Berberova N.T., Smolyaninov I.V., Shinkar' E.V. et al. // Intern. J. Electrochem. Sci. 2019. V. 14. P. 531.
- 14. Sun X.-J., Yang S.-F., Wang Z.-T. et al. // ChemistrySelect. 2020. № 5. P. 4637.
- Kashiwagi Y., Ohsawa A., Osa T. et al. // Chem. Lett. 1991. V. 20. P. 581.
- 16. Берберова Н.Т., Шинкарь Е.В., Смолянинов И.В. и др. Синтез и биологическая активность органических моно-, ди- и полисульфидов. Монография. Ростов-на-Дону: Изд-во ЮНЦ РАН, 2019. 268 с.

- 17. *Пискунов А.В., Сухошкина О.Ю., Смолянинов И.В. //* Журн. общ. химии. 2010. Т. 80. № 4. С. 629.
- Смолянинов И.В., Поддельский А.И., Смолянинова С.А., Берберова Н.Т. // Коорд. химия. 2014. Т. 40. № 10. С. 608 (Smolyaninov I.V., Poddel'sky A.I., Smolyaninova S.A., Berberova N.T. // Russ. J. Coord. Chem. 2014. V. 40. № 10. Р. 726). https://doi.org/10.1134/S1070328414090097
- Jacquet J., Cheaib K., Ren Y. et al. // Chem. Eur. J. 2017. V. 23. P. 15030.
- 20. Jacquet J., Blanchard S., Derat E. et al. // Chem. Sci. 2016. V. 7. P. 2030.

- 21. Poddel'sky A.I., Somov N.N., Kurskii Yu.A. et al. // J. Organomet. Chem. 2008. V. 693. P. 3451.
- 22. *Гордон А., Форд Р.* Спутник химика. М.: Мир. 1976. 437 с.
- 23. *Магдесиева Т.В., Бутин К.П.* // Успехи химии. 2002. Т. 71. № 3. С. 255.
- 24. Wang F., Stahl S.S. // Acc. Chem. Res. 2020. V. 53. № 3. P. 561.
- 25. Бурмистрова Д.А., Смолянинов И.В., Берберова Н.Т. // Изв. АН. Сер. хим. 2020. № 5. С. 990.