УДК 538.113+541.67

СТРОЕНИЕ N*-трет*-БУТИЛБЕНЗОИЛ И N-ФЕНИЛПИВАЛОИЛГИДРОКСАМАТОВ МЕДИ(II) В КРИСТАЛЛИЧЕСКОМ СОСТОЯНИИ И В ЗАМОРОЖЕННОМ РАСТВОРЕ

© 2021 г. А. В. Ротов¹, И. А. Якушев¹, Е. А. Уголкова¹, Н. Н. Ефимов^{1, *}, В. В. Минин¹

¹Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия

**e-mail: nnefimov@yandex.ru* Поступила в редакцию 21.08.2020 г. После доработки 09.12.2020 г. Принята к публикации 11.12.2020 г.

Методом рентгеноструктурного анализа в кристаллическом состоянии и методом стационарной спектроскопии ЭПР в растворе хлористого метилена изучено геометрическое строение соединений CuL₂ (L = R₁N(O)–(O)CR₂; R₁ = mpem-Bu, R₂ = Ph (I) и R₁ = Ph, R₂ = mpem-Bu (II). По данным PCA (CIF files CCDC № 1875367 и 2022310 соответственно), в кристаллическом состоянии атомы меди обоих комплексов находятся в плоско-квадратном окружении атомов кислорода с *транс*-координацией гидроксаматных лигандов. По данным ЭПР в замороженных растворах комплексов в хлористом метилене, соединения сосуществуют в виде двух моноядерных форм A и Б, различающихся магнитно-резонансными параметрами. Показано, что соединение IБ при замораживании раствора образует агрегаты. Форма Б соединения II представляет собой ассоциат медного комплекса с молекулами растворителя. Данные ЭПР свидетельствуют о том, что обе формы соединения I и соединение IIA не образуют ассоциатов с молекулами растворителя.

Ключевые слова: комплексы меди(II), гидроксамовые кислоты, рентгеноструктурный анализ, электронный парамагнитный резонанс

DOI: 10.31857/S0132344X21060050

Гидроксамовые кислоты нашли широкое применение в биологии, медицине, аналитической химии и металлургии. Как сами гидроксамовые кислоты, так и комплексные соединения металлов с ними могут существовать в виде различных изомеров и полимолекулярных структур [1]. Большинство известных структурно охарактеризованных гидроксаматов меди(II) в кристаллическом состоянии существуют в виде плоско-квадратных комплексов с *транс*-координацией лигандов [2-5]. Методом ЭПР было убедительно показано, что гидроксаматы меди при растворении в органических растворителях существуют в виде двух форм [6, 7], которые в спектрах ЭПР проявляют себя как моноядерные. При этом различия параметров спектров авторы работ [8, 9] связывали с сосуществованием в растворе иис- и транс-изомеров комплексов. Обе указанные формы комплексов присутствуют в растворе и уверенно регистрируются методом ЭПР как при комнатной температуре, так и в низкотемпературном стекле. При охлаждении раствора комплексов гидроксоматов меди(II) ниже температуры замерзания растворителя в спектрах ЭПР помимо мономерных форм CuL_2 , в зависимости от строения лиганда L, могут регистрироваться и димерные формы $[CuL_2]_2$ [10].

В настоящей работе методом PCA установлено строение двух гидроксаматов меди(II) CuL₂ (L = = $R_1N(O)-(O)CR_2$; $R_1 = mpem$ -Bu, $R_2 = Ph$ (I) и $R_1 = Ph$, $R_2 = mpem$ -Bu (II) в кристаллическом состоянии, а с использованием спектроскопии ЭПР определено строение соединений в замороженных растворах хлористого метилена при температуре 100 К.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Комплексы гидроксаматов меди(II) синтезированы по методике, приведенной в [11]. Для более точной интерпретации спектров ЭПР синтез образцов проводили с использованием только одного изотопа меди — ⁶³Cu. Монокристаллы, пригодные для РСА, получали кристаллизацией из петролейного эфира.

РСА комплексов I и II проведен на рентгеновском пучке станции "Белок" Курчатовского цен-

тра синхротронного излучения в Национальном исследовательском центре "Курчатовский институт" (Москва, Российская Федерация) в режиме осканирования с использованием CCD детектора Rayonix SX165 при 100 К [12]. Первичное индексирование, уточнение параметров и интегрирование отражений, а также поправку на поглощение интенсивности рефлексов произведены с использованием программного пакета XDS [13]. Структуры расшифрованы прямыми методами и уточнены полноматричным методом наименьших квадратов по F^2 с параметрами анизотропного приближения для всех неводородных атомов. Атомы водорода помещены в рассчитанные положения и уточнены в модели "наездника" с $U_{\mu_{30}}(H) = 1.5 \times U_{_{3KB}}(C)$ для метильных групп и 1.2 × U_{экв}(С) для атомов водорода фенильной группы. Параметры структур уточнены без дополнительных ограничений модели. Расчеты выполнены с помощью программного пакета SHELXTL [14] в среде визуализации и обработки структурных данных OLEX2 [15]. Кристаллографические данные и параметры уточнения структур I и II приведены в табл. 1, основные длины связей и валентные углы – в табл. 2.

Кристаллографические данные для комплексов I и II депонированы в Кембриджском банке структурных данных (ССDС № 1875367 и 2022310 соответственно; deposit@ccdc.cam.ac.uk или http:// www.ccdc.cam.ac.uk/data_request/cif).

Спектры ЭПР регистрировали на радиоспектрометре Elexsys-E680X фирмы BRUKER в ЦКП ИОНХ РАН (Москва, Российская Федерация). Рабочая частота спектрометра ~9.8 ГГц (Х-диапазон). Растворы комплексов охлаждали до T = 100 K с помощью термоблока "Oxford Instruments".

Параметры спиновых гамильтонианов (СГ) комплексов определяли методом наилучшего приближения между экспериментальным и теоретическим спектрами минимизацией функционала ошибки [16]:

$$F = \sum_{i} \left(Y_i^T - Y_i^E \right)^2 / N,$$

где Y_i^E — массив экспериментальных значений интенсивности сигнала ЭПР с постоянным шагом по магнитному полю H; Y_i^T — теоретические значения при тех же значениях поля H; N — число точек. В качестве функции формы линии использовали сумму функций Лорентца и Гаусса [17]. В соответствии с теорией релаксации [18] ширину линий задавали выражением:

$$\Delta H = \alpha + \beta m_{\rm I} + \gamma m_{\rm I}^2,$$

где *m*_I — проекция ядерного спина на направление магнитного поля; α, β, γ — параметры, определяемые различными механизмами релаксации. В ходе минимизации варьировали относительные

КООРДИНАЦИОННАЯ ХИМИЯ том 47 № 6 2021

концентрации комплексов, *g*-факторы, константы сверхтонкой структуры (**CTC**), параметры ширины и формы линий.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Согласно данным PCA, комплексы I и II кристаллизуются в моноклинной пространственной группе $P2_1/n$ без включения растворителя в структуру кристалла. В обоих соединениях атом меди Cu(1) лежит на центре инверсии и находится в плоско-квадратном окружении атомов кислорода лигандов с небольшими изменениями в межатомных расстояниях межлу центральным атомом металла и атомами координационного окружения: Cu(1)-O(1) 1.888(3), Cu(1)-O(2) 1.909(3) Å (для I) и Cu(1)-O(1) 1.8764(18), Cu(1)-O(2) 1.9276(17) Å (для II), которые расположены в транс-позициях. Структуры соединений I, II приведены на рис. 1, 2 соответственно. Пятичленный металлоцикл Cu(1)-O(1)-N(1)-C(1)-O(2) близок к идеально плоскому в соединении I, а в II наблюдается небольшое отклонение атома меди Cu(1) от плоскости O(1)-N(1)-C(1)-O(2) (0.020(4) Å).

Спектры ЭПР замороженных растворов соединений I и II в хлористом метилене представляют собой суперпозицию спектров двух форм (**A** и **b**) моноядерных соединений меди(II), находящихся в магнитно-разбавленной твердой матрице (рис. 3, 4). В слабых магнитных полях наблюдаются три линии СТС от ядра атома меди параллельной компоненты *g*-тензора, четвертая линия перекрывается интенсивным сигналом перпендикулярной компоненты. В области сильных магнитных полей (~3300 Гс) наблюдается пик дополнительного поглощения [16].

Спектры комплексов описываются СГ ромбической симметрии следующего вида:

$$H_i = g_{iz}\beta H_z S_{iz} + g_{ix}\beta H_x S_{ix} +$$

+ $g_{iy}\beta H_y S_{iy} + A_i I_{iz} S_{iz} + B_i I_{ix} S_{ix} + C_i I_{iy} S_{iy},$

где β – магнетон Бора; $i = 1, 2; g_{iz}, g_{ix}, g_{iy} - z$ -, x-, y-компоненты g-тензора; A_i , B_i , $C_i - z$ -, x-, y-компоненты тензора СТС; S_{iz}, S_{ix}, S_{iy} – проекции оператора спина электрона на координатные оси; $S = 1/2; I_{iz}, I_{ix}, I_{iy}$ – проекции оператора ядерного спина центрального атома комплекса на координатные оси (I = 3/2). Параметры СГ спектров ЭПР соединений меди в замороженных растворах, полученные в результате наилучшей аппроксимации экспериментальных данных, приведены в табл. 3.

Соединения, спектры ЭПР которых описываются СГ с большими константами СТС и меньшими значениями *g*-факторов, в дальнейшем будем обозначать как соединения в форме А. Соединениями в форме Б будем называть комплексы, спектры ЭПР которых описываются СГ с большими значениями

Таблица 1. Кристаллографические данные и параметры уточнения структуры комплексов І и ІІ

П	Значение			
Параметр	Ι	II		
Брутто-формула	$C_{22}H_{28}N_2O_4Cu$	C ₂₂ H ₂₈ N ₂ O ₄ Cu		
М	448.00	448.00		
Цвет, габитус	Серо-фиолетовый, призма	Серо-зеленый, неправильная форма		
Размеры кристалла, мм	$0.120 \times 0.050 \times 0.050$	$0.070 \times 0.050 \times 0.050$		
Температура, К	100	100		
λ, Å	0.80246	0.80241		
Сингония	Моноклинная	Моноклинная		
Пр. гр.	$P2_1/n$	$P2_1/n$		
Параметры ячейки:				
<i>a</i> , Å	10.564(2)	11.2470(6)		
b, Å	5.7240(11)	5.6161(5)		
<i>c</i> , Å	17.733(4)	16.9480(19)		
β, град	96.11(3)	94.52(2)		
<i>V</i> , Å ³	1066.2(4)	1067.18(17)		
Ζ	2	2		
ρ(выч.), г/см ³	1.395	1.394		
μ, мм ⁻¹	1.460	1.458		
<i>F</i> (000)	470	470		
θ_{\min} — θ_{\max} , град	2.608-31.025	2.549-30.504		
Интервалы индексов отражений	$-13 \le h \le 13$,	$-14 \le h \le 14,$		
	$-7 \le k \le 7,$	$-7 \le k \le 7,$		
	$-22 \le l \le 22$	$-27 \le l \le 27$		
Измерено отражений	8211	7740		
Независимых отражений (<i>R</i> _{int})	2324 (0.0880)	2230 (0.0571)		
Отражений с <i>I</i> > 2σ(<i>I</i>)	1672	2068		
Отражения/ограничения/параметры	2324/0/136	2230/0/137		
R -факторы по $I \ge 2\sigma(I)$	$R_1 = 0.0599,$	$R_1 = 0.0482,$		
	$wR_2 = 0.1523$	$wR_2 = 0.1233$		
<i>R</i> -факторы по всем отражениям	$R_1 = 0.0867,$	$R_1 = 0.0519,$		
	$wR_2 = 0.1706$	$wR_2 = 0.1278$		
GOOF	1.046	0.978		
$T_{\rm max}/T_{\rm min}$	0.001/1.000	0.002/1.000		
Остаточная электронная плотность	0.629/-1.337	0.748/-0.839		
$(max/min), e A^{-3}$				

g-факторов и меньшими константами СТС. Параметры СГ для спектров соединений IA, IIA близки и характеризуются малым различием плоскостных компонент g_x , g_y и *B*, *C*. В *бис*-хелатном квадратном *цис*-комплексе диагонали квадрата, образованного атомами кислорода лигандов, эквивалентны Cu–O(N) + Cu–O(C), в *транс*-комплексе – неэквивалентны Cu–O(N) + Cu–O(N) и Cu–O(C) + Cu–O(C). Эквивалентность плоскостных ком-

понент параметров СГ указывает на эквивалентность диагоналей квадрата, что, в свою очередь, отвечает случаю *цис*-координации лигандов. Теоретические спектры ЭПР формы А, полученные при использовании параметров СГ табл. 3, визуально воспринимаются как спектры, описываемые СГ аксиальной симметрии (рис. 3, 4). По результатам [19], для гидроксаматов меди с *цис*-координацией лигандов характерны следующие параметры СГ:

Chast	Ι	II		
Связь	<i>d,</i> Å			
Cu(1)-O(1)(N)	1.888(3)	1.8764(18)		
Cu(1)–O(2)(C)	1.909(3) 1.9276(17)			
O(1)–N(1)	1.385(4)	1.392(3)		
O(2)–C(1)	1.274(5) 1.279(3)			
Угол	ω, град			
O(1)CuO(2)	84.06(11)	84.34(7)		
$O(1)^{1}CuO(2)^{*}$	95.94(11)	95.66(7)		
$O(1)^{1}CuO(1)^{*}$	180.00	180.00(8)		
Cu(1)O(1)N(1)	109.8(2)	109.04(13)		
Cu(1)O(2)C(1)	111.4(2)	111.65(16)		

Таблица 2. Основные межатомные расстояния (Å) и валентные углы (град) структуры соединений I, II

* Операция симметрии: $^{1}-x + 1$, -y + 2, -z + 1 (I), -x + 1, -y, -z + 1 (II).

Таблица 3. Параметры СГ спектров ЭПР гидроксаматов Cu(II) в низкотемпературном стекле при 100 К

Соединение	g_z	g_{χ}	g_y	$A \times 10^{-4} \mathrm{cm}^{-1}$	$B \times 10^{-4} \mathrm{cm}^{-1}$	$C \times 10^{-4} \mathrm{cm}^{-1}$	Концентрация, %
IA	2.235	2.055	2.053	204.9	24.2	23.8	60
ІБ	2.243	2.077	2.044	187.5	6.5	36.3	40
IIA	2.241	2.071	2.071	200.0	24.6	26.3	65
ΠБ	2.273	2.056	2.059	183.5	10.1	11.4	35

 $g_z = 2.23, g_{x,y} = 2.03, A = 219 \times 10^{-4} \text{ см}^{-1}$. Таким образом, на основании сопоставления полученных значений параметров СГ, формы А комплексов I и II можно отнести к *цис*-изомерам соответствующих соединений.

Спектр ЭПР соединения IБ описывается СГ с существенной разницей плоскостных параметров g_x, g_y, B, C . Такая разница, в силу неэквивалентности диагоналей координационного окружения центрального атома металла, соответствует спектру

Рис. 1. Молекулярная структура комплекса I, тепловые эллипсоиды показаны с вероятностью 45%. Здесь и далее верхним индексом ¹ обозначены атомы симметрийно-зависимой части молекулы.

КООРДИНАЦИОННАЯ ХИМИЯ том 47 № 6 2021

Рис. 2. Молекулярная структура комплекса II, тепловые эллипсоиды показаны с вероятностью 45%.

комплекса с *транс*-координацией лигандов. Параметры СГ этого соединения близки к параметрам спектра ЭПР комплекса CuL_2 ($L = R_1N(O) - (O)CR_2$; $R_1 = mpem$ -Bu, $R_2 = Me$ (IIIБ) с *транс*-координацией лигандов [5]. Различие спектров IБ и IIIБ заключается в существенном уширении спектра комплекса IБ в области малых значений напряженности магнитного поля (рис. 3). Подобное уширение может быть связано только с взаимодействием моноядерных комплексов CuL₂ в за-

Рис. 3. Экспериментальный и теоретический спектры ЭПР замороженного раствора соединения I (отношение концентраций комплексов $c_{IA}/c_{IB} = 1.50$); теоретические спектры соединений IA, IБ и IIIБ.

мороженном растворе, что свидетельствует об их агрегации.

Для комплексов IБ и IIБ спектры ЭПР (рис. 3, 4) существенно отличаются параметрами СГ, что может быть обусловлено различным влиянием молекул растворителя на *транс*-изомеры соединений I и II. Молекулы растворителя способны образовывать с *бис*-хелатами меди(II) устойчивые сольваты, которые, по данным ЯМР и ЭПР, существуют в растворе при комнатной температуре,

Рис. 4. Экспериментальный и теоретический спектры ЭПР замороженного раствора соединения II (отношение концентраций комплексов $c_{\text{IIA}}/c_{\text{IIB}} = 1.86$); теоретические спектры соединений IIA и IIБ.

а также в низкотемпературном стекле при 77 К [20]. Подобные сольваты гидроксаматов меди ранее были выделены в кристаллическом состоянии [2]. По данным РСА, молекулы растворителя образуют водородные связи только с атомами O(N)-гидроксаматных групп. Такое взаимодействие приводит к уменьшению различий расстояний металл-лиганд Cu-O(N) и Cu-O(C). В соединении ПБ подобное влияние молекул растворителя приводит к уменьшению ромбического искажения координационного полиэдра, что, в свою очередь, находит отражение в спектрах ЭПР, для которых плоскостные параметры СГ $(g_x, g_y \, u \, B, C)$ становятся близкими по величине. Трехосная анизотропия параметров СГ (см. табл. 3) спектра ЭПР соединения ІБ свидетельствует о том, что такого взаимодействия растворителя с комплексом не происходит. В данном случае, вероятно, объемный заместитель $R_1 = mpem$ -Ви препятствует образованию водородной связи молекулы хлористого метилена с атомом O(N).

Таким образом, по данным РСА в кристаллическом состоянии установлено, что соединения I и II являются моноядерными комплексами с *транс*-координацией лигандов. В то же время, данные ЭПР свидетельствуют о том, что в замороженном растворе комплексы сосуществуют в виде двух форм, предположительно *цис*- и *транс*-изомеров. Показано, что *транс*-форма N-фенилпиволоилгидроксамата меди(II) образует сольват с молекулами растворителя.

Авторы заявляют об отсутствии конфликта интересов.

БЛАГОДАРНОСТИ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

СПИСОК ЛИТЕРАТУРЫ

- 1. Codd R. // Coord. Chem. Rev. 2008. V. 252. P. 1387.
- Baugman R.G., Brink D.J., Butle J.M., New P.R. // Acta Crystallogr. C. 2000. V. 56. P. 528.

- 3. Ротов А.В., Уголкова Е.А., Ефимов Н.Н. и др. // Журн. неорган. химии. 2014. Т. 59. № 12. С. 1727 (*Rotov A.V., Ugolkova E.A., Efimov N.N. et al.* // Russ. J. Inorg. Chem. 2014. V. 59. № 12. Р. 1474). https://doi.org/10.1134/S0036023614120201
- 4. *Dzyuba V.I., Koval L.I., Dudko A.V. et al.* // J. Coord. Chem. 2014. V. 67. № 8. P. 1437.
- Ротов А.В., Уголкова Е.А., Лермонтова Е.Х. и др. // Журн. неорган. химии. 2015. Т. 60. № 7. С. 954 (Rotov A.V., Ugolkova E.A., Lermontova E.Kh. et al. // Russ. J. Inorg. Chem. 2015. V. 60. № 7. P. 866). https://doi.org/10.1134/S0036023615070128
- Абрагам А., Блини Б. Электронный парамагнитный резонанс переходных ионов / Под ред. Альтшулера С.А., Скроцкого Г.В. М.: Мир, 1972. 651 с.
- 7. *Chizhik V.I., Chernyshev Y.S., Donets A.V. et al.* Magnetic Resonance and Its Applications. New York: Springer, 2014. 782 p.
- 8. *Larin G.M., Rotov A.V., Dzyuba V.I.* // Dokl. Akad. Nauk. 1995. V. 334. № 6. P. 779.
- 9. Larin G.M., Rotov A.V., Dzyuba V.I. // Russ. Chem. Bull. 1999. V. 48. № 4. P. 722.
- Ротов А.В., Уголкова Е.А., Ефимов Н.Н., Минин В.В. // Журн. неорган. химии. 2013. Т. 58. № 2. С. 222 (Rotov A.V., Ugolkova E.A., Efimov N.N., Minin V.V. // Russ. J. Inorg. Chem. 2013. V. 58. № 2. Р. 186). https://doi.org/10.1134/S0036023613020216
- 11. Dzyuba V.I., Ternovaya T.V., Kostromina N.A., Ksaverov A.N. // Ukr. Khim. Zhur. 1986. V. 52. № 5. P. 453.
- 12. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. № 1900184.
- 13. Kabsch W. // Acta Crystallogr. D. 2010. V. 66. P. 125.
- 14. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
- 15. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
- Ракитин Ю.В., Ларин Г.М., Минин В.В. Интерпретация спектров ЭПР координационных соединений. М.: Наука, 1993. 339 с.
- 17. Wilson R., Kivelson D. // J. Chem. Phys. 1966. V. 44. Nº 1. P. 154.
- Лебедев Я.С., Муромцев В.И. ЭПР и релаксация стабилизированных радикалов. М.: Химия, 1972. С. 25.
- Barclay S.J., Raymond K.N. // Inorg. Chem. 1986. V. 25. № 20. P. 3561.
- Талзи Е.П., Некипелов В.М., Козырев Н.В, Замораев К.И. // Журн. структур. химии. 1982. Т. 23. № 6. С. 158.