УДК 546.593+547.491+546.162'14+546.185+547.53.024+548.312.2

СИНТЕЗ И СТРОЕНИЕ АРОКСИДОВ ТЕТРАФЕНИЛСУРЬМЫ Ph_4SbOAr (Ar = $C_6H_3F_2$ -2,4, $C_6H_3F_2$ -2,5, C_6H_3Cl -2-F-4)

© 2021 г. В. В. Шарутин¹, О. К. Шарутина¹, А. Н. Ефремов^{1, *}

¹Национальный исследовательский Южно-Уральский государственный университет, Челябинск, Россия *e-mail: efremov an94@mail.ru

> Поступила в редакцию 25.08.2020 г. После доработки 10.11.2020 г. Принята к публикации 10.11.2020 г.

Взаимодействием пентафенилсурьмы с 2,4-дифтор-, 2,5-дифтор- и 2-фтор-4-хлорфенолом в бензольно-октановой смеси растворителей получены ароксиды тетрафенилсурьмы $Ph_4SbOC_6H_3F_2-2,4$ (I), $Ph_4SbOC_6H_3F_2-2,5$ (II), $Ph_4SbOC_6H_3(Cl-2)(F-4)$ (III). По данным рентгеноструктурного анализа (CIF files № 1973286 (I), 1975709 (II), 1973305 (III)), атомы сурьмы в соединениях имеют координацию искаженной тригональной бипирамиды с ароксидным атомом кислорода в аксиальном положении. Аксиальные углы OSbC в соединениях I–III составляют 177.86(6)°, 177.29(7)°, 174.34(6)° соответственно. Геометрические параметры молекул I–III схожи длинами связей Sb–C_{экв} и Sb–O (2.118(2)–2.127(2) и 2.1780(16) Å в I; 2.122(2)–2.130(2) и 2.179(2) Å в II; 2.116(2)–2.119(2) и 2.1803(16) Å в III). Структурная организация в кристаллах соединений обусловлена слабыми водородными связями с участием F и C–H···π-взаимодействиями. Данные взаимодействия структурируют молекулы в кристалле соединения I в трехмерную сетку, в II – в парные цепочки, в III – в слои.

Ключевые слова: пентафенилсурьма, фенолы, реакция замещения, ароксиды тетрафенилсурьмы, рентгеноструктурный анализ

DOI: 10.31857/S0132344X21060074

Сурьмаорганические производные общей формулы Ar_4SbX , где X – лиганд, связанный с атомом сурьмы через гетероатом, достаточно хорошо изучены методом рентгеноструктурного анализа [1–15]. К таким соединениям относится широкий ряд структурно охарактеризованных ароксидов тетрафенилсурьмы [1, 16–21], большинство из которых содержат электроотрицательные группы в остатке фенола. Синтез таких производных осуществляют по реакциям замещения из Ph₅Sb и HOAr [16–18] или перераспределения лигандов между Ph₅Sb и производным симметричного строения Ph₃SbX₂ [19–21].

В продолжение исследования особенностей строения и синтеза ароксидов тетрафенилсурьмы с фторсодержащими ароксидными лигандами получены комплексы $Ph_4SbOC_6H_3F_2-2,4$ (I), $Ph_4SbOC_6H_3F_2-2,5$ (II), $Ph_4SbOC_6H_3Cl-2-F-4$ (III) и изучены их молекулярные структуры.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходный реагент — пентафенилсурьму — получали по методике, описанной [22]. В работе также использовали 2,4-дифторфенол, 2,5-дифторфенол и 2-хлор-4-фторфенол (Alfa Aesar). Растворители бензол и октан квалификации "х. ч." просушивали над хлоридом кальция перед проведением синтеза.

Синтез 2,4-дифторфеноксида тетрафенилсурьмы (I). Раствор 100 мг (0.197 ммоль) пентафенилсурьмы и 26 мг (0.197 ммоль) 2,4-дифторфенола в смеси растворителей бензол—октан (5 : 1 объемн.) выдерживали до полного удаления растворителей при 20°С. Получили бесцветные кристаллы I с $T_{пл} = 154$ °С. Выход 98 мг (89%).

ИК-спектр (v, см⁻¹): 3053, 3014, 3001, 1598, 1577, 1492, 1479, 1435, 1332, 1305, 1247, 1201, 1184, 1159, 1126, 1089, 1064, 1020, 997, 954, 918, 848, 804, 732, 719, 702, 692, 651, 599, 588, 507, 468, 455, 447, 408.

Найдено, %:	C 4.37;	Н 4.25.
Для C ₃₀ H ₂₃ OF ₂ Sb		
вычислено, %:	C 4.43;	H 4.15.

Аналогично синтезировали соединения II и III.

Синтез 2,5-дифторфеноксида тетрафенилсурьмы (II). Выход 86%, $T_{\text{пл}} = 146^{\circ}\text{C}$. ИК-спектр (v, см⁻¹): 3059, 3049, 1637, 1614, 1575, 1566, 1492, 1479, 1458, 1433, 1425, 1413, 1332, 1317, 1282, 1230, 1193, 1163, 1143, 1093, 1064, 1022, 997, 974, 900, 846, 837, 783, 771, 731, 692, 669, 651, 621, 605, 522, 470, 459, 453, 443.

Найдено, %:	C 64.23;	H 4.24.
Для C ₃₀ H ₂₃ OF ₂ Sb		
вычислено. %:	C 4.43:	H 4.15.

Синтез 2-хлор-4-фторфеноксида тетрафенилсурьмы (III). Выход 72%, $T_{пл} = 168$ °С. ИК-спектр (v, см⁻¹): 3105, 3064, 3049, 1591, 1577, 1564, 1473, 1433, 1427, 1396, 1334, 1292, 1242, 1182, 1161, 1116, 1062, 1039, 1020, 997, 900, 848, 808, 794, 732, 692, 650, 615, 569, 543, 487, 472, 460, 453, 441, 428.

Найдено, %:	C 62.50;	H 4.12.
Для C ₃₀ H ₂₃ OFClSb		
вычислено, %:	C 62.59;	H 4.04.

ИК-спектры соединений I–III регистрировали на ИК-спектрометре Shimadzu IR Affinity-1S в области 4000–400 см⁻¹ (таблетки KBr).

РСА кристаллов I–III проведен на дифрактометре D8 QUEST фирмы Bruker (Мо K_{α} -излучение, $\lambda = 0.71073$ Å, графитовый монохроматор) при 296(2) К. Сбор, редактирование данных и уточнение параметров элементарной ячейки, а также учет поглощения проведены по программам SMART и SAINT-Plus [23]. Все расчеты по определению и уточнению структур выполнены с использованием программ SHELXL/PC [24], OLEX2 [25]. Структуры определены прямым методом и уточнены методом наименьших квадратов в анизотропном приближении для неводородных атомов. Кристаллографические данные и результаты уточнения структур приведены в табл. 1.

Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных (ССDС № 1973286 (I), 1975709 (II), 1973305 (III); deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk/ structures).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Высокоэффективными методами синтеза соединений сурьмы общей формулы Ar_4SbOAr' являются методы, основанные на реакциях пентаарилсурьмы с производными симметричного строения $Ar_3Sb(OAr')_2$ [19–21] или фенолами [16–18]. Данные методы имеют одну стадию синтеза, характеризуются высоким выходом и чистотой целевого соединения, мягкими условиями протекания реакций.

Синтез соединений I–III осуществляли взаимодействием Ph₅Sb с галогенфенолами:

Соединения I—III представляют собой кристаллические, бесцветные вещества с четкой температурой плавления.

В ИК-спектрах соединений I–III присутствует интенсивная полоса поглощения, обусловленная колебаниями v(Sb–C), при 455, 453, 453 см⁻¹ соответственно. Полоса поглощения при 1247 (I), 1230 (II) и 1242 (III) см⁻¹ характеризует колебания v(C–O), полосы 1577, 1492, 1435 см⁻¹ (I); 1575, 1492, 1433 см⁻¹ (II); 1577, 1473, 1433 см⁻¹ (III) – валентные колебания углеродного скелета арильных групп. Колебаниям v(C_{Ar}–H) отвечает полоса поглощения средней интенсивности при 3053 (I), 3059 (II), 3064 (III) см⁻¹, а колебаниям $\delta(C_{Ar}-H)$ – высокоинтенсивные полосы при 732 и 692 (I), 731 и 692 (II), 732 и 692 (III) см⁻¹ [26, 27].

По данным PCA, атомы Sb в соединениях I–III имеют искаженную координацию тригональной бипирамиды с аксиально расположенным атомом кислорода ароксидного лиганда (рис. 1).

Аксиальные углы OSbC в I–III составляют 177.86(6)°, 177.29(7)°, 174.34(6)° соответственно, при этом последнее значение является наименьшим из величин аналогичных углов в галогенсодержащих ароксидах тетрафенилсурьмы [1]. Наибольший угол, близкий к идеальному в 180°, наблюдается в

ШАРУТИН и др.

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структур I–III

Параметр	Значение			
Параметр	Ι	II	III	
M	559.23	559.23	575.68	
Сингония	Триклинная	Триклинная	Моноклинная	
Пр. гр.	$P\overline{1}$	$P\overline{1}$	$P2_{1}/c$	
<i>a</i> , Å	10.161(4)	10.190(6)	15.201(10)	
b, Å	10.472(4)	10.509(5)	10.343(8)	
<i>c</i> , Å	13.316(5)	13.395(6)	17.602(11)	
α, град	73.573(18)	76.488(16)	90	
β, град	69.819(14)	67.96(3)	112.500(19)	
ү, град	89.92(2)	89.10(2)	90	
V, Å ³	1268.4(8)	1288.6(11)	2557(3)	
Ζ	2	2	4	
ρ(выч.), г/см ³	1.464	1.441	1.495	
μ, мм ⁻¹	1.122	1.104	1.211	
<i>F</i> (000)	560.0	560.0	1152.0	
Размер кристалла, мм	$0.22\times0.16\times0.11$	$0.32 \times 0.15 \times 0.13$	$0.65 \times 0.41 \times 0.05$	
20, град	6.232-57.506	5.84-57	5.802-56.998	
Интервалы индексов отражений	$-13 \le h \le 13,$	$-13 \le h \le 13,$	$-20 \le h \le 20,$	
	$-14 \le k \le 14,$	$-14 \le k \le 14,$	$-13 \le k \le 13,$	
Всего отражений	$-17 \le t \le 17$ 43002	$-17 \le t \le 17$ 56904	$-23 \le l \le 23$ 56784	
Независимых отражений (R_{int})	6527 (0.0362)	6518 (0.0733)	6480 (0.0360)	
Отражений с <i>I</i> > 2 σ (<i>I</i>)	5748	5908	5619	
Число уточняемых параметров	307	307	307	
GOOF	1.077	1.077	1.035	
R -факторы по $F^2 > 2\sigma(F^2)$	$R_1 = 0.0251,$	$R_1 = 0.0305,$	$R_1 = 0.0218,$	
	$wR_2 = 0.0585$	$wR_2 = 0.0769$	$wR_2 = 0.0520$	
<i>R</i> -факторы по всем отражениям	$R_1 = 0.0321,$	$R_1 = 0.0355,$	$R_1 = 0.0281,$	
	$wR_2 = 0.0612$	$wR_2 = 0.0800$	$wR_2 = 0.0553$	
Остаточная электронная плотность (max/min), <i>e</i> /Å ³	0.61/-0.55	0.41/-1.24	0.47/-0.46	

структуре 2,4,6-трибромфеноксида тетрафенилсурьмы [18]. Суммы углов CSbC в экваториальной плоскости равны 358.09(8)° (I), 357.51(9)° (II), 357.43(8)° (III). Значения углов $O_{akc}SbC_{экв}$ меньше 90°, а $C_{akc}SbC_{экв}$ больше этого значения. Выходы атомов сурьмы из экваториальной плоскости [C₃] в сторону C_{akc} составляют 0.170 Å (I), 0.195 Å (II), 0.198 Å (III). Приведенные геометрические характеристики сопоставимы с другими ранее структурно охарактеризованными соединениями общей формулы Ph₄SbOAr [1, 16–21]. Экваториальные фенильные кольца в I–III повернуты вокруг связей Sb– $C_{3\kappa B}$ таким образом, чтобы минимизировать внутри- и межмолекулярные взаимодействия. Двугранные углы между плоскостями колец и экваториальной плоскостью C(1)C(11)C(21) составляют: 11.27° C(11)–C(16), 49.39° C(21)–C(26), 54.63° C(1)–C(6) (I); 14.77° C(1)–C(6), 54.97° C(21)–C(26), 55.50° C(11)–C(16) (II); 23.27° C(11)–C(16), 53.76° C(1)–C(6), 58.99° C(21)–C(26) (III). Интересно отметить, что в соединениях I и II наблюдается частичное взаимодействие π -систем фенильного

Рис. 1. Строение соединений I (а) (атомы водорода не показаны), II (б), III (в).

КООРДИНАЦИОННАЯ ХИМИЯ том 47 № 6 2021

лиганда (C(11)–C(16) в I и C(1)–C(6) в II), расположенного практически в экваториальной плоскости, и ароматического кольца ароксигруппы. Плоскости этих групп располагаются друг напротив друга, образуя межплоскостной угол в 48.17° (I) и 40.75° (II). Наименьшие расстояния между плоскостями данных π -систем составляют 3.144(3) Å (C(11)···C(41)) в I, 3.101(4) Å (C(1)···C(41)) и 3.322(5) Å (C(2)···C(46)) в II, что меньше суммы ван-дер-ваальсовых радиусов двух углеродов (3.5 Å). Подобные взаимодействия наблюдаются и в других ароксидах тетраарилсурьмы [1, 21, 28].

Геометрические параметры молекул I–III схожи длинами связей Sb–C_{экв} и Sb–O (2.118(2)–2.127(2) и 2.1780(16) Å в I; 2.122(2)–2.130(2) и 2.179(2) Å в II; 2.116(2)–2.119(2) и 2.1803(16) Å в III). Расстояния Sb–C_{акс} в соединениях I и II превышает длину связи Sb–O (2.188(2) и 2.185(3) Å соответственно), что встречается редко и присуще также 4-иодфеноксиду тетрафенилсурьмы [1]. Обратное наблюдается в большинстве структур галогенароксидов тетрафенилсурьмы, включая соединение III (2.175(2) Å).

Интересно проследить за изменением длины связи Sb-O в ряду структурно охарактеризованных галогенароксидов тетрафенилсурьмы Ph₄SbOAr $(Ar = C_6H_4I-4, C_6H_3F_2-2, 4 (I), C_6H_3F_2-2, 5 (II),$ C₆H₃Cl-2-F-4 (III), C₆H₃Cl₂-2,6, C₆H₂Cl₃-2,4,6, $C_6H_2Br_3-2,4,6, C_6F_5$). В приведенном ряду наблюлается vвеличение расстояния Sb-O (от 2.162 до 2.285 Å), что указывает на уменьшение ее прочности. Основность лигандов напрямую зависит от силы электронных эффектов галогенов (-I u + M), их положения в бензольном кольце и количества. Данное расположение не совсем логично для бром- и хлорсодержащих феноксидных остатков, так как – І-эффекты галогенов изменяются в ряду I < Br < Cl < F и затухают в ряду *пара- < мета- <* < орто-. Положение в данном ряду 2,4,6-трибромфеноксида, возможно, связано с большим объемом атомов брома, а их суммарный индуктивный эффект в большей степени влияет на основность лиганда, чем более электротрицательные атомы фтора в меньшем количестве в I–III. В соединениях I-III связи Sb-О практически равны, следовательно, замена атома фтора на хлор в орто-положении соединения III и смена параположения атома F на *мета*- в II по сравнению с соединением I не влияет на длину данной связи.

Организация структуры кристаллов соединений I и III обусловлена слабыми водородными связями с участием атомов F (2.59, 2.57, 2.63 Å в I и 2.52 Å в III) и С-Н…π-взаимодействиями. В кристалле соединения II – только С-Н…π-взаимодействиями. Данные взаимодействия структурируют молекулы в кристалле соединения I в трехмерную сетку (рис. 2а), в II – в парные цепочки, расположенные вдоль кристаллографической

Рис. 2. Структурная организация в кристалле соединений I (а), II (б), III (в).

оси c (рис. 26), в III — в слои, перпендикулярные оси a, толщиной в две молекулы (рис. 2в).

Таким образом, взаимодействие пентафенилсурьмы с галогенфенолами приводит к образованию ароксидов тетрафенилсурьмы, в молекулах которых атомы сурьмы имеют конфигурацию тригональной бипирамиды с атомом кислорода ароксидного лиганда в аксиальном положении. Расстояние Sb-C_{акс} в соединениях I и II превышает длину связи Sb-O, что не характерно для соединений подобного типа. В этих же структурах наблюлается частичное взаимолействие π -систем фенильного лиганда, расположенного в экваториальной плоскости, и ароматического кольца ароксигруппы. Молекулы в кристаллах соединений структурированы в трехмерную сетку (в I), парные цепочки (в II), в слои (в III) посредством водородных связей F…Н и С-Н…л-взаимодействий.

Авторы заявляют об отсутствии конфликта интересов.

ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований в рамках научного проекта № 20-31-70001.

СПИСОК ЛИТЕРАТУРЫ

- 1. Cambridge Crystallographic Data Centre. 2020. http://www.ccdc.cam.ac.uk.
- Егорова И.В., Жидков В.В., Гринишак И.П. и др. // Журн. общ. химии. 2014. Т. 71. № 6. С. 1176 (Egorova I.V., Zhidkov V.V., Grinishak I.P. et al. // Russ. J. Gen. Chem. 2014. V. 84. № 7. Р. 1371). https://doi.org/10.1134/S1070363214070214
- Robertson A.P.M., Chitnis S.S., Jenkins H.A. et al. // Chem.-Eur. J. 2015. V. 21. № 21. P. 7902. https://doi.org/10.1002/chem.201406469
- Pan B., Gabbai F.P. // J. Am. Chem. Soc. 2014. V. 136. № 27. P. 9564. https://doi.org/10.1021/ja505214m
- Dinsdale N., Jeffrey J.C., Kilby R.J. et al. // Inorg. Chim. Acta. 2007. V. 360. № 1. P. 418. https://doi.org/10.1016/j.ica.2006.07.091
- Yang M., Pati N., Belanger-Chabot G. et al. // Dalton Trans. 2018. V. 47. P. 11843. https://doi.org/10.1039/C8DT00702K
- 7. Иванов А.В., Пакусина А.П., Иванов М.А. и др. // Докл. РАН. 2005. Т. 401. № 5. С. 643.
- Yamamichi H., Matsukawa S., Kojima S. et al. // Heteroatom Chem. 2011. V. 22. № 3–4. P. 553. https://doi.org/10.1002/hc.20721
- Wang G.-C., Lu Y.-N., Xiao J. et al. // J. Organomet. Chem. 2005. V. 690. № 1. P. 151. https://doi.org/10.1016/j.jorganchem.2004.09.002

КООРДИНАЦИОННАЯ ХИМИЯ том 47 № 6 2021

- 10. *Wang G.-C., Xiao J., Yu L. et al.* // J. Organomet. Chem. 2004. V. 689. № 9. P. 1631. https://doi.org/10.1016/j.jorganchem.2004.02.015
- Domasevitch K.V., Gerasimchuk N.N., Mokhir A. // Inorg. Chem. 2000. V. 39. № 6. P. 1227. https://doi.org/10.1021/ic9906048
- Ma C., Zhang Q., Sun J. et al. // J. Organomet. Chem. 2006. V. 691. № 11. P. 2567. https://doi.org/10.1016/j.jorganchem.2006.01.049
- Li J.-S., Liu R.-C., Chi X.-B.et al. // Inorg. Chim. Acta. 2004. V. 357. № 7. P. 2176. https://doi.org/10.1016/j.ica.2003.12.012
- 14. Шарутин В.В., Шарутина О.К., Ефремов А.Н. // Журн. неорган. химии. 2020. Т. 65. № 4. С. 482. https://doi.org/10.31857/S0044457X20040170 (Sharutin V.V., Sharutina O.K., Efremov A.N. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 4. Р. 502.) https://doi.org/10.1134/S0036023620040178
- 15. Шарутин В.В., Шарутина О.К., Губанова Ю.О. // Журн. неорган. химии. 2019. Т. 64. № 9. С. 957. https://doi.org/10.1134/S0044457X19090198 (Sharutin V.V., Sharutina O.K., Gubanova, Y.O. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 9. Р. 1138.) https://doi.org/10.1134/S0036023619090195
- Шарутин В.В., Шарутина О.К., Сенчурин В.С. // Журн. неорган. химии. 2017. Т. 62. № 3. С. 290. https://doi.org/10.7868/S0044457X17030151 (Sharutin V.V., Sharutina O.K., Senchurin V.S. // Russ. J. Inorg. Chem. 2017. V. 62. № 3. Р. 295.) https://doi.org/10.1134/S0036023617030147
- 17. Шарутин В.В., Шарутина О.К., Сенчурин В.С. // Коорд. химия. 2016. Т. 42. № 1. С. 34. https://doi.org/10.7868/S0132344X15120075 (Sharutin V.V., Sharutina O.K., Senchurin V.S. // Russ. J. Coord. Chem. 2016. V. 42. № 1. Р. 32.) https://doi.org/10.1134/S1070328415120076
- 18. Шарутин В.В., Пакусина А.П., Шарутина О.К. и др. // Химия и компьютерное моделирование. Бутлеровские сообщения. 2003. Т. 4. № 1. С. 22.
- Шарутин В.В., Шарутина О.К., Осипов П.Е. и др. // Журн. общ. химии. 2001. Т. 71. № 6. С. 1045 (Sharutin V.V., Sharutina O.K., Osipov P.E. et al. // Russ. J. Gen. Chem. 2001. V. 71. № 6. Р. 983). https://doi.org/10.1023/A:1012368510207
- Шарутин В.В., Шарутина О.К., Сенчурин В.С. и др. // Журн. общ. химии. 2016. Т. 86. № 1. С. 92 (Sharutin V.V., Sharutina O.K., Senchurin V.S. et al. // Russ. J. Gen. Chem. 2016. V. 86. № 1. Р. 85). https://doi.org/10.1134/S1070363216010151
- Шарутин В.В., Шарутина О.К., Ефремов А.Н. и др. // Журн. неорган. химии. 2017. Т. 62. № 10. С. 1330. https://doi.org/10.7868/S0044457X17100075 (Sharutin V.V., Sharutina O.K., Efremov A.N. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 10. Р. 1320.) https://doi.org/10.1134/S0036023617100163
- 22. Кочешков К.А., Сколдинов А.П., Землянский Н.Н. Методы элементоорганической химии. Сурьма. Висмут. М.: Наука, 1976. 485 с.

- 23. SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Madison (WI, USA): Bruker AXS Inc., 1998.
- SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Madison (WI, USA): Bruker AXS Inc., 1998.
- 25. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- 26. Васильев А.В., Гриненко Е.В., Щукин А.О., Федулина Т.Г. Инфракрасная спектроскопия органических и природных соединений. СПб: СПбГЛТА, 2007. 54 с.
- 27. Тарасевич Б.Н. ИК спектры основных классов органических соединений. М.: МГУ, 2012. 55 с.
- Quan L., Yin H., Cui J. et al. // J. Organomet. Chem. 2009. V. 694. № 23. P. 3683. https://doi.org/10.1016/j.jorganchem.2009.07.041