УДК 548.736:541.49

НЕКОВАЛЕНТНЫЕ ВЗАИМОДЕЙСТВИЯ В АРХИТЕКТУРАХ С СЕМИКАРБАЗОНАМИ ЗАМЕЩЕННОГО САЛИЦИЛОВОГО АЛЬДЕГИДА

© 2021 г. Л. Н. Куба¹, Е. К. Горинчой¹, Д. П. Драганча¹, С. Г. Шова¹, П. Н. Боурош^{1, 2, *}

¹Институт химии, Кишинев, Республика Молдова ²Институт прикладной физики, Кишинев, Республика Молдова *e-mail: bourosh.xray@phys.asm.md Поступила в редакцию 18.01.2021 г. После доработки 29.01.2021 г. Принята к публикации 02.02.2021 г.

Рентгеноструктурное исследование трех соединений, содержащих семикарбазон 2,3-дигидроксибензальдегида (H_3L^1) или семикарбазон 2-гидрокси-3-метоксибензальдегида (H_2L^2) , показало, что получены одна органическая соль с протонированным триэтиламином $[(C_2H_5)_3NH][H_2L^1] \cdot 0.5(CH_3)_2CO$ (I), а также два новых координационных соединений никеля(II) с этими двумя различно замещенными семикарбазонами салицилового альдегида $[Ni(H_3L^1)(H_2L^1)](NO_3) \cdot 2.5MeOH \cdot 0.25H_2O$ (II) и $[Ni(H_2L^2)_2]Cl_2 \cdot 4H_2O$ (III) (CIF files CCDC N2041894 - 2041896 (I–III)). Соединения Ni(II) ионные, образованные комплексными катионами с одинаковым соотношением металл : лиганд. Ион Ni(II) в этих комплексных катионах обладает искаженной октаэдрической координационной геометрией, образованной набором донорных атомов N_2O_4 двух тридентатно координированных лигандов. В монозарядном комплексном катионе II два координированных лиганда не идентичны: один выступает в качестве нейтрального хелатирующего агента (H_3L^1) , другой депротонирован и вовлечен как моноанион $(H_2L^1)^-$. При этом в комплексном катионе III оба H_2L нейтральны. В кристаллах все три соединения образуют супрамолекулярные ансамбли различной размерности и архитектуры, компоненты которых объединены слабыми взаимодействиями разных типов.

Ключевые слова: координационные соединения, семикарбазон, салициловый альдегид, нековалентные взаимодействия, рентгеноструктурный анализ

DOI: 10.31857/S0132344X21070033

Значимую роль в современной инженерии кристаллов имеют слабые нековалентные контакты, такие как водородная связь, π – π -стэкинг, ван-дер-ваальсовские взаимодействия и др. Эти направленные взаимодействия способны связывать отдельные компоненты, в том числе кристаллизационные молекулы, в различные ассоциаты, кластеры, супрамолекулярные системы и в результате получаются новые функциональные материалы [1, 2].

Комплексы переходных металлов на основе ацилгидразонов в качестве лигандов образовывают разнообразные супрамолекулярные ансамбли [3–5]. Использование семикарбазонов для получения большего разнообразия комплексов обусловлено, помимо различной дентатности этих лигандов и легких методов их синтеза, также интересными фармакологическими свойствами последних [6–8]. Салициловый альдегид (2-гидроксибензальдегид) и его производные также являются удобными карбонильными прекурсорами для этих систем, при этом для комплексов V(V), Cu(II), Zn(II) с семикарбазоном салицилового альдегида характерны различные полезные свойства [9-12]. С другой стороны, интересные супрамолекулярные кристаллические архитектуры развиты часто благодаря чувствительному к образованию водородной связи протону амидного фрагмента N-H, подобному в родственных гидразонах (R-C(=O)-NH-). Наличие подходящих дополнительных функциональных групп (например, гидрокси или метокси) может увеличивать дентатность получаемого основания Шиффа и, как следствие, изменить его хелатирующую способность и структурную гибкость. Таким образом, некоторые гидразонные лиганды с набором донорных атомов N,O в гидразонном фрагменте, за счет присутствия дополнительных функциональных групп, и в альдегидной части имеют различные способы координации к ионам металлов, что приводит к образованию как моноядерных комплексов Ni(II) [13], биядерных Mn(II) [14–16], четырехядерных кластеров Cu(II) [17, 18], Co(II) [19], Ni(II) [20], так и гетерометаллических полимеров калий-диоксидованадия(IV) [21].

В продолжение исследований координационной способности семикарбазонов различных производных салицилового альдегида [22] мы получили и рентгеноструктурно исследовали некоординированный семикарбазон, полученный в виде органической соли $[(C_2H_5)_3NH][H_2L^1] \cdot 0.5(CH_3)_2CO$ (I), а также два комплексных соединения Ni(II) – $[Ni(H_3L^1)(H_2L^1)](NO_3) \cdot 2.5MeOH \cdot 0.25H_2O$ (II) и $[Ni(H_2L^2)_2]Cl_2 \cdot 4H_2O$ (III), где H_3L^1 – семикарбазон 2,3-дигидроксибензальдегида, H_2L^2 – семикарбазон 2-гидрокси-3-метоксибензальдегида.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза использовали коммерческие реактивы и растворители "х. ч." без дополнительной очистки.

Синтез лигандов. H_3L^1 и H_2L^2 получали по измененной методике, описанной в [23] и [24] соответственно. К раствору солянокислого семикарбазида (1.11 г, 10 ммоль) и тригидрата ацетата натрия (1.36 г, 10 ммоль) в 15 мл смеси вода—этанол (1 : 2 по объему) добавляли 2,3-дигидроксибензальдегид (1.38 г, 10 ммоль) или 2-гидрокси-3-метоксибензальдегид (1.52 г, 10 ммоль) соответственно и перемешивали полученную смесь при комнатной температуре в течение 1 ч. Образовавшуюся суспензию отфильтровывали, осадок промывали этанолом и сушили на воздухе. Выход 81% (H_3L^1)/93% (H_2L^1).

H₃L¹: ИК-спектр (v, см⁻¹): 3600, 3483, 3454, 3436, 3346, 1669, 1592, 1279, 1221. Спектр ЯМР ¹H (δ, м.д.; *J*, Γu): 6.37 (уш. с., 2H, NH₂), 6.63 (т., *J* = 7.8, 1H, Ar–H⁵), 6.75 (д.д., *J* = 7.8, 1.5, 1H, Ar–H⁴), 7.17 (д., *J* = 7.8, 1H, Ar–H⁶), 8.13 (с., 1H; HC=N), 9.19, 9.41 (уш. с., 2H, OH), 10.18 (уш. с., 1H; CONH). Спектр ЯМР ¹³C (δ, м.д.): 115.84 (ArC₄), 117.30 (ArC₆), 118.96 (ArC₅), 120.96 (ArC₁), 138.55 (CH=N), 144.54 (ArC₂–OH), 145.43 (ArC₃–OH), 156.38 (C=O). Спектр ЯМР ¹⁵N: 77 (NH₂), 154 (NH–CO), 313 (N=CH).

H₂L²: ИК-спектр (v, см⁻¹): 3465, 3329, 3267, 1672, 1585, 1264, 1218. Спектр ЯМР ¹H (δ, м.д.; *J*, Γп): 3.80 (с., 3H, OCH₃), 6.40 (уш. С., 2H, NH₂), 6.76 (д., *J* = 7.9, 1H, Ar–H⁵), 6.91 (д., *J* = 7.9, 1H, Ar–H⁴), 7.38 (д., *J* = 7.8, 1H, Ar–H⁶), 8.16 (c., 1H; HC=N), 9.30 (уш. с., 1H, OH), 10.21 (уш. с., 1H; CONH). Спектр ЯМР ¹³C (δ, м.д.): 55.85 (ArC₃– OCH₃), 112.21 (ArC₄), 118.16 (ArC₆), 118.96 (ArC₅), 121.08 (ArC₁), 137.24 (CH=N), 145.32 (ArC₂–OH), 147.88 (ArC₃–OCH₃), 156.62 (C=O). Спектр ЯМР ¹⁵N: 77 (NH₂), 155 (NH–CO), 315 (N=CH). Синтез I. К теплой суспензии, содержащей 0.05 г H_3L^1 в 15 мл ацетона, добавляли 10 капель триэтиламина (Et_3N) и наблюдали постепенное растворение соединения. Полученный раствор светло-желтого цвета оставляли при комнатной температуре в закрытой склянке, в которой в этот же день наблюдали формирование прозрачных монокристаллов в виде иголок, пригодных для PCA. Очевидно, что кристаллизационные моле-кулы ацетона довольно легко теряются при воздействии атмосферы на кристаллы при температуре окружающей среды с видимым влиянием на морфологию кристалла. Для рентгеновского эксперимента потери растворителя удалось избежать.

Спектр ЯМР ¹Н (δ , м.д.; J, Гц): 0.93 (т. 9Н, J=7.1, N(CH₂CH₃)₃), 2.08 (с., 6H, ацетон), 2.43 (кв., 6H, J=7.1, N(CH₂CH₃)₃), 6.36 (уш. с., 2H, NH₂), 6.62 (д., J = 7.8, 1H, Ar–H⁵), 6.74 (д., J = 7.7, 1H, Ar–H⁴), 7.17 (д., J = 7.8, 1H, Ar–H⁶), 8.13 (с., 1H; HC=N), 10.15 (уш. с., 1H; CONH). Спектр ЯМР ¹³С (δ , м.д.): 11.64 и 45.74 (триэтиламин), 30.56 (ацетон), 115.77 (ArC₄), 117.22 (ArC₆), 118.86 (ArC₅), 120.92 (ArC₁), 138.47 (CH=N), 144.57 (ArC₂–O), 145.44 (ArC₃–O), 156.32 (C=O), 206.29 (ацетон). Спектр ЯМР ¹⁵N: 47 (N⁺), 77 (NH₂), 152 (NH–CO), 312 (N=CH).

Синтез II. К суспензии 0.098 г (0.5 ммоля) H_3L^1 в 20 мл метанола приливали по каплям при постоянном перемешивании раствор 0.146 г (0.5 ммоля) Ni(NO₃)₂ · 6H₂O в 10 мл метанола. Затем смесь нагревали на водяной бане до полного растворения семикарбазона, а полученный светло-зеленый раствор фильтровали через бумажный фильтр. Из фильтрата через некоторое время выпадали пригодные для PCA светло-зеленые монокристаллы в виде ромбических пластинок, которые отфильтровывали, промывали метанолом и высушивали на воздухе. Выход ~42%.

Найдено, %:	C 37.58;	H 4.88;	N 16.20.
Для C _{18.5} H _{27.5} N ₇	O _{11.75} Ni		
вычислено, %:	C 37.36;	H 4.66;	N 16.49.

ИК-спектр (v, см⁻¹): 3834, 3334, 3292, 1666, 1554, 1407, 1268, 1216, 577, 551, 489.

Синтез III. К горячему раствору 0.238 г NiCl₂ · $6H_2O$ (1.0 ммоль) в 10 мл этанола добавляли 0.209 г (1.0 ммоль) H_2L^2 . Полученную смесь в течение 30 мин нагревали до температуры кипения. Затем образовавшийся зеленый раствор охлаждали при комнатной температуре. Через 3 сут зеленый кристаллический осадок, содержащий монокристаллы, пригодные для PCA, отфильтровывали, про-

мывали этанолом, диэтиловым эфиром и сушили при 120°С в течение 1.5 ч. Выход 0.152 г (49%).

Найдено, %:	o, %: C 39.27; H 4.15;		N 15.18.
Для C ₁₈ H ₂₂ N ₆ O ₆ C	Cl ₂ Ni (после	потери воды)	
вычислено, %:	C 39.45;	H 4.05;	N 15.36.

ИК-спектр (v, см⁻¹): 3465, 3329, 3284, 3223, 1663, 1590, 1536, 1253, 1230, 598, 584, 531, 471, 423.

Состав и строение соединений установили на основе элементного анализа, данных ИК-спектроскопии и методом РСА. ИК-спектры снимали на FT-IR Perkin Elmer spectrum 100 спектрометре в вазелиновом масле в области 4000-400 см⁻¹ и ATP в области 4000-650 см⁻¹. Спектры ЯМР высокого разрешения на ядрах 1 H, 13 C и 15 N регистрировали на спектрометре Фурье-ЯМР AVANCE III 400 MHz (Bruker) с рабочими частотами 400.13, 100.61 и 40.54 МГц соответственно. Эксперименты ЯМР проводили при комнатной температуре 25°С. ДМСО-d₆ (изотопное обогащение 99.95%) использовали в качестве растворителя. Химические сдвиги (**XC** (δ) м.д.) относятся к пику остаточного растворителя (¹Н: 2.50 м.д., ¹³С: 39.50 м.д.); константы спин-спинового взаимодействия (J) даны в Гц. 1D- (¹H, ¹³C) и 2D-гетероядерные (¹H/¹³C HSQC, ¹H/¹³C HMBC и ¹H/¹⁵N HMQC, ¹H/¹⁵N НМВС) ЯМР эксперименты проводили с использованием стандартных последовательностей импульсов. XC ядер ¹⁵N приведены по отношению к жидкому NH₃ [25]. Анализ данных проводили с использованием программного обеспечения Bruker TOPSPIN 2.1.

РСА для соединений I-III проведен на дифрактометрах Xcalibur E (Мо K_{α} -излучением, $\lambda =$ = 0.71073 Å, графитовый монохроматор) при комнатной температуре для I и III, для II – при 180 К. Обработка экспериментальных данных и определение параметров элементарной ячейки выполнены по программе CrysAlis Oxford Diffraction Ltd. [26]. Структуры решены прямыми методами и уточнены методом МНК в основном в анизотропном полноматричном варианте для неводородных атомов (SHELXS-97, SHELXL2014) [27, 28]. Кристаллографические данные и характеристики эксперимента структуры I-III приведены в табл. 1, некоторые межатомные расстояния и валентные углы – в табл. 2, геометрические параметры водородных связей (ВС) — в табл. 3.

Позиционные и тепловые параметры атомов соединений депонированы в Кембриджском банке структурных данных (ССDС № 2041894– 2041896 (I–III); deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk/data_request/cif).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Лиганды H_3L^1 и H_2L^2 получали с помощью реакции конденсации семикарбазида с 2,3-дигидроксибензальдегидом и 2-гидрокси-3-метоксибензальдегидом соответственно (схема 1). Структура полученных лигандов подтверждена ИК- и ЯМР-спектроскопией.

Схема 1.

Спектральные характеристики ЯМР ¹Н лиганда H_3L^1 , полученные в растворах ДМСО- d_6 и MeOD- d_4 , описаны в [23]. Зарегистрированные нами XC ядер ¹Н лиганда H_3L^1 в растворе ДМСО- d_6 совпадают с описанными данными [23] и дополняют их. Например, с помощью гетероядерного эксперимента ¹H/¹³C HSQC были точно отнесены сигналы арильных протонов H⁴—H⁶ (кросс-пики при 6.75/115.84, 6.63/118.96 и 7.17/117.30 соответственно). Впервые приводятся XC углеродных и азотных ядер в лиганде H_3L^1 с использованием ЯМР ¹H/¹³C HSQC, ¹H/¹³C HMBC и ¹H/¹⁵N НМQC, ¹H/¹⁵N HMBC. При этом метиновый углерод фрагмента CH=N в спектре ¹H/¹³C HSQC определен кросс-пиком при 8.13/138.55 м.д., в то время как удаленная корреляция C–H этого же протона с углеродами при 120.96, 117.30 и 144.54 м.д. в спектре ¹H/¹³C HMBC позволила правильно определить XC арильных углеродов C₁, C₆ и C₂ соответственно (схема 2). Некоторые ключевые ге-

Таблица 1. Кристаллографические данные и характеристики эксперимента для структуры I-III

Параметр	Значение			
Параметр	I II		III	
Брутто-формула	$C_{15.5}H_{27}N_4O_{3.5}$	C _{18.50} H _{27.50} N ₇ O _{11.75} Ni	C ₁₈ H ₃₀ N ₆ O ₁₀ Cl ₂ Ni	
M	325.41	594.68	620.09	
Сингония	Моноклинная	Моноклинная	Моноклинная	
Пр. гр.	C2/c	$P2_{1}/c$	C2/c	
<i>a</i> , Å	18.1901(17)	17.9605(11)	22.8033(11)	
<i>b</i> , Å	14.0208(15)	12.8375(6)	10.7327(4)	
<i>c</i> , Å	14.3246(12)	21.9246(13)	12.0921(4)	
β, град	92.716(8)	99.888(6)	117.447(3)	
<i>V</i> , Å ³	3649.2(6)	4980.0(5)	2626.31(18)	
Ζ	8	8	4	
ρ (выч.), г/см ³	1.185	1.586	1.568	
μ , mm ⁻¹	0.085	0.854	1.004	
<i>F</i> (000)	1408	2476	1288	
Размеры кристалла, мм	0.4 imes 0.05 imes 0.05	$0.2 \times 0.15 \times 0.15$	$0.33 \times 0.24 \times 0.08$	
Область θ, град	2.91-25.05	1.85-25.50	3.16-25.50	
Интервалы индексов отражений	$-21 \le h \le 20,$	$-21 \le h \le 20$	$-26 \le h \le 27,$	
	$-16 \le k \le 16,$	$-15 \le k \le 15$	$-12 \le k \le 12,$	
	$-17 \le l \le 14$	$-17 \le l \le 26$	$-14 \le l \le 10$	
Число измеренных/ независимых рефлексов (<i>R</i> _{int})	6255/3207 (0.0639)	23982/9260 (0.0593)	4848/2433 (0.0223)	
Число рефлексов с <i>I</i> > 2σ(<i>I</i>)	1242	6679	2036	
Полнота съемки, %	99.0	99.9	99.3	
Число уточняемых параметров	233	715	172	
GOOF	0.984	1.002	1.004	
$R_1, wR_2 (I > 2\sigma(I))$	0.0666, 0.0871	0.0679, 0.1389	0.0392, 0.1013	
<i>R</i> ₁ , <i>wR</i> ₂ (весь массив)	0.1790, 0.1194	0.1055, 0.1567	0.0509, 0.1091	
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}, e \text{ Å}^{-3}$	0.191/-0.193	0.578/-0.487	0.532/-0.275	

терокорреляции ${}^{1}H/{}^{13}C$ HMBC, ${}^{1}H/{}^{15}N$ HMQC и ${}^{1}H/{}^{15}N$ HMBC для установления ${}^{13}C$ и ${}^{15}N$ ЯМР характеристик лиганда $H_{3}L^{1}$ указаны на схеме 2.

Схема 2.

Данные спектров ЯМР для H₂L² приведены в [29–31]. Сравнительный анализ данных из выше-

указанных источников доказал несомненную пользу 2D HETCOR ЯМР экспериментов для точного определения ХС магнитно-активных ядер. Так, в [30], где указано применение техники гетерокорреляции ¹H/¹³C, найдена только характеристика ЯМР ¹Н лиганда H_2L^2 , точно совпадающая с нашей. Однако в [24, 29] в описании ¹Н-и ¹³С-спектральных данных мы обнаружили некоторые отличия в отнесении ХС, которые объяснимы отсутствием техники 2D HETCOR ЯМР из арсенала использованных методов. Например, XC амидного протона фрагмента C(=O)-NH (8.17 м.д. в [29], 10.21 м.д. – наши данные) отнесен к метиновому N=CH (10.25 м.д. в [29], 8.16 м.д. – наши данные). Ядро метинового углерода N=CH в [29] описано ХС при 147.88 м.д., а также указаны

НЕКОВАЛЕНТНЫЕ ВЗАИМОДЕЙСТВИЯ В АРХИТЕКТУРАХ

			-	
Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	
C(2) = N(1)	1 282(3)	$I = \ C(1) - O(1)\ $	1 245(4)	
N(1) - N(2)	1.202(3)	C(1) = N(3)	1.245(4) 1.324(4)	
N(2) - C(1)	1.359(4)		1.524(4)	
N(2) - C(1)	1.555(4)	 II		
Ni(1)–O(1A)	2.065(3)	Ni(2)–O(1 <i>B</i>)	2.080(3)	
Ni(1)-O(2A)	2.051(3)	Ni(2)-O(2 <i>B</i>)	2.078(3)	
Ni(1)–N(1A)	2.001(4)	Ni(2)–N(1 <i>B</i>)	2.001(4)	
Ni(1)-O(4A)	2.123(3)	Ni(2)–O(4 <i>B</i>)	2.077(3)	
Ni(1)-O(5A)	2.053(3)	Ni(2)–O(5 <i>B</i>)	2.026(3)	
Ni(1)-N(4A)	1.996(4)	Ni(2)–N(4 <i>B</i>)	1.994(4)	
C(2A)-N(1A)	1.288(6)	C(2B)-N(1B)	1.277(5)	
N(1A)–N(2A)	1.379(5)	N(1B)-N(2B)	1.379(5)	
N(2A)-C(1A)	1.361(6)	N(2B)-C(1B)	1.350(5)	
C(1A) - O(1A)	1.246(5)	C(1B)-O(1B)	1.251(5)	
C(1A)-N(3A)	1.319(6)	C(1B)-N(3B)	1.325(6)	
C(10A) - N(4A)	1.280(6)	C(10B) - N(4B)	1.291(5)	
N(4A) - N(5A)	1.379(5)	N(4B)-N(5B)	1.371(5)	
N(5A)-C(9A)	1.364(6)	N(5B)-C(9B)	1.358(6)	
C(9A) - O(4A)	1.257(5)	C(9B)-O(4B)	1.247(5)	
C(9A) - N(6A)	1.319(6)	C(9B)-N(6B)	1.325(6)	
Ni(1)–O(1)	2.045(2)	N(1)-N(2)	1.380(3)	
Ni(1)-O(2)	2.048(2)	N(2)–C(1)	1.363(3)	
Ni(1)–N(1)	2.006(2)	C(1)–O(1)	1.247(3)	
C(2)–N(1)	1.273(3)	C(1)–N(3)	1.322(4)	
Угол	ω, град	Угол	ω, град	
C(2)N(1)N(2)	114 5(2)	$I = \frac{1}{2} \sum_{i=1}^{n} $	118 0(2)	
N(1)N(2)C(1)	114.5(3)	O(1)C(1)N(3)	122 7(3)	
N(1)N(2)C(1) N(2)C(1)N(2)	121.3(3) 119.4(2)	O(1)C(1)N(3)	122.7(3)	
$\ln(2)C(1)\ln(3)$	110.4(3)	 II		
O(1A)Ni(1)O(2A)	167.21(12)	O(1 <i>B</i>)Ni(2)O(2 <i>B</i>)	165.31(12)	
O(1A)Ni(1)N(1A)	78.92(14)	O(1 <i>B</i>)Ni(2)N(1 <i>B</i>)	79.68(13)	
O(1A)Ni(1)O(4A)	94.29(13)	O(1 <i>B</i>)Ni(2)O(4 <i>B</i>)	96.63(12)	
O(1A)Ni(1)O(5A)	91.97(13)	O(1 <i>B</i>)Ni(2)O(5 <i>B</i>)	88.14(12)	
O(1A)Ni(1)N(4A)	93.07(13)	O(1 <i>B</i>)Ni(2)N(4 <i>B</i>)	94.37(13)	
O(2A)Ni(1)N(1A)	88.29(14)	O(2 <i>B</i>)Ni(2)N(1 <i>B</i>)	86.79(13)	
O(2A)Ni(1)O(4A)	87.29(12)	O(2 <i>B</i>)Ni(2)O(4 <i>B</i>)	89.51(12)	
O(2A)Ni(1)O(5A)	89.47(12)	O(2B)Ni(2)O(5B)	88.92(12)	
O(2A)Ni(1)N(4A)	99.68(13)	O(2 <i>B</i>)Ni(2)N(4 <i>B</i>)	99.94(13)	
N(1A)Ni(1)O(4A)	98.08(14)	N(1 <i>B</i>)Ni(2)O(4 <i>B</i>)	92.12(13)	
N(1A)Ni(1)O(5A)	95.87(14)	N(1 <i>B</i>)Ni(2)O(5 <i>B</i>)	101.26(13)	
N(1A)Ni(1)N(4A)	171.17(15)	N(1 <i>B</i>)Ni(2)N(4 <i>B</i>)	168.35(15)	
O(4A)Ni(1)O(5A)	165.57(12)	O(4 <i>B</i>)Ni(2)O(5 <i>B</i>)	166.41(12)	

Таблица 2. Основные межатомные расстояния и валентные углы в соединениях I–III

444

Таблица 2. Окончание

Угол	ω, град	Угол	ω, град		
O(4A)Ni(1)N(4A)	78.64(14)	O(4 <i>B</i>)Ni(2)N(4 <i>B</i>)	78.54(14)		
O(5A)Ni(1)N(4A)	88.06(14)	O(5 <i>B</i>)Ni(2)N(4 <i>B</i>)	88.45(14)		
C(2A)N(1A)N(2A)	118.0(4)	C(2 <i>B</i>)N(1 <i>B</i>)N(2 <i>B</i>)	117.9(4)		
N(1 <i>A</i>)N(2 <i>A</i>)C(1 <i>A</i>)	115.6(4)	N(1 <i>B</i>)N(2 <i>B</i>)C(1 <i>B</i>)	116.1(4)		
N(2A)C(1A)N(3A)	117.0(4)	N(2 <i>B</i>)C(1 <i>B</i>)N(3 <i>B</i>)	115.5(4)		
N(2A)C(1A)O(1A)	120.0(4)	N(2 <i>B</i>)C(1 <i>B</i>)O(1 <i>B</i>)	121.4(4)		
O(1 <i>A</i>)C(1 <i>A</i>)N(3 <i>A</i>)	123.1(4)	O(1 <i>B</i>)C(1 <i>B</i>)N(3 <i>B</i>)	123.0(4)		
C(10A)N(4A)N(5A)	117.2(4)	C(10 <i>B</i>)N(4 <i>B</i>)N(5 <i>B</i>)	118.4(4)		
N(4A)N(5A)C(9A)	116.8(4)	N(4 <i>B</i>)N(5 <i>B</i>)C(9 <i>B</i>)	115.4(4)		
N(5A)C(9A)N(6A)	117.2(4)	N(5 <i>B</i>)C(9 <i>B</i>)N(6 <i>B</i>)	116.7(4)		
N(5A)C(9A)O(4A)	119.7(5)	N(5 <i>B</i>)C(9 <i>B</i>)O(4 <i>B</i>)	120.1(4)		
O(4 <i>A</i>)C(9 <i>A</i>)N(6 <i>A</i>)	123.1(5)	O(4 <i>B</i>)C(9 <i>B</i>)N(6 <i>B</i>)	123.1(4)		
O(1)Ni(1)O(1) ^{#1}	93.37(11)	O(2)Ni(1)O(2) ^{#1}	87.70(12)		
O(1)Ni(1)O(2)	166.79(7)	O(2)Ni(1)N(1)	87.58(8)		
O(1)Ni(1)O(2) ^{#1}	90.91(8)	O(2)Ni(1)N(1) ^{#1}	95.63(8)		
O(1)Ni(1)N(1)	79.48(8)	N(1)Ni(1)O(1) ^{#1}	97.44(7)		
O(1)Ni(1)N(1) ^{#1}	97.44(7)	N(1)Ni(1)N(1) ^{#1}	175.56(12)		
C(2)N(1)N(2)	118.0(2)	N(2)C(1)O(1)	119.9(2)		
N(1)N(2)C(1)	115.5(2)	O(1)C(1)N(3)	122.6(3)		
N(2)C(1)N(3)	117.5(2)				
$K_{2} = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	- + 1/2 (III)				

Коды симметрии: $^{\#1}$ –*x* + 1, *y*, –*z* + 1/2 (III).

ХС арильных ядер C_1-C_3 и C_6 : 118.13, 137.21, 145.31 и 121.09 м.д. соответственно. Проведенные нами эксперименты 2D НЕТСОК ЯМР с образцом H_2L^2 полностью доказывают правильность отнесения XC исследуемых ядер ¹H, ¹³C и ¹⁵N. При этом разрешение амидного и метинового протонов в фрагментах C(=O)–NH и N=CH прошло после применения экспериментов ¹H/¹⁵N HMQC и ¹H/¹³C HSQC: были получены четкие кросс-пики при 10.21/155 и 8.16/137.24 м.д. в соответствующих спектрах.

Эти результаты позволили:

1) впервые определить XC протонированных ядер азота – аминного при 77 м.д. (кросс-пик при 6.40/77 м.д. в ¹H/¹⁵N HMQC спектре), амидного при 155 м.д. (кросс-пик при 10.21/155 м.д. в ¹H/¹⁵N HMQC спектре);

2) охарактеризовать ядро метинового углерода N=CH – XC при 137.24 м.д. (кросс-пик при 8.16/137.24 м.д. в ¹H/¹³C HSQC спектре), отличное от значения XC из [28] при 147.88 м.д.

В результате проведения экспериментов ${}^{1}H/{}^{13}C$ НМВС уточнены XC арильных ядер C₁-C₃ и C₆. Некоторые избранные корреляции ${}^{1}H/{}^{13}C$ НМВС и ${}^{1}H/{}^{15}N$ HMBC для определения характеристик ЯМР ${}^{13}C$ и ${}^{15}N$ лиганда $H_{2}L^{2}$ указаны на схеме 3.

Схема 3.

В итоге, можно отметить, что экспериментальные техники гетеро-корреляции ЯМР ¹H/¹³C и ¹H/¹⁵N доказали неоднократно свою значимость для точной интерпретации спектральных данных, и они просто незаменимы для точного соотнесения ЯМР сигналов в спектре. Если по каким-то причинам отнесение сигналов невозможно, тогда целесообразнее просто перечислить значения их XC.

В спектре ЯМР ¹Н органической соли I присутствуют все сигналы протонов лиганда H₃L¹ за

НЕКОВАЛЕНТНЫЕ ВЗАИМОДЕЙСТВИЯ В АРХИТЕКТУРАХ

Контакт D–Н…А	Расстояние, Å			VΓΩΠ DHA	
	D–H	Н…А	D…A	град	Координаты атомов А
		Ι		I	
N(4)-H(1)···O(2)	0.98	1.68	2.661(4)	177	<i>x</i> , <i>y</i> , <i>z</i>
N(3)-H(1)···O(2)	0.86	2.30	3.008(4)	140	x, -y, z + 1/2
N(3)-H(2)···O(1)	0.86	2.08	2.928(3)	171	-x + 1, y, -z + 3/2
N(2)-H(1)···O(1)	0.86	2.01	2.848(4)	166	-x + 1, -y, -z + 1
O(3)-H(1)···O(2)	0.82	2.17	2.641(3)	117	<i>x</i> , <i>y</i> , <i>z</i>
	1	II			1
$N(2AA)-H(1)\cdots O(3)$	0.86	2.06	2.829(5)	149	x, -y + 1/2, z - 1/2
N(2A)-H(1)···O(1)	0.86	2.55	3.278(6)	144	x, -y + 1/2, z - 1/2
N(3A)-H(1)···O(1B)	0.86	2.53	3.332(5)	156	x, -y + 3/2, z - 1/2
N(3A)-H(2)···O(1)	0.86	2.23	3.057(6)	161	x, -y + 1/2, z - 1/2
N(5A)-H(1)····O(8)	0.86	2.01	2.839(5)	162	-x + 1, -y + 2, -z + 1
N(6A)-H(1)····O(4)	0.86	2.09	2.938(5)	170	-x + 1, -y + 1, -z + 1
N(6A)–H(1)····O(5)	0.86	2.72	3.233(6)	120	-x + 1, -y + 1, -z + 1
N(2 <i>B</i>)-H(2)····O(4)	0.86	2.02	2.876(5)	178	<i>x</i> , <i>y</i> , <i>z</i>
N(3 <i>B</i>)–H(1)····O(1 <i>A</i>)	0.86	2.04	2.851(5)	157	x, -y + 3/2, z + 1/2
N(3 <i>B</i>)–H(2)····O(6)	0.86	2.04	2.879(6)	164	<i>x</i> , <i>y</i> , <i>z</i>
N(5 <i>B</i>)–H(1)····O(9)	0.86	1.84	2.671(6)	161	x - 1, y, z
N(6 <i>B</i>)–H(1)····O(4 <i>B</i>)	0.86	2.13	2.936(5)	155	x, -y + 1, -z + 1
N(6B) - H(2) - O(2)	0.86	2.22	2.958(6)	145	x, -v + 1, -z + 1
$O(2A) - H(1) \cdots O(5B)$	0.63	1.84	2.459(4)	165	<i>x</i> , <i>v</i> , <i>z</i>
$O(3A) - H(1) \cdots O(7)$	0.82	1.88	2.691(5)	171	x, y, z
$O(6A) - H(1) \cdots O(10)$	0.82	1.78	2.599(5)	174	x - 1, y, z
$O(2B) - H(1) \cdots O(5A)$	0.89	1.62	2.487(4)	166	x, y, z
$O(3B) - H(1) \cdots O(6A)$	0.82	1.88	2.648(5)	157	x, y, z
$O(6B) - H(1) \cdots O(3A)$	0.82	2.01	2.801(5)	163	x, y, z
O(7)–H(1)····O(4 <i>A</i>)	0.82	2.07	2.875(5)	165	-x + 1, -y + 1, -z + 1
$O(8) - H(1) \cdots O(5)$	0.82	2.19	2.937(6)	151	-x + 1, v + 1/2, -z + 3/2
O(8)–H(1)…O(6)	0.82	2.43	3.091(6)	139	-x + 1, y + 1/2, -z + 3/2
$O(9) - H(1) \cdots O(1w)$	0.88	1.70	2.54(7)	159	-x + 1, -v + 2, -z + 1
O(9)–H(1)…O(11)	0.88	1.85	2.67(7)	155	-x + 1, -y + 2, -z + 1
$O(10) - H(1) \cdots O(2)$	0.82	1.99	2.786(6)	162	-x + 1, -v + 1, -z + 1
$O(11) - H(1) \cdots O(3B)$	0.94	1.90	2.83(7)	178	x, -v + 3/2, z + 1/2
$O(12) - H(1) \cdots O(1B)$	0.92	1.97	2.888(12)	177	x. v. z
$O(1w) - H(1) \cdots O(3B)$	0.85	1.99	2.83(7)	176	x, -v + 3/2, z + 1/2
$O(1w) - H(2) \cdots O(12)$	0.80	1.89	2.69(4)	177	x, v, z
$N(3)-H(1)\cdots O(2w)$	0.86	2.23	3.000(4)	149	<i>x</i> , <i>y</i> , <i>z</i>
N(3)-H(2)···Cl(1)	0.86	2.48	3.295(3)	158	<i>x</i> , <i>y</i> , <i>z</i>
N(2)-H(1)···Cl(1)	0.86	2.73	3.453(2)	142	<i>x</i> , <i>y</i> , <i>z</i>
$O(2)-H(1)\cdots O(1w)$	0.82	1.86	2.573(3)	146	<i>x</i> , <i>y</i> , <i>z</i>
$O(1w)-H(1)\cdots Cl(1)$	0.85	2.31	3.146(2)	167	-x + 1, -y + 2, -z
O(1w) - H(2) - Cl(1)	0.85	2.40	3.200(2)	158	x-1/2, y-1/2, z
$O(2w)-H(1)\cdots Cl(1)$	0.85	2.35	3.200(3)	173	x, -y + 2, z + 1/2
$O(2w)-H(2)\cdots Cl(1)$	0.85	2.50	3.326(3)	166	-x + 3/2, -y + 5/2, -z + 1

Таблица 3. Геометрические параметры водородных связей в соединениях I–III

исключением гидроксильных. Очень широкий сигнал при 0.15 м.д., соответствующий только амидному протону в лиганде H_3L^1 , вероятнее всего. включает кроме амилного также катионный протон триэтиламина и протон гидроксильной группы при ArC₃, что, в свою очередь, подтверждается характерной формой этого сигнала, доказывающей присутствие ВС с участием катионного и гидроксильного протонов. Таким образом, наличие BC доказано и в растворе ДМСО-d₆. Сравнительный анализ ХС протонов фрагмента $H_{3}L^{1}$ в соли I и в свободном лиганде не показал сушественных отличий. Наличие как триэтиламинового фрагмента, так и кристаллизационного ацетона в I доказано сигналами при 0.93, 2.43 и 2.08 м.д. соответственно. В результате проведения одно- и двумерных гетерокорреляционных экспериментов для I получены спектральные данные ЯМР ¹³C, ¹⁵N и ¹H/¹³C HSQC, ¹H/¹³C HMBC и ¹H/¹⁵N HMOC, ¹H/¹⁵N HMBC, полностью подтверждающие ее структуру. Резонансные частоты ядер ¹³С и ¹⁵N в соли I практически не изменяются по сравнению с $H_{3}L^{1}$, в то время как дополнительно были зарегистрированы сигналы триэтиламина (11.64 и 45.74 м.д.) и ацетона (30.56 и 206.29 м.д.). Ядра азота протонированного Et₃N были найдены с помощью эксперимента ¹H/¹⁵N HMBC: протоны метильной группы триэтиламина при 0.93 м.д. показали удаленную N-H-корреляцию с азотом при 47 м.д., в то время как для ядер азометинового (312 м.д.) и амидного (152 м.д.) азота были зарегистрированы гетероядерные многосвязные корреляции ${}^{1}\text{H}/{}^{15}\text{N}$ с азометиновым протоном при 8.13 м.д. Гетерокорреляция методом ¹H/¹⁵N HMOC позволила безошибочно определить азот аминогруппы (два протона, резонирующие при 6.36 м.д. коррелируют с азотом при 77 м.д.).

В ИК-спектре лиганда H_3L^1 (в вазелиновом масле) наблюдаются широкие полосы при ~3600 и ~3483 см⁻¹ (пл.), соответствующие v(O–H) воды и ассоциированных фенольных групп –OH в *орто-* и *мета*-позиции; две полосы средней интенсивности при 3454 и 3436 см⁻¹, отвечающие соответственно валентным колебаниям v_{as}, v_s(N–H) в группе –NH₂; слабая полоса v(N–H) вторичного амина при 3346 см⁻¹; сильная полоса v(C=O) амида I при 1695 см⁻¹; средняя v(C=N) + δ (N–H) амида II при 1669 см⁻¹; v(C=N) при 1592 см⁻¹ и средняя широкая полоса v(C–O(фенол)) при 1279 и слабая при 1221 см⁻¹.

В ИК-спектре лиганда H_2L^2 (в вазелиновом масле) наблюдается сильная узкая полоса поглощения v(N–H) при 3465 см⁻¹ и вторичного амина 3329 см⁻¹; возможно, v(O–H) фенольной группы в *орто*-позиции при 3267 см⁻¹, сильная полоса v(C=O) амида I при 1672 см⁻¹, сильная полоса v(C=N) при 1585 см⁻¹ и сильная широкая полоса $v(C-O_{\text{фенол}})$ при 1264 см⁻¹.

Сравнительный анализ ИК-спектров лигандов и комплексов II и III показал, что широкие полосы (в виде плеч) при ~3600-3400 см⁻¹ сохраняются, что свидетельствует о присутствии межмолекулярных водородных связях между ассоциированными группами О-Н молекул сольвента, а также фенольных групп. Полосы валентных колебаний v_{as} и v_s (N–H) группы NH₂ проявляются при 3334 (II), 3465 (III) см⁻¹, т.е. смещаются в низкочастотную область вследствие участия в образовании водородных связей. Практически не меняет своего положения (смещение на ~ 10 см^{-1}) средняя широкая полоса v(N-H) вторичного амина, наблюдающаяся в спектре комплексов при 3292 см⁻¹ (II), 3329 см⁻¹ (III) соответственно. Сильные полосы v(C=O) амида I и v(C=N) смещаются в низкочастотную область на 29 и 38 см⁻¹ (II), 10 и 46 см⁻¹ (III) соответственно вследствие координации карбонильного атома кислорода и азометинового атома азота к иону никеля(II), а также появляются новые полосы поглощения v(Ni–O) при 577 и 551 см⁻¹, v(Ni–N) при 489 см⁻¹ (II), v(Ni-O) при 598, 584 и 551 см⁻¹, v(Ni-N) при 471 и 423 см⁻¹ (III). Широкая средней интенсивности полоса поглощения v(C-OH) в спектре раздваивается на полосы поглощения при 1268 и 1216 см⁻¹ (II), что свидетельствует о возможном присутствии как недепротонированных, так и депротонированных фенольных групп. Присутствие в спектре АТР комплекса II сильной уширенной полосы при 1407-1332 см⁻¹, по всей вероятности, соответствует полосе поглощения v₃(NO) свободного нитрат иона.

Пригодные для РСА монокристаллы соли $[(C_2H_5)_3NH][H_2L^1] \cdot 0.5(CH_3)_2CO (I)$ были получены из ацетона в присутствии триэтиламина при исследовании растворимости лиганда в различных полярных растворителях. Соединение I, кристаллизующееся в моноклинной пространственной группе C2/c (табл. 1), ионного типа, в его состав входит как катион протонированного триэтиламина, так и анион — семикарбазон с депротонированной гидроксильной группой в *орто*-положении и разупорядоченная по двум позициям молекула ацетона. Строение I приведено на рис. 1.

Конформацию органического аниона в I можно описать с помощью положения двух групп, фенильного кольца и семикарбазоновой группы относительно связей C=N и N-C в семикарбазонном фрагменте C(2)=N(1)-N(2)-C(1)(=O(1))-N(3) соответственно (нотация атомов соответствует нотации атомов в структуре). Конформационные формы семикарбазонов приведены на схеме 4. Анализ общих структурных свойств молекул семикарбазонов [31–33]

показал, что обычно атом O(1) находится в антиположении относительно гидразинового атома N(1) (схема 46). Также гидроксильная группа фенильного кольца может находиться в разных положениях относительно азометиновой связи C(2)=N(1) (схема 4в) [24, 34].

Строение семикарбазонного аниона в I указывает на его стабилизацию в антиконформации, но с вращением гидроксильных групп на 180° вокруг связи С-С(2) (схема 4в, рис. 1). При комплексообразовании этот лиганд легко может вращаться вокруг двух одинарных связей С(1)–N(2) и С(2)– С на 180 градусов, чтобы все три донорных атома находились в положении, подходящем для координации (схема 4а). Это указывает на большую гибкость этих оснований Шиффа и важность внутри- и межмолекулярных взаимодействий при установлении их конфигураций. Длины связей N(1)-N(2), N(2)-C(1), C(1)-N(3) и C(1)-O(1) (табл. 2) в I имеют характер частичной двойной связи, что указывает на делокализацию электронной плотности в семикарбазонном фрагменте, и сопоставимы с подобными в семикарбазонных производных ароматических карбонильных соединений [31-33].

Компоненты в кристалле I связаны между собой системой ВС (табл. 3), стабилизируя конфигурацию семикарбазона, так как в последнем гидроксильная группа вовлечена во внутримолекулярную ВС, акцептором в которой служит атом кислорода соседней депротонированной ОН-группы, т.е. атомом кислорода в *о*-положении. Карбонильная и попеременно концевая/неконцевая аминогруппы соседних анионов объединены в синтоны $R_2^2(8)$ через ВС N-H…О и О-Н…О, образовывая цепочки, стабилизированные дополнительно ВС N-H-O (рис. 2), где роль акцептора играет атом кислорода в *о*-положении. Этот же атом кислорода вовлечен как акцептор в межмолекулярную ВС N-H-O, которая связывает органические катионы и анионы/цепочки из анионов (рис. 1, 3). Кристаллизационные молекулы ацетона связаны с катионами межмолекулярными ВС С-Н…О (С…О 3.242 Å, H…O 2.315 Å, угол CHO 160°), в которых акцептор – атом кислорода ацетона.

КООРДИНАЦИОННАЯ ХИМИЯ том 47 № 7 2021

Соединение II было получено при взаимодействии H_3L^1 с нитратом Ni(II) в метаноле. Использование же H_3L^2 и хлорида Ni(II) в этих же условиях привели к образованию III. Соединения II и III ионные и состоят соответственно из мономерных комплексных катионов $[Ni(H_2L^1)(HL^1)]^+$ и анионов (NO₃)⁻ или [Ni(H₂L²)₂]²⁺ и анионов Cl⁻; при этом в кристаллы этих соединений вовлечены и различные сольватные молекулы. Координационный полиэдр иона Ni(II) в II и III имеет форму искаженного октаэдра, так как два тридентатных органических лиганда, координируясь либо в нейтральной, либо в монодепротонированной форме, используют тот же набор донорных атомов ONO: карбазидный и фенольный атомы кислорода и азометиновый атом азота (рис. 4).

Рис. 1. Строение органических катиона и аниона в I с частичной нотацией атомов.

Рис. 2. Формирование цепочек из анионов в I.

Рис. 3. Фрагмент упаковки структурных единиц в кристалле І.

Таким образом, в II оба лиганда, сохраняя способ координирования, различаются по степени депротонированности: один из них координирован как монодепротонированный лиганд, а второй как нейтральный, а в III – оба лиганда вовлечены как нейтральные. Следует отметить, что такое поведение тридентатного ОNО основания Шиффа в бис-хелатированном комплексе Ni(II), как в II, необычно и встречается редко [13]. В координационных полиэдрах Ni(II) в II и III экваториальная плоскость образована атомами ONO одного тридентатного лиганда и одним атомом азота другого, тогда как в его вершинах расположены остальные два атома кислорода второго лиганда (рис. 4). В результате координирования к атомам металла этих органических лигандов образуются лва сочлененных металлоцикла: один пятичленный семикарбазидный, другой шестичленный салицилальдегидный. Длины связей и валентные углы в координационных полиэдрах ионов Ni(II) в II и III близки к аналогичным величинам в октаэдрических комплексах этого металла с тридентатными тио- и семикарбазоном салицилового альдегида [35, 36]. Длины связей в органических лигандах этих соединений немного отличаются (табл. 2), однако их значения подтверждают стабилизацию последних в кетоформе.

Соединение $[Ni(H_2L^1)(HL^1)](NO_3) \cdot 2.5MeOH \cdot$ · 0.25H₂O (II) кристаллизуется в моноклинной пространственной группе *Р*2₁/*n* (табл. 1). В независимой части элементарной ячейки содержатся два кристаллографически независимых комплекса Ni(II) А и В. На рис. 4а представлено строение комплекса А с частичной нотацией атомов, при этом нотация в комплексах В подобная. В кристалле компоненты объединены сложной системой ВС, так как комплексные катионы содержат несколько групп OH и NH, вовлеченных в качестве доноров протонов, а атомы кислорода О(1)-О(6) внешнесферных анионов (NO₃)⁻ – в качестве акцепторов (табл. 3, рис. 5). В кристалл можно выделить цепочки из комплексных катионов А и В, которые ассоциируются в димеры через межмолекулярные ВС О-Н…О с участием фенольных атомов

Рис. 4. Строение комплексного катиона А в II (а), строение комплексного катиона в III (б). Нотация атомов частичная.

водорода (рис. 6), а последние развиваются дальше, используя межмолекулярные BC N–H···O между аминогруппами и атомом кислорода карбонильной группы. Это расположение благоприятствует образованию π – π -стэкинг взаимодействий между подобными ароматическими кольцами комплексов A и B, межплоскостное среднее расстояние между ними равно 3.632 и 3.717 Å. Супрамолекулярная архитектура кристалла формируется за счет сильных межмолекулярных BC, в которых вовлечены и кристаллизационные молекулы метанола и воды, образуя межмолекулярные BC N–H···O, O–H···O, O(w)–H···O и O–H···O(w) (O(7)–O(12) – атомы кислорода молекул метанола (табл. 3). В результате, комплексные катионы и внешнесферные анионы объединены между собой и через кристаллизационные молекулы. Дополнительно в кристалле выявлены и слабые межмолекулярные BC как между катионами и анионами (например, C···O(5) (x, -y + 1/2, z -

Рис. 5. Формирование цепи из димеров, образованных комплексными катионами А и В в II.

Рис. 6. Фрагмент упаковки в соединении II.

1/2) 3.386 Å, H···O 2.63 Å, угол CHO 139°), так и между молекулами метанола и анионами (C···O(1) (-x + 1, -y + 1, -z + 1) 3.370 Å, H···O 2.49 Å, угол CHO 152°).

Соединение $[Ni(H_2L^2)_2]Cl_2 \cdot 4H_2O$ (III) кристаллизуется в моноклинной пространственной группе C2/c (табл. 1). В независимой части элементарной ячейки этого кристалла содержится половина центросимметричного комплексного катиона $[Ni(H_2L^1)_2]^{2+}$ (рис. 4б), один внешнесферный анион Cl^- и две кристаллизационные молекулы воды. Метоксифункциональная группа органического нейтрального лиганда H_2L^2 не участвует в коор-

динации с ионом металла, но ее атом кислорода вовлечен в образование внутримолекулярной ВС O–H···O как акцептор. Компоненты кристалла III объединены системой межмолекулярных ВС, в которых как доноры протонов выступают все группы OH и NH комплексных катионов, а в качестве акцепторов – анионы Cl[–], атомы кислорода кристаллизационных молекул воды, при этом последние вовлечены и как доноры, и как акцепторы (рис. 7): комплексные катионы связаны с анионами Cl[–] как BC N–H···Cl, так и через молекулы воды BC O–H···O(w), N–H···O(w) и O(w)– H···Cl (табл. 3). В систему межмолекулярных BC вовлечены метильные группы фрагментов меток-

Рис. 7. Фрагмент упаковки в соединении III.

си и C(2)—Н как доноры и атомы O(1) органического лиганда и анионы Cl⁻ как акцепторы с образованием C(2)—H···O(1) (x, -y + 2, z - 1/2) (C···O 3.179 Å, H···O 2.36 Å, угол CHO 146°) и C— H···Cl (x - 1/2, -y + 3/2, z - 1/2) (C···Cl 3.727 Å, H···Cl 2.92 Å, угол CHO 142°).

Структурные исследования комплексов Ni(II) с производными семикарбазона салицилового альдегида, содержащие гидрокси- и метоксигруппы в мета-положении в дополнение к орто-ОНгруппе в ароматическом кольце показали, что последние не влияют на их способ координации и они выступают в качестве тридентатных хелатирующих лигандов. В процессе координирования данные лиганды стабилизируются как в депротонированном состоянии, так и в нейтральной форме, вследствие чего получаются молекулярные комплексы или ионные, вовлекающие внешнесферные анионы для компенсации заряда. Наличие недепротонированных функциональных групп в лигандах увеличивает количество водородных связей, что приводит к образованию различных супрамолекулярных архитектур в кристаллах.

Авторы заявляют об отсутствии конфликта интересов.

ФИНАНСИРОВАНИЕ

Работа выполнена в рамках проектов Государственных программ 20.80009.5007.28, 20.80009.5007.27, 20.80009.5007.04 и 20.80009.5007.15 Национального агентства исследований и развития Республики Молдова.

СПИСОК ЛИТЕРАТУРЫ

- 1. Supramolecular Chemistry, Concepts and Perspectives // Ed. J.-M. Lehn. Weinheim, Germany: VCH, 1995. 271 p.
- 2. *Balzani V., Gedi A., Raymo F.M., Stoddart J.F.* // Angew. Chem., Int. Ed. 2000. V. 39. P. 3348.
- 3. *Sadhukhan D., Ray A., Pilet G. et al.* // Bull. Chem. Soc. Jpn. 2011. V. 84. № 7. P. 764.
- Vrdoljak V., Pavlovic G., Hrenar T. et al. //. RSC Adv. 2015. V. 5. P. 104870.
- Sadhukhan D., Ghosh P., Gómez-García C. J., Rouzieres M. // Magnetochem. 2018. V. 4. P. 56.
- 6. *Beraldo H., Gambino D. //* Mini-Rev. Med. Chem. 2004. V. 4. P. 31.
- 7. Dutta S., Padhye S., Priyadarsini K.I., Newton C. // Bioorg. Med. Chem. Lett. 2005. V. 15. P. 2738.
- 8. de Oliveira R.B., de Souza-Fagundes E.M., Soares R.P.P. et al. // Eur. J. Med. Chem. 2008. V. 43. P. 1983.
- 9. *Noblia E.J., Baran L., Otero P. et al.* // Eur. J. Inorg. Chem. 2004. № 2. P. 322.
- Salem N.M.H., Rashad A.R., El Sayed L. et al. // Inorg. Chim. Acta. 2015. V. 432. P. 231.

- 11. *Wang J.-L., Liu B., Yang B.-S., Huang S.-P.* // J. Struct. Chem. 2008. V. 49. № 3. P. 570.
- Wang J.-L., Feng J., Xu M.-P., Yang B.-Sh. // Spectrochim. Acta. 2011. V. A78. P. 1245.
- Sadhukhan D., Ray A., Pilet G. et al. // Inorg. Chem. 2011. V. 50. P. 8326.
- 14. Sutradhar M., Martins L.M.D.R.S., Guedes Da Silva M.F.C. et al. // Dalton Trans. 2014. V. 43. P. 3966.
- 15. Sadhukhan D., Maiti M., Pilet G. et al. // Eur. J. Inorg. Chem. 2015. V. 2015. № 11. P. 1958.
- Ray A., Rizzoli C., Pilet G. et al. // Eur. J. Inorg. Chem. 2009. № 20. P. 2915.
- 17. Sutradhar M., Kirillova M.V., Guedes da Silva M.F.C. et al. // Dalton Trans. 2013. V. 42. P. 16578.
- Chakraborty J., Thakurta S., Pilet G. et al. // Polyhedron. 2009. V. 28. P. 819.
- Gao Y.-X., Wang L.-B., Niu Y.-L. // Acta Crystallogr. E. 2007. V. 63. P. m2128.
- Guan G., Gao Y., Wang L., Wang T. // Acta Crystallogr. E. 2007. V. 63. P. m2662.
- Sutradhar M., Fernandes A.R., Silva J. et al. // J. Inorg. Biochem. 2016. V. 155. P. 17.
- Cuba L., Bourosh P., Kravtsov V. et al. // Chem. J. Moldova. General, Industrial and Ecological Chemistry. 2018. V. 13. № 1. P. 36.
- Rogolino D., Bacchi A., De Luca L. et al. // J. Biol. Inorg. Chem. 2015. V. 20. P. 1109.

- 24. *Binil P.S., Anoop M.R., Suma S., Sudarsanakumar M.R.* // J. Therm. Anal. Calorim. 2013. V. 112. № 2. P. 913.
- Bovey F.A., Mirau P., Gutowsky H.S. Nuclear Magnetic Resonance Spectroscopy. Academic Press, 1988. P. 461.
- 26. CrysAlis RED. O.D.L. Version 1.171.34.76. 2003.
- 27. *Sheldrick G.* // Acta Crystallogr. A. 2008. V. 64. № 1. P. 112.
- 28. Sheldrick G.M. // Acta Crysallogr. C. 2015. V. 71. P. 3.
- 29. *Jayanthi K., Meena R. P., Chithra K. et al.* // J. Pharm. Chem. Biol. Sci. 2017. V. 5. № 3. P. 205.
- Fernández M., Becco L., Correia I. et al. // J. Inorg. Biochem. 2013. V. 127. P. 150.
- Valdes-Martinez J., Toscano R.A., Salcedo R. et al. // Monatsh. Chem. 1990. V. 121. P. 641.
- Naik D.V., Palenik G.J. // Acta Crystallogr. B. 1974.
 V. 30. P. 2396.
- Aravindakshan A.A., Sithambaresan M., Prathapachandra Kurup M.R. // Acta Crystallogr. E. 2013. V. 69. P. 0586.
- de Lima D.F., Perez-Rebolledo A., Ellena J., Beraldo H. // Acta Crystallogr. E. 2008. V. 64. P. o177.
- 35. Чумаков Ю.М., Цапков В.И., Биюшкин В.Н. и др. // Коорд. химия. 1995. Т. 21. № 12. С. 919 (Chumakov Yu.M., Tsapkov V.I., Byushkin V.N. et al. // Russ. J. Coord. Chem. 1995. V. 21. № 12. Р. 919).
- 36. Zirnrner M., Schulte G., Luo X.-L., Crabtree R.H. // Angew. Chem., Int. Ed. 1991. V. 2. P. 193.