УДК 541.49+548.736

Посвящается памяти профессора А.А. Пасынского

# КОМПЛЕКСЫ [Fe<sub>2</sub>(µ-S<sub>2</sub>ER<sub>2</sub>)(CO)<sub>6</sub>] (E = Si, Sn) – РЕАГЕНТЫ ДЛЯ ПОЛУЧЕНИЯ ГЕТЕРОМЕТАЛЛИЧЕСКИХ КЛАСТЕРОВ: СИНТЕЗ, СТРОЕНИЕ И РЕАКЦИИ С ГАЛОГЕНСОДЕРЖАЩИМИ КОМПЛЕКСАМИ МЕТАЛЛОВ

© 2021 г. М. А. Огиенко<sup>1</sup>, Н. А. Пушкаревский<sup>1</sup>, Д. А. Баширов<sup>1</sup>, Н. В. Куратьева<sup>1</sup>, А. В. Вировец<sup>1</sup>, С. Н. Конченко<sup>1, \*</sup>

<sup>1</sup>Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия \*e-mail: konch@niic.nsc.ru Поступила в редакцию 26.02.2021 г. После доработки 10.03.2021 г. Принята к публикации 12.03.2021 г.

Синтезированы биядерные комплексы [Fe<sub>2</sub>( $\mu$ -S<sub>2</sub>ER<sub>2</sub>)(CO)<sub>6</sub>] (ER<sub>2</sub> = SiMe<sub>2</sub> (Ia), SiEt<sub>2</sub> (Iб), SnEt<sub>2</sub> (IB)) – перспективные предшественники гетерометаллических кластеров. Изучены их реакции с галогенидными комплексами переходных металлов: [Cp"RhCl<sub>2</sub>]<sub>2</sub> (Cp" =  $\eta^5$ -C<sub>5</sub>H<sub>3</sub>'Bu<sub>2</sub>), [(Dppe)NiCl<sub>2</sub>] (Dppe = Ph<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>PPh<sub>2</sub>), [(Ph<sub>3</sub>P)AuCl], [Mn(CO)<sub>5</sub>Cl], в результате которых получены гетерометаллические кластеры [Fe<sub>2</sub>Rh( $\mu_3$ -S)<sub>2</sub>(CO)<sub>6</sub>Cp"] (II), [Fe<sub>2</sub>Ni( $\mu_3$ -S)<sub>2</sub>(CO)<sub>6</sub>(Dppe)] (III), [Fe<sub>2</sub>(CO)<sub>6</sub>( $\mu$ -SSnClEt<sub>2</sub>)( $\mu$ -SAu(PPh<sub>3</sub>))] (ĪV), [Fe<sub>2</sub>(CO)<sub>6</sub>( $\mu_4$ , $\eta^2$ -S<sub>2</sub>SnEt<sub>2</sub>){Mn(CO)<sub>4</sub>Cl<sub>2</sub>] (V), [Fe<sub>2</sub>Mn(CO)<sub>9</sub>Mn(CO)<sub>5</sub>( $\mu_3$ -S)( $\mu_4$ -S)] (VI). Установлено, что кластер V превращается в VI при фотохимической активации. Строение соединений I–VI установлено РСА (CIF files CCDC № 751214 (IB), 751215 (III · 0.5C<sub>7</sub>H<sub>8</sub>), 2062206 (V), 2062207 (I6), 2062208 (Ia), 2062209 (IV · 0.5CH<sub>3</sub>C<sub>5</sub>H<sub>9</sub>).

*Ключевые слова:* координационные соединения, кластеры, железо, сера, кремний, олово, *d*-металлы, кристаллическая структура, реакционная способность, синтез **DOI:** 10.31857/S0132344X21080041

Карбонилхалькогенидные кластеры железа известны уже несколько десятилетий и являются классическими объектами, на которых в значительной степени были изучены основные реакции кластеров и систематизированы их превращения, используемые для направленного синтеза более сложных гомо- и гетерометаллических производных [1, 2]. Существенный вклад в развитие этой области внесли работы А.А. Пасынского и его коллег [3-7]. Особое место в ряду халькогенкарбонилов железа занимает известный с 50-х годов прошлого столетия легкодоступный  $[Fe_2(\mu-S_2)(CO)_6]$  [8, 9]. Интерес к нему и его производным обусловлен тем, что, претерпевая разрыв связей S-S или/и Fe-Fe, данный комплекс является удобным источником фрагментов {FeS} и {Fe<sub>2</sub>S<sub>2</sub>} для построения более крупных кластеров, рассматриваемых как абиологические аналоги активных центров ряда ферментов [10-12]. Вследствие этого химия  $[Fe_2(\mu-S_2)(CO)_6]$  оказалась достаточно полно изучена, но интерес к ней стал постепенно угасать.

Новый толчок развитию химии [Fe<sub>2</sub>( $\mu$ -S<sub>2</sub>)(CO)<sub>6</sub>] и его аналогов придала недавно обнаруженная активность соединений с фрагментом {Fe<sub>2</sub>S<sub>2</sub>} в процессах фотохимического восстановления протона до диводорода, причем в этих процессах оказались активны не только молекулярные соединения, но и наночастицы, полученные сорбцией [Fe<sub>2</sub>( $\mu$ -S<sub>2</sub>)-(CO)<sub>6</sub>] на поверхности полупроводников, например InP [13], CdTe [14] или ZnS [15, 16]. Эти результаты возродили интерес к [Fe<sub>2</sub>( $\mu$ -S<sub>2</sub>)(CO)<sub>6</sub>] [17–21] и побудили нас на поиск решения некоторых проблемных моментов его использования для синтеза гетерометаллических кластеров, в которых сохраняется фрагмент {Fe<sub>2</sub>S<sub>2</sub>}.

Одна из таких проблем присутствует в синтетических маршрутах, основанных на использовании аниона  $[Fe_2(\mu-S)_2(CO)_6]^{2-}$ , получаемого *in situ* восстановлением  $[Fe_2(\mu-S_2)(CO)_6]$  [9]. Казалось бы, этот дианион подобен органическим дитиолатам, является хелатирующим лигандом с нуклеофильными центрами — мостиковыми атомами серы, которыми он и должен присоединяться к наибо-

лее положительному атому или атомам органических и неорганических электрофилов (схема 1).



Действительно, эта схема применима и с точностью до возможного разрыва связи Fe-Fe позволяет получать кластеры, в которых присутствует фрагмент {Fe<sub>2</sub>S<sub>2</sub>}, что проверено на многих примерах [9, 22, 23]. Однако проблема состоит в том, что  $[Fe_2(\mu-S)_2(CO)_6]^{2-}$  в растворе неустойчив и претерпевает дальнейшие превращения, вероятно, связанные с взаимодействием между анионной и нейтральной формами [Fe<sub>2</sub>( $\mu$ -S<sub>2</sub>)(CO)<sub>6</sub>] [24, 25]. Это лишает экспериментатора возможности "маневрировать" в методиках синтеза: использовать другие восстановители и растворители или более высокую температуру проведения синтеза, не опасаясь, что в результате в растворе будет получен набор анионных форм неизвестного состава. В попытке обойти эту проблему исследователи для синтеза гетерометаллических кластеров применяют методики, основанные на восстановлении [Fe<sub>2</sub>( $\mu$ -S<sub>2</sub>)(CO)<sub>6</sub>] в точно заданных условиях и последующем использовании без выделения восстановленной формы [Fe<sub>2</sub>(µ-S)<sub>2</sub>(CO)<sub>6</sub>]<sup>2-</sup>. Однако это не дает достаточной точности в дозировке последней, поскольку ее выход точно не известен. В значительной степени это ограничивает круг объектов, которые могут быть вовлечены в синтез в рамках данной схемы.

Решением этой проблемы могло бы стать использование не неустойчивого анионного [Fe<sub>2</sub>(µ-S)<sub>2</sub>-(СО)<sub>6</sub>]<sup>2-</sup>, а его стабильных нейтральных производных [ $Fe_2(\mu - S_2 E R_2)(CO)_6$ ] (E = Si, Sn), которые в инертной атмосфере при комнатной температуре устойчивы, хорошо растворяются во всех апротонных растворителях и, как можно предположить, должны быть реакционноспособными по отношению к галогенидам, карбоксилатам или алкоголятам переходных металлов. Последнее предположение основано на том, что подобные подходы с использованием халькоген-силилированных и в меньшей степени станнилированных реагентов широко применяются в химии [26–29]. Базируются эти подходы на том, что группировки  $\{R_3E\}^+$  и  $\{R_2E\}^{2+}$ (E = Si, Sn) имеют высокое сродство к галогенидиону или кислородсодержащему кислотному остатку ( $X^- = Cl^-$ , Br<sup>-</sup>, RCOO<sup>-</sup>, RO<sup>-</sup> и др.), поэтому образование соединений R<sub>3</sub>EX и R<sub>2</sub>EX<sub>2</sub> обеспечивает "движущую силу" реакции. В то же время R<sub>3</sub>EX и R<sub>2</sub>EX<sub>2</sub> относительно инертны, и обычно их легко удается отделить от целевого продукта синтеза. Иными словами, R<sub>3</sub>E и R<sub>2</sub>E (E = Si, Sn) можно рассматривать как "хорошие уходящие группы" в реакциях с галогенидами, карбоксилатами и алкоксидами переходных металлов. В результате этих взаимодействий должно происходить образование связи халькоген-металл, а в дальнейшем формирование кластерного остова.

Соединения типа [Fe<sub>2</sub>( $\mu$ -S<sub>2</sub>ER<sub>2</sub>)(CO)<sub>6</sub>] (E = Si, Sn) были получены ранее [9], но их реакционная способность и строение не были изучены. В настоящей работе разработаны улучшенные методики синтеза соединений  $[Fe_2(\mu-S_2ER_2)(CO)_6]$  $(ER_2 = SiMe_2 (Ia), SiEt_2 (Ib), SnEt_2 (Ib))$  и с помощью монокристального РСА установлена их структура. Также для подтверждения нашего предположения о возможности использования Іа-Ів для синтеза гетерометаллических кластеров изучен ряд их реакций с галогенсодержащими комплексами переходных металлов:  $[Cp''RhCl_2]_2$  ( $Cp'' = \eta^5 - C_5H_3'Bu_2$ ),  $(Dppe = Ph_2PCH_2CH_2PPh_2),$ [(Dppe)NiCl<sub>2</sub>] [(Ph<sub>3</sub>P)AuCl] и [Mn(CO)<sub>5</sub>Cl], в результате которых формируются комплексы: [Fe<sub>2</sub>Rh(µ<sub>3</sub>-S)<sub>2</sub>(CO)<sub>6</sub>Cp"] (II),  $[Fe_2Ni(\mu_3-S)_2(CO)_6(Dppe)]$  (III),  $[Fe_2(CO)_6(\mu-$ SSnClEt<sub>2</sub>)( $\mu$ -SAu(PPh<sub>3</sub>))] (IV), [Fe<sub>2</sub>(CO)<sub>6</sub>( $\mu_4, \eta^2$ - $S_2SnEt_2$ {Mn(CO)<sub>4</sub>Cl}<sub>2</sub> (V), [Fe<sub>2</sub>Mn(CO)<sub>9</sub>Mn(CO)<sub>5</sub>- $(\mu_3 - S)(\mu_4 - S)]$  (VI).

### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Все операции по синтезу и выделению продуктов выполняли в атмосфере аргона в стандартной аппаратуре Шленка. Для удаления воды и растворенного кислорода растворители кипятили с использованием соответствующих осушителей и перегоняли в атмосфере аргона [30]. Синтез соединений [Fe<sub>2</sub>( $\mu$ -S<sub>2</sub>ER<sub>2</sub>)(CO)<sub>6</sub>] (ER<sub>2</sub> = SiMe<sub>2</sub> (Ia), SiEt<sub>2</sub> (Iб), SnEt<sub>2</sub> (Iв)) проводили с использованием подхода, описанного ранее [9]. Монокристаллы для PCA отбирали из выделенных кристаллических продуктов. Комплексы [(Dppe)NiCl<sub>2</sub>] [31], [Mn(CO)<sub>5</sub>Cl] [32] и [(Ph<sub>3</sub>P)AuCl] [33] получали по известным методикам. Синтез [Cp"RhCl<sub>2</sub>]<sub>2</sub> (Cp" = =  $\eta^{5}$ -C<sub>5</sub>H<sub>3</sub><sup>*t*</sup>Bu<sub>2</sub>) проводили аналогично методике [34].

Элементный анализ выполняли в лаборатории № 416 ИНХ СО РАН. При выполнении элементного анализа допускался кратковременный контакт (несколько секунд) образца с воздухом.

ИК-спектры ( $v_{CO}$ , см<sup>-1</sup>) записывали на спектрометре Specord IR-75 для растворов соединений I, II, IV, V в *н*-гексане, для растворов кластеров III, VI в CH<sub>2</sub>Cl<sub>2</sub> при комнатной температуре.

Спектры ЯМР <sup>1</sup>Н, <sup>13</sup>С, <sup>31</sup>Р регистрировали при комнатной температуре на спектрометре Bruker AC 250 на частотах <sup>1</sup>Н – 250.133 МГц, <sup>13</sup>С – 62.896 МГц, <sup>31</sup>Р – 101.256 МГц. В качестве внутреннего стандарта использовали сигналы соответствующего растворителя:  $\delta_{\rm H}$  = 7.16 м.д. для C<sub>6</sub>D<sub>6</sub>,  $\delta_{\rm C}$  = 77.0 м.д. для CDCl<sub>3</sub>. Для спектров ЯМР <sup>31</sup>Р в качестве стандарта использовали 85%-ный водный раствор Н<sub>3</sub>РО<sub>4</sub>. Константы спин-спинового взаимодействия приведены в герцах.

Синтез [Fe<sub>2</sub>(CO)<sub>6</sub>(µ<sub>3</sub>-S)<sub>2</sub>SiMe<sub>2</sub>] (Ia). К охлажденному до 0°С раствору [Fe<sub>2</sub>(CO)<sub>6</sub>(µ-S<sub>2</sub>)] (0.45 г, 1.31 ммоль) в 15 мл ТГФ, добавляли 0.2 мл сплава Na-K (мольное отношение Na : K = 2 : 3). Смесь перемешивали при охлаждении в ледяной бане в течение 4 ч. Полученный красный раствор отделяили от непрореагировавшего сплава Na-K и аморфного осадка, который промывали 15 мл ТГФ. К объединенному раствору добавляли раствор Me<sub>2</sub>SiCl<sub>2</sub> (0.30 мл, 2.46 ммоль) в 10 мл ТГФ. Реакционную смесь перемешивали при комнатной температуре в течение 3 ч, затем упаривали досуха. Твердый остаток высушивали в вакууме и экстрагировали двумя порциями гексана (30 и 15 мл). Полученный темно-красный раствор упаривали в 4 раза. При выдерживании этого раствора при -16°С выпадают кристаллы соединения Ia. Выход 0.33 г (50%).

ИК-спектр (v<sub>CO</sub>, см<sup>-1</sup>): 2078 с, 2046 ср, 2038 с, 2008 с, 1998 с, 1987 ср, 1957 сл.

Синтез [Fe<sub>2</sub>(CO)<sub>6</sub>( $\mu_3$ -S)<sub>2</sub>SnEt<sub>2</sub>] (Iв). К раствору [Fe<sub>2</sub>(CO)<sub>6</sub>( $\mu$ -S<sub>2</sub>)] (1.50 г, 4.37 ммоль) в 35 мл ТГФ, охлажденному до 0°С, добавляли 0.2 мл сплава Na-K (мольное отношение Na : K = 2 : 3). Смесь перемешивали при охлаждении в ледяной бане в течение 4 ч. Полученный красный раствор отделяли от непрореагировавшего сплава Na-K и аморфного осадка, который промывали 15 мл ТГФ. К объединенному фильтрату добавляли раствор [Et<sub>2</sub>SnCl<sub>2</sub>]

КООРДИНАЦИОННАЯ ХИМИЯ том 47 № 8 2021

(1.00 г, 4.03 ммоль) в 40 мл ТГФ. Реакционную смесь перемешивали при комнатной температуре в течение 3 ч, затем упаривали досуха. Твердый остаток промывали гексаном (15 мл) для удаления примесей исходного [Fe<sub>2</sub>(CO)<sub>6</sub>( $\mu$ -S<sub>2</sub>)], затем высушивали в вакууме. Полученный таким образом темный порошок экстрагировали двумя порциями CH<sub>2</sub>Cl<sub>2</sub> (80 и 15 мл). Темно-красный раствор упаривали в 4 раза. При выдерживании сконцентрированного раствора при  $-16^{\circ}$ C выпадают кристаллы соединения Iв. Выход 1.14 г (50%).

ИК-спектр (v<sub>CO</sub>, см<sup>-1</sup>): 2083 ср, 2070 с, 2030 с, 2005 с, 2001 с, 1990 пл, 1986 с, 1976 ср.

Синтез [Fe<sub>2</sub>(CO)<sub>6</sub>( $\mu_3$ -S)<sub>2</sub>SiEt<sub>2</sub>] (Iб). Попытки получить Іб по стандартной методике, описанной выше для Іа и Ів приводят к кристаллической фазе [Fe<sub>2</sub>(CO)<sub>6</sub>( $\mu_3$ -S)<sub>2</sub>SiEt<sub>2</sub>]·[Fe<sub>2</sub>(CO)<sub>6</sub>( $\mu$ -S<sub>2</sub>)]. Варьированием условий синтеза решить проблему образования такого сокристаллизата не удалось. Поэтому для синтеза Іб была использована другая методика: восстановление [Fe<sub>2</sub>(CO)<sub>6</sub>( $\mu$ -S<sub>2</sub>)] проводили Li[BHEt<sub>3</sub>] при низкой температуре.

К охлажденному до  $-80^{\circ}$ С раствору [Fe<sub>2</sub>(CO)<sub>6</sub>-( $\mu$ -S<sub>2</sub>)] (0.50 г, 1.45 ммоль) в 35 мл ТГФ добавляли 3 мл 1 М раствора Li[BHEt<sub>3</sub>] в ТГФ. Смесь перемешивали при этой температуре в течение 20 мин. К полученному красному раствору прикапывали раствор Et<sub>2</sub>SiCl<sub>2</sub> (0.45 мл, 3.01 ммоль) в 5 мл ТГФ. Реакционную смесь нагревали до комнатной температуры и перемешивали в течение 3 ч, затем упаривали досуха. Твердый остаток высушивали и экстрагировали двумя порциями гексана (40 и 5 мл). Полученный темно-красный раствор упаривали в 4 раза. При выдерживании этого раствора при  $-16^{\circ}$ С выпадают кристаллы соединения Iб. Выход 0.49 г (78%).

ИК-спектр (v<sub>CO</sub>, см<sup>-1</sup>): 2078 с, 2046 ср, 2038 с, 2008 с, 1998 с, 1987 ср, 1957 сл.

Синтез [Fe<sub>2</sub>Rh(µ<sub>3</sub>-S)<sub>2</sub>(CO)<sub>6</sub>Cp"] (II) и [Fe<sub>2</sub>Ni(µ<sub>3</sub>-S)<sub>2</sub>-(CO)<sub>6</sub>(Dppe)] (III). Реакции Ia–Iв с комплексами [Cp"RhCl<sub>2</sub>]<sub>2</sub> и [(Dppe)NiCl<sub>2</sub> проводили однотипно с использованием следующих загрузок реагентов: для синтеза II – 0.049 г (0.094 ммоль) Ів и 0.034 г (0.048 ммоль) [Cp"RhCl<sub>2</sub>]<sub>2</sub>; для синтеза III – 0.025 г (0.062 ммоль) Іа и 0.033 г (0.062 ммоль) [(Dppe)NiCl<sub>2</sub>]; 0.022 г (0.051 ммоль) Іб и 0.027 г (0.051 ммоль) [(Dppe)NiCl<sub>2</sub>]; 0.029 г (0.056 ммоль) Ів и 0.029 г (0.055 ммоль) [(Dppe)NiCl<sub>2</sub>].

Общий метод. К смеси твердых реагентов приливали 10 мл толуола. Реакционную смесь перемешивали при комнатной температуре 12 ч. Полученный темно-красный раствор фильтровали, небольшое количество неидентифицированного осадка промывали 15 мл толуола, объединенный фильтрат упаривали в 2 раза и выдерживали при -16°С, что приводило к кристаллизации, соответственно, фаз II или III  $\cdot 0.5C_7H_8$ . Выход 70–80%.

Продукты реакций идентифицировали с помощью ИК-спектров [9, 23] (v<sub>CO</sub>, см<sup>-1</sup>): 2064 с., 2038 с., 1997 с., 1987 с (II); 2046 с., 2004 с., 1967 с., 1957 пл (III).

Синтез [Fe<sub>2</sub>(CO)<sub>6</sub>( $\mu$ -SSnClEt<sub>2</sub>)( $\mu$ -SAu(PPh<sub>3</sub>))] (IV). К смеси твердых реагентов Ів (0.062 г, 0.12 ммоль) и [(Ph<sub>3</sub>P)AuCl] (0.54 г, 0.24 ммоль) добавляли 10 мл толуола. Смесь перемешивали при комнатной температуре в течение 3 сут, что приводило к образованию коричневого раствора и темного осадка, который отфильтровывали и промывали 15 мл толуола. В объединенных фильтратах присутствует набор из нескольких продуктов (контроль по TCX). Раствор упаривали досуха, остаток экстрагировали 20 мл петролейного эфира. Выдерживание полученного оранжевого раствора при  $-16^{\circ}$ С привело к образованию кристаллов фазы IV · 5CH<sub>3</sub>C<sub>5</sub>H<sub>9</sub>. Выход 0.013 г (10%).

ИК-спектры ( $v_{CO}$ , см<sup>-1</sup>): 2073 с, 2064 с, 2045 ср, 2033 с, 2027 с, 2004 с, 1988 с, 1978 с. ЯМР <sup>1</sup>Н (C<sub>6</sub>D<sub>6</sub>;  $\delta$ , м.д.): 6.89 (с., 15H, PPh<sub>3</sub>), 1.64 (кв., 2H, CH<sub>2</sub>,  $J_{SnH} =$ = 58), 1.27 (т., 3H, CH<sub>3</sub>). ЯМР <sup>31</sup>Р C<sub>6</sub>D<sub>6</sub>;  $\delta$ , м.д.): 36.1 (с., 1P, PPh<sub>3</sub>).

Синтез [Fe<sub>2</sub>(CO)<sub>6</sub>( $\mu_4$ , $\eta^2$ -S<sub>2</sub>SnEt<sub>2</sub>){Mn(CO)<sub>4</sub>Cl}<sub>2</sub>] (V) и [Fe<sub>2</sub>Mn(CO)<sub>6</sub>( $\mu_3$ -S)( $\mu_4$ -S){Mn(CO)<sub>5</sub>}] (VI). К смеси твердых реагентов Ів (0.062 г, 0.12 ммоль) и [Mn(CO)<sub>5</sub>Cl] (0.054 г, 0.24 ммоль) добавляли 10 мл толуола. Реакционную смесь перемешивали при комнатной температуре в течение 2 нед., что приводило к образованию коричневого раствора и темного осадка, который отфильтровывали и промывали 15 мл толуола. Объединенный фильтрат упаривали досуха. Твердый остаток промывали несколько раз гексаном до бесцветных вытяжек, а нерастворимую в гексане часть растворяли в 30 мл толуола. Из гексанового экстракта после концентрирования до 20 мл и выдерживания при –16°С выпадали кристаллы соединения V. Выход 0.050 г (45%). Из толуольного раствора при температуре -16°С кристаллизуется соединение VI. Выход 0.037 г (45%).

| Найдено, %:                                   | C 23.5; | H 1.1.  |  |  |  |  |  |  |
|-----------------------------------------------|---------|---------|--|--|--|--|--|--|
| Для $C_{18}H_{10}O_{14}S_2Cl_2Fe_2Mn_2Sn$ (V) |         |         |  |  |  |  |  |  |
| вычислено, %:                                 | C 23.4; | H 1.09. |  |  |  |  |  |  |

ИК-спектр V ( $\nu_{CO}$ , см<sup>-1</sup>): 2106 пл, 2096 с, 2073 с, 2049 с, 2042 ср, 2024 с, 2014 ср, 2007 с, 1997 ср, 1978 с. ЯМР <sup>1</sup>H (C<sub>6</sub>D<sub>6</sub>;  $\delta$ , м.д.): 1.87 (кв., 2H, CH<sub>2</sub>,  $J_{SnH} =$ = 64.5), 1.36 (т., 3H, CH<sub>3</sub>). ЯМР <sup>13</sup>С (CDCl<sub>3</sub>;  $\delta$ , м.д.): 214.3–206.8 (м, 1С, СО), 29.5 (с., 1С, CH<sub>2</sub>), 9.0 (с., 1С, CH<sub>3</sub>). Соединение VI идентифицировано по ИКспектру [35] (v<sub>CO</sub>, см<sup>-1</sup>): 2137 сл, 2072 с, 2058 с, 2030 с, 2014 с, 2004 пл, 1998 ср, 1994 пл, 1938 сл, 1917 сл.

Синтез соединения VI. К твердой смеси Ia (0.075 г. 0.19 ммоль) и [Mn(CO)<sub>5</sub>Cl] (0.089 г, 0.37 ммоль) или Іб (0.065 г, 0.15 ммоль) и [Mn(CO)<sub>5</sub>Cl] (0.70 г, 0.30 ммоль) лобавляли 10 мл толуола. Реакционную смесь перемешивали при комнатной температуре в течение 2 нед., что приводило к образованию коричневого раствора и темного осадка, который отфильтровывали и промывали 15 мл толуола. Объединенный фильтрат упаривали досуха. Твердый остаток промывали 80 мл гексана. Нерастворимый в гексане твердый остаток высушивали в вакууме и растворяли в 30 мл толуола. Выдерживание этого раствора при температуре -16°С приводило к образованию кристаллов соединения VI. Выход 0.038 г (30%) в случае Ia, 0.026 г (25%) в случае Іб.

РСА комплексов проведен по стандартной методике на автоматическом четырехкружном дифрактометре Bruker-Nonius X8Apex, оснащенном двухкоординатным CCD детектором, при температуре 150 К с использованием молибденового излучения ( $\lambda = 0.71073$  Å) и графитового монохроматора. Интенсивности отражений измерены методом ф-сканирования узких (0.5°) фреймов. Поглощение учтено полуэмпирически по программе SADABS [36]. Структуры расшифрованы прямым методом и уточнены полноматричным МНК в анизотропном для неводородных атомов приближении по комплексу программ SHELXTL [37]. Атомы водорода уточнены в приближении жесткого тела. Детали экспериментов и параметры уточнения структур приведены в табл. 1, основные межатомные расстояния и валентные углы в табл. 2.

Кристаллографические параметры комплексов депонированы в Кембриджском банке структурных данных (ССDС № 751214 (Ів), 751215 (ІІІ · 0.5С<sub>7</sub>H<sub>8</sub>), 2062206 (V), 2062207 (Іб), 2062208 (Іа), 2062209 (ІV · 0.5CH<sub>3</sub>C<sub>5</sub>H<sub>9</sub>)) и доступны на сайте www.ccdc.cam.ac.uk/data reguest/cif.

### РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Комплексы Ia–Iв были синтезированы путем последовательного восстановления  $[Fe_2(\mu-S_2)-(CO)_6]$  до  $[Fe_2(\mu-S)_2(CO)_6]^{2-}$  в растворе  $T\Gamma \Phi$  и добавлением к нему соответствующих  $Cl_2ER_2$  ( $ER_2 = SiMe_2$ , SiEt<sub>2</sub>, SnEt<sub>2</sub>). Этот маршрут соответствует приведенной выше схеме 1. В случае соединений Ia и Iв оптимальной оказалась методика, основанная на применении в качестве восстановителя жидкого сплава Na-K. Этот вариант был нами ранее предложен для синтеза гетерометаллических кластеров [23]. По непонятным причинам приме-

КООРДИНАЦИОННАЯ ХИМИЯ том 47 № 8 2021

| ~        |
|----------|
| ~        |
| Н        |
| ΰ        |
| Ĥ        |
| Ũ        |
| 0.5      |
| 2        |
| $\leq$   |
| I.,      |
| T        |
| 50       |
| Ö.       |
| Ė        |
| Ξ,       |
| IIB      |
| - 1      |
| ।<br>स्र |
| í ľ      |
| ĮИ       |
| leH      |
| НИ       |
| бД       |
| 3        |
| Ы        |
| Ę        |
| Ш        |
| IeF      |
| ИN       |
| ep       |
| ED       |
| Я€       |
| Ы        |
| dra      |
| Me       |
| ipa      |
| Ша       |
| И        |
| ые       |
| ΗН       |
| дај      |
| 1e ,     |
| Ŕ        |
| ээь      |
| лис      |
| ađ       |
| цг       |
| ЛС       |
| raJ      |
| 1C]      |
| ţ,       |
| Υ.       |
| a 1      |
| ШΪ       |
| бЛ       |
| Ta       |
| - ·      |

|                                                                 |                            |                            | Знач                           | ение                       |                             |                                |
|-----------------------------------------------------------------|----------------------------|----------------------------|--------------------------------|----------------------------|-----------------------------|--------------------------------|
| וומלמואכול                                                      | Ia                         | I6                         | ЯĮ                             | $III \cdot 0.5 C_7 H_8$    | $IV \cdot 0.5 CH_3 C_5 H_9$ | Λ                              |
| W                                                               | 402.04                     | 430.09                     | 520.69                         | 847.05                     | 1057.45                     | 925.55                         |
| Сингония                                                        | Триклинная                 | Триклинная                 | Моноклинная                    | Моноклинная                | Триклинная                  | Моноклинная                    |
| Пр, гр,                                                         | $P\overline{1}$            | $\overline{PI}$            | $P2_{1}/n$                     | $P2_{1}/n$                 | $\overline{PI}$             | $P2_{1}/c$                     |
| a, Å                                                            | 9.1326(3)                  | 8.0113(2)                  | 10.3807(3)                     | 23.4098(8)                 | 11.4668(4)                  | 14.1917(2)                     |
| $b, { m \AA}$                                                   | 9.2073(4)                  | 9.8447(2)                  | 9.2793(3)                      | 12.4314(3)                 | 13.2126(4)                  | 11.0030(2)                     |
| c, Å                                                            | 9.3959(4)                  | 11.7599(2)                 | 17.8586(7)                     | 25.7385(9)                 | 13.5206(4)                  | 19.4710(4)                     |
| α, град                                                         | 88.903(1)                  | 102.838(1)                 | 90                             | 90                         | 77.8150(10)                 | 06                             |
| β, град                                                         | 64.930(1)                  | 102.838(1)                 | 105.661(1)                     | 107.463(1)                 | 68.5180(10)                 | 90.1480(10)                    |
| ү, град                                                         | 85.186(1)                  | 104.465(1)                 | 60                             | 90                         | 72.5010(10)                 | 06                             |
| $V, Å^3$                                                        | 713.00(5)                  | 798.68(3)                  | 1656.38(10)                    | 7145.1(4)                  | 1806.14(10)                 | 3040.41(9)                     |
| Ζ                                                               | 2                          | 2                          | 4                              | 8                          | 2                           | 4                              |
| ρ(выч.), г/см <sup>3</sup>                                      | 1.873                      | 1.788                      | 2.088                          | 1.575                      | 1.944                       | 2.022                          |
| F(000)                                                          | 400                        | 432                        | 1008                           | 3448                       | 1020                        | 1792                           |
| µ(излучение), мм <sup>-1</sup>                                  | 2.425                      | 2.171                      | 3.494                          | 1.574                      | 5.793                       | 2.923                          |
| Размер кристалла, мм                                            | $0.24\times0.15\times0.14$ | $0.32\times0.31\times0.28$ | $0.08 \times 0.07 \times 0.04$ | $0.40\times0.12\times0.08$ | $0.27\times0.11\times0.02$  | $0.30 \times 0.17 \times 0.14$ |
| T, K                                                            | 100.0(2)                   | 100.0(2)                   | 100.0(2)                       | 150(2)                     | 100.0(2)                    | 100.0(2)                       |
| 20 <sub>тах</sub> , град                                        | 62.86                      | 63.80                      | 56.54                          | 55.16                      | 62.56                       | 62.74                          |
| Интервалы индексов отражения                                    | $-13 \le h \le 9,$         | $-11 \le h \le 11,$        | $-9 \le h \le 13,$             | $-30 \le h \le 30,$        | $-16 \le h \le 13,$         | $-20 \le h \le 14,$            |
|                                                                 | $-12 \le k \le 13$ ,       | $-13 \le k \le 13$ ,       | $-10 \le k \le 12,$            | $-14 \le k \le 15,$        | $-18 \le k \le 18,$         | $-14 \le k \le 14$ ,           |
|                                                                 | $-13 \le l \le 12$         | $-11 \le l \le 17$         | $-23 \le l \le 23$             | $-33 \le l \le 33$         | $-19 \le l \le 13$          | $-27 \le l \le 15$             |
| Измерено отражений                                              | 8185                       | 9372                       | 13273                          | 61587                      | 34957                       | 17438                          |
| Независимых отражений ( $R_{ m int}$ )                          | 3800 (0.0244)              | 4379 (0.0195)              | 4112 (0.0371)                  | 16209 (0.0447)             | 9765 (0.0291)               | 8088 (0.0198)                  |
| Отражений с <i>I</i> ≥ 2σ( <i>I</i> )                           | 3126                       | 3993                       | 3288                           | 11038                      | 8728                        | 6916                           |
| Уточняемых параметров                                           | 174                        | 192                        | 192                            | 875                        | 444                         | 372                            |
| R-факторы по $I \ge 2 \sigma(I)$                                | $R_1 = 0.0373$ ,           | $R_1 = 0.0228,$            | $R_1 = 0.0333$ ,               | $R_1 = 0.0365,$            | $R_1 = 0.0211,$             | $R_1 = 0.0228$ ,               |
|                                                                 | wR = 0.0848                | $wR_2 = 0.0473$            | $wR_2 = 0.0789$                | $wR_2 = 0.0826$            | $wR_2 = 0.0471$             | $wR_2 = 0.0437$                |
| <i>R</i> -факторы по всем отражениям                            | $R_1 = 0.0495,$            | $R_1 = 0.0261,$            | $R_1 = 0.0478,$                | $R_1 = 0.0771,$            | $R_{1} = 0.0278,$           | $R_1 = 0.0309,$                |
|                                                                 | $wR_2 = 0.0907$            | $wR_2 = 0.0486$            | $wR_2 = 0.0836$                | $wR_2 = 0.1015$            | $wR_2 = 0.0498$             | $wR_2 = 0.0464$                |
| $\mathrm{GOOF}\mathrm{no}F^2$                                   | 1.029                      | 1.039                      | 1.034                          | 1.018                      | 1.043                       | 1.029                          |
| Остаточная электронная плотность (min/max, $e \ \text{Å}^{-3})$ | -0.459/0.962               | -0.248/0.389               | -0.556/3.948                   | -0.391/0.489               | -0.811/1.159                | -0.471/0.686                   |

КООРДИНАЦИОННАЯ ХИМИЯ том 47 № 8 2021

## КОМПЛЕКСЫ [ $Fe_2(\mu-S_2ER_2)(CO)_6$ ] (E = Si, Sn) – РЕАГЕНТЫ

509

### ОГИЕНКО и др.

| Свал           | Ia ( $E = Si$ ) | Iб (E = Si) | $I_B (E = Sn)$ | $III \cdot 0.5C_7H_8$ $(M = Ni)^*$ | $IV \cdot 0.5CH_3C_5H_9$ $(M = Au, E = Sn)$ | V = Mn, E = Sn |
|----------------|-----------------|-------------|----------------|------------------------------------|---------------------------------------------|----------------|
| Срузр          | <i>d</i> , Å    |             |                |                                    |                                             |                |
| Fe(1)-Fe(2)    | 2.4823(5)       | 2.4863(3)   | 2.4928(8)      | 2.4944(6)                          | 2.4968(5)                                   | 2.5303(4)      |
| Fe(1) - S(1)   | 2.3103(8)       | 2.3140(4)   | 2.3032(11)     | 2.2834(9)                          | 2.2844(7)                                   | 2.2651(5)      |
| Fe(1)-S(2)     | 2.3114(7)       | 2.3074(4)   | 2.2987(11)     | 2.2872(9)                          | 2.2934(7)                                   | 2.2681(5)      |
| Fe(2)-S(1)     | 2.3132(7)       | 2.3123(4)   | 2.3064(11)     | 2.2896(9)                          | 2.2666(7)                                   | 2.2663(5)      |
| Fe(2)-S(2)     | 2.3090(7)       | 2.3054(4)   | 2.3017(11)     | 2.2857(8)                          | 2.2973(7)                                   | 2.2635(5)      |
| E(1)-S(1)      | 2.1530(9)       | 2.1507(5)   | 2.4762(10)     |                                    |                                             | 2.5494(5)      |
| E(1)-S(2)      | 2.1537(10)      | 2.1501(5)   | 2.4714(10)     |                                    | 2.4648(6)                                   | 2.5448(5)      |
| M-P            |                 | 2.2662(6)   |                | 2.1757(8), 2.1836(8)               | 2.2662(6)                                   |                |
| M-S(1)         |                 | 2.3110(6)   |                | 2.1888(8)                          | 2.3110(6)                                   | 2.3456(5)      |
| M-S(2)         |                 | 2.8718(6)   |                | 2.1893(8)                          | 2.8718(6)                                   | 2.3421(5)      |
| Sn(1)–Cl(1)    |                 |             |                |                                    | 2.4270(7)                                   | 3.0481(5)      |
| Sn(1)–Cl(2)    |                 |             |                |                                    |                                             | 2.8635(5)      |
| Mn(1)–Cl(1)    |                 |             |                |                                    |                                             | 2.3903(5)      |
| Mn(2)–Cl(2)    |                 |             |                |                                    |                                             | 2.3953(6)      |
| Угол           |                 |             |                | ω, град                            |                                             |                |
| S(1)Fe(1)Fe(2) | 57.59(2)        | 57.457(11)  | 57.30(3)       |                                    |                                             |                |
| S(1)Fe(1)S(2)  | 80.56(3)        | 80.777(14)  | 81.59(3)       | 76.91(3)                           | 79.45(2)                                    | 75.648(18)     |
| S(1)Fe(2)S(2)  | 80.55(3)        | 80.854(14)  | 81.45(3)       |                                    |                                             |                |
| Fe(1)S(1)Fe(2) | 64.94(2)        | 65.018(11)  | 65.49(3)       | 66.11(3)                           | 66.54(2)                                    | 67.888(16)     |
| Fe(1)S(2)Fe(2) | 64.99(2)        | 65.232(11)  | 65.63(3)       | 66.12(3)                           | 65.90(2)                                    | 67.885(16)     |
| E(1)S(1)Fe(1)  | 86.25(3)        | 86.530(17)  | 91.99(3)       |                                    |                                             |                |
| E(1)S(1)Fe(2)  | 87.03(3)        | 85.864(16)  | 90.51(3)       |                                    |                                             |                |
| E(1)S(2)Fe(1)  | 86.20(3)        | 86.711(16)  | 92.22(3)       |                                    | 100.38(2)                                   | 97.752(18)     |
| E(1)S(2)Fe(2)  | 87.12(3)        | 86.047(17)  | 90.71(3)       |                                    | 102.31(3)                                   | 97.683(18)     |
| S(1)E(1)S(2)   | 87.87(4)        | 88.255(19)  | 74.85(3)       |                                    | 65.975(19)                                  | 66.146(14)     |
| S(1)MS(2)      |                 |             |                | 80.97(3)                           |                                             |                |
| MS(1)Fe(1)     |                 |             |                | 92.55(3)                           | 116.03(3)                                   | 137.97(2)      |
| MS(1)Fe(2)     |                 |             |                | 90.16(3)                           | 120.08(3)                                   | 132.18(2)      |
| MS(2)Fe(2)     |                 |             |                | 90.25(3)                           |                                             | 136.27(2)      |
| MS(2)Fe(1)     |                 |             |                | 92.43(3)                           |                                             | 138.28(2)      |
| S(1)Sn(1)Cl(1) |                 |             |                |                                    | 159.77(2)                                   | 68.150(14)     |
| S(2)Sn(1)Cl(2) |                 |             |                |                                    |                                             | 70.689(14)     |
| Cl(1)Sn(1)S(2) |                 |             |                |                                    | 95.20(2)                                    | 134.001(14)    |
| MS(1)Sn(1)     |                 |             |                |                                    | 144.61(3)                                   | 112.110(19)    |

**Таблица 2.** Основные длины связей и валентные углы (град) в соединениях Ia–Iв, III  $\cdot$  0.5C<sub>7</sub>H<sub>8</sub>, IV  $\cdot$   $\cdot$  0.5CH<sub>3</sub>C<sub>5</sub>H<sub>9</sub>, V

\* Приведены данные для одной из двух независимых молекул.



**Рис. 1.** Строение молекул соединений Ia—Iв в кристалле. Показаны тепловые эллипсоиды 50%-ной вероятности. Атомы водорода не показаны.

нение ее для синтеза соединения Іб не привело к успеху: воспроизводимо по стандартной схеме выделения удается получить только сокристаллизат [Fe<sub>2</sub>(CO)<sub>6</sub>( $\mu_3$ -S)<sub>2</sub>SiEt<sub>2</sub>]·[Fe<sub>2</sub>(CO)<sub>6</sub>( $\mu$ -S<sub>2</sub>)]. В этом случае более эффективной оказалась методика, в которой восстановление проводится с помощью Li[BEt<sub>3</sub>H]. Методика была ранее описана в [9] и использована нами в несколько модифицированном варианте.

Соединения Ia–Iв были выделены в кристаллическом виде, и их строение установлено РСА (рис. 1, табл. 1 и 2). В молекулах Ia–Iв фрагмент  $\{Fe_2S_2(CO)_6\}$  соединен с атомами Sn или Si через атомы S. Во всех трех случаях  $\{Fe_2S_2(CO)_6\}$  имеет одинаковую геометрию. Замена кремния на олово мало сказывается на длине связей Fe–Fe и Fe–S. Небольшое закономерное укорочение Fe–Fe и удлинение Fe–S наблюдается, но различия не превышают нескольких тысячных ангстрема. Длины связей S—Si и S—Sn лежат в том же диапазоне, что и в других известных на сегодняшний день соединениях с мостиковыми станнотиолатными и силикотиолатными лигандами [38].

Гетерометаллические кластеры II и III ранее были получены, согласно схеме 1, последовательным восстановлением  $[Fe_2(\mu-S)_2(CO)_6]$  в толуоле и добавлением к нему, соответственно, комплексов  $[Cp"RhCl_2]_2$ ,  $[(Dppe)NiCl_2]$  [23, 39]. Для проверки возможности получения тех же соединений в рамках предложенного нами подхода с использованием силильных и станнильных реагентов были проделаны реакции Iв с  $[Cp"RhCl_2]_2$  и Ia–Iв с  $[(Dppe)NiCl_2]$ . Как было установлено, действительно, в этих случаях происходит элиминирование  $Cl_2ER_2$  и образование комплексов II и III (схема 2).



Выходы кристаллических продуктов в этих реакциях составляют 70–80%, что сравнимо с выходами в реакциях [Fe<sub>2</sub>( $\mu$ -S)<sub>2</sub>(CO)<sub>6</sub>]<sup>2-</sup> с [Cp"RhCl<sub>2</sub>]<sub>2</sub> и [(Dppe)NiCl<sub>2</sub>]. Однако преимуществом использования Ia–Iв является то, что реагирующие формы – устойчивые нейтральные комплексы, существующие в индивидуальном виде и легко дозирующиеся для синтеза, в отличие от анионов  $[Fe_2(\mu-S)_2-(CO)_6]^{2-}$ , которые получены *in situ*, неустойчивы в растворе и не могут быть выделены в твердом виде. Кроме того, при использовании  $[Fe_2(\mu-S)_2(CO)_6]^{2-}$  ограничен выбор растворителей — до сих пор все

реакции с его участием проводили в ТГФ. Реакции с силилированными и станнилированными кластерами протекают при комнатной температуре даже в неполярном растворителе, например толуоле. Таким образом, появляется некоторая степень свободы при планировании и выборе оптимальных условий проведение синтеза, а также упрощения процедуры выделения продукта. Например, при использовании толуола в качестве растворителя процедура сводится всего лишь к концентрированию и охлаждению реакционной смеси.

512

Строение кластера II было описано ранее [23], поэтому он был идентифицирован по ИК-спектру при сравнении такового с аутентичным образцом. Кластер III был структурно охарактеризован ранее в виде сольвата с эфиром: III  $\cdot$  0.5Et<sub>2</sub>O [39]. В нашем случае кристаллизация из толуола приводит к сольвату III  $\cdot$  0.5C<sub>7</sub>H<sub>8</sub>. В кристалле сольвата присутствуют две независимые молекулы [Fe<sub>2</sub>Ni( $\mu_3$ -S)<sub>2</sub>(CO)<sub>6</sub>(Dppe)], строение которых отличается лишь незначительными отклонениями в углах и длинах связей, возникающими, вероятно, в результате специфики упаковки в кристалле. Включенные молекулы толуола упорядочены. В целом молекулы кластера III практически совпадают с таковыми в сольвате III  $\cdot$  0.5Et<sub>2</sub>O [39].

Реакции Ia-Iв с [Cp"RhCl<sub>2</sub>]<sub>2</sub>, [(Dppe)NiCl<sub>2</sub>] можно рассматривать как "тестовые", так как в их результатах сомнений не было. Целью их изучения было прежде всего сравнение нового синтетического подхода с тем, который использовался ранее. Далее, в реакциях с другими галогенсодержащими комплексами переходных металлов мы преследовали цель получения новых, неизвестных ранее гетерометаллических кластеров. Так, образование железо-золотого кластера мы ожидали в реакции Ів с [(Ph<sub>3</sub>P)AuCl]. Действительно, из реакционной смеси выделено соединение IV (схема 3), однако выход его составляет всего 10%. Контроль за реакцией с помощью TCX и ЯМР<sup>31</sup>Р показывает, что на самом деле образуется набор продуктов, из которых выделить удается только один - соединение IV, остальные разлагаются в процессе выделения. При этом и соединение IV удалось выделить по воле случая. Попытки кристаллизации из чистого гексана не привели к успеху. Однако, когда вместо гексана был взят легкий петролейный эфир, образовались кристаллы, содержащие сольватные молекулы метилциклопентана  $CH_{3}C_{5}H_{9}$ , содержавшегося в растворителе в небольшом количестве. По всей видимости, именно этот алкан наиболее подходит для сокристаллизации с "разветвленными" молекулами кластера IV.





Строение сольвата IV  $\cdot$  0.5CH<sub>3</sub>C<sub>5</sub>H<sub>9</sub> было определено с помощью монокристального PCA (рис. 2). В его молекуле присутствуют и фрагмент {Au(PPh<sub>3</sub>)}, соединенный с атомом серы, и фрагмент {SnEt<sub>2</sub>Cl}, присоединенный ко второму атому серы; т.е. в данном случае не происходит элиминирования {SnEt<sub>2</sub>}<sup>2+</sup> в виде соответствующего хлорида. Продукт реакции может быть описан, скорее, как результат присоединения [(Ph<sub>3</sub>P)AuCl] по связи S–Sn. Попытки варьирования условий реакции (отношение реагентов, температура, растворитель), а также замена станнилированного комплекса Iв на силилированные аналоги Ia и Iб не позволили выделить и охарактеризовать какие-либо еще координационные соединения. Соединение IV образует молекулярную кристаллическую структуру, в которой кластерный фрагмент соответствует формуле [Fe<sub>2</sub>( $\mu$ -SSnClEt<sub>2</sub>)-( $\mu$ -SAuPPh<sub>3</sub>)(CO)<sub>6</sub>]. Расстояние между атомами Sn(1)–S(1) заметно увеличивается до 2.8718(6) Å, а между Sn(1)–S(2) немного уменьшается до 2.4648(6) Å по сравнению с молекулой кластера Iв, где расстояния Sn–S равны 2.4757(9) и 2.4713(9) Å. Валентные углы FeSAu равны 116.03(3)° и 120.08(3)°. Они практически совпадают по значению с валентными углами FeSHg (116(1)°) в молекуле [Fe<sub>2</sub>( $\mu$ -CH<sub>3</sub>HgS)<sub>2</sub>(CO)<sub>6</sub>] [40].

Первая попытка проведения реакции Ів с  $[Mn(CO)_5Cl]$  в отношении 1 : 2 в толуоле при комнатной температуре привела к двум продуктам V и VI с примерно одинаковым выходом (схема 4).



При проведении синтеза V и VI концентрирование и охлаждение реакционного раствора приводит к их совместной кристаллизации: V – большие светло-красные, VI – мелкие темно-зеленые кристаллы. Кластер VI описан ранее [35]. Он был идентифицирован по данным РСА и ИК-спектроскопии. Соединение V получено впервые. Разделить их удалось за счет разной растворимости в гексане. Структура кластера V установлена методом РСА (рис. 3). В молекуле V фрагменты  ${Mn(CO)_4Cl}$  coединены с атомами S. Атомы Cl координированы к марганиу и олову по Ц-типу. Расстояния Sn(1)-Cl(1) и Sn(1)-Cl(2) довольно велики (3.0481(5) и 2.8635(5) Å соответственно) и характерны для хлоридных мостиков в полиядерных гомо- и гетерометаллических оловосодержащих соединениях, например от 2.920(1) до 3.097(1) Å в [( $\eta^{6}$ -C<sub>6</sub>H<sub>6</sub>)Sn(AlCl<sub>4</sub>)<sub>2</sub> · C<sub>6</sub>H<sub>6</sub>]<sub>n</sub> [41]. Увеличение координационного числа олова приводит к некоторому удлинению связей Sn—S (на ~0.07 Å) (табл. 2).

В растворе в спектре ЯМР <sup>1</sup>Н кластера V присутствуют сигналы атомов водорода этильных фрагментов: триплет от CH<sub>3</sub> с химическим сдвигом 1.36 м.д. и квартет от CH<sub>2</sub> с химическим сдвигом 1.87 м.д., также наблюдаются сателлиты расщепления протонов CH<sub>2</sub>-групп на ядрах <sup>117</sup>Sn и <sup>119</sup>Sn с константой спин-спинового взаимодействия  $J_{SnH} = 64.5$  Гц. В спектре ЯМР <sup>13</sup>С кластера V наблюдаются мультиплет от атомов углерода CO-лигандов (хим. сдвиг 206.8–214.3 м.д.), CH<sub>2</sub>-групп (хим. сдвиг 29.8 м.д.) и CH<sub>3</sub>-групп (хим. сдвиг 9.0 м.д.).



**Рис. 2.** Строение кластера IV в кристалле. Показаны тепловые эллипсоиды 50%-ной вероятности. Атомы водорода не изображены, фенильные заместители показаны в упрощенном виде.



**Рис. 3.** Строение кластера V в кристалле. Показаны тепловые эллипсоиды 50%-ной вероятности. Атомы водорода не показаны.

Сравнивая кластеры V и VI, можно заметить, что их молекулы отличаются на фрагмент  $\{Et_2SnCl_2\}$ , который в V "не ушел" из молекулы. Логично предположить, что кластер V – промежуточный продукт и при отщеплении фрагмента  $Et_2SnCl_2$ должен превратиться в соединение VI, но кинетически этот процесс заторможен. Для проверки этого предположения были проведены исследования по инициации такого отщепления. Оказалось, что при фотохимической инициации (облучение дневным светом раствора V в толуоле или бензоле) действительно происходит его полное превращение в кластер VI, однако термическая инициация (нагревании раствора V в хлористом метилене) данного превращения не вызывает.

В отличие от Ів взаимодействие кластеров Ia, Іб с комплексом [Mn(CO)<sub>5</sub>Cl] протекает с образованием VI в качестве основного продукта. В небольших количествах в реакционной смеси присутствуют также [Fe<sub>2</sub>(CO)<sub>6</sub>( $\mu$ -S<sub>2</sub>)] и [Fe<sub>3</sub>(CO)<sub>9</sub>-( $\mu_3$ -S)<sub>2</sub>] (схема 5).



При этом образование Si-содержащего соединения, аналогичного по строению кластеру V, не наблюдалось. Если предположить, что реакция Ia, Iб с комплексом [Mn(CO)<sub>5</sub>Cl] идет по тому же маршруту, кинетическая заторможенность "второй стадии" отсутствует, и  $R_2SiCl_2$  легко удаляется без дополнительной активации. Скорее всего, это связано с тем, что для кремния не характерны координационные числа >4 в отличие от Sn. Присутствие в смеси кластеров [Fe<sub>2</sub>S<sub>2</sub>(CO)<sub>6</sub>] и [Fe<sub>3</sub>S<sub>2</sub>(CO)<sub>9</sub>] можно объяснить частичным разложением промежуточных продуктов реакции с образованием более термодинамически стабильных комплексов.

Таким образом, в данной работе мы показали, что реакции силилированных и станнилированных комплексов [Fe<sub>2</sub>( $\mu$ -S<sub>2</sub>ER<sub>2</sub>)(CO)<sub>6</sub>] (E = Si, Sn) с галогенсодержащими комплексами *d*-металлов действительно приводят к гетрометаллическим кластерам и могут быть предложены как основа

нового синтетического подхода к таковым. Результатом данных реакций являются кластеры, аналогичные полученным по классической схеме — восстановлением [Fe<sub>2</sub>(CO)<sub>6</sub>( $\mu$ -S<sub>2</sub>)] до дианиона и дальнейшей обработкой его электрофильными агентами. Преимушеством предложенного подхода является возможность точной дозировки  $[Fe_2(\mu-S_2ER_2)(CO)_6]$  и их растворимость во всех органических растворителях. В то же время обнаружены некоторые особенности. которые следует учитывать при проведении синтетических экспериментов, например при использовании станнилированных реагентов следует учитывать заторможенность элиминирования  $R_2$ SnCl<sub>2</sub>, для удаления которого из молекулы промежуточного продукта может быть необходимой фотохимическая инициация.

Авторы заявляют, что у них нет конфликта интересов.

### БЛАГОДАРНОСТИ

Работа выполнена в рамках государственного задания ИНХ СО РАН в области фундаментальных научных исследований.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Schriver D.F., Whitmire K.H. // Comprehensive Organometallic Chemistry / Ed. Stone F.G.A., Wilkinson G., Oxford: Pergamon Press, 1982. P. 243.
- Shieh M., Lai Y.-W. // J. Chin Chem. Soc. 2002. V. 49. P. 851.
- 3. Пасынский А.А., Еременко И.Л. // Успехи химии. 1989. Т. 58. № 2. С. 303.
- Пасынский А.А., Семенова Н.И., Торубаев Ю.В. и др. // Изв. АН. Сер. хим. 2003. С. 944.
- 5. Пасынский А.А., Шаповалов С.С., Тихонова О.А. и др. // Коорд. химия. 2015. Т. 41. № 11. С. 6699 (*Pasynskii A.A., Shapovalov S.S., Tikhonova O.A. et al.* // Russ. J. Coord. Chem. 2015. V. 41. № 11. Р. 74). https://doi.org/10.1134/S1070328415110068
- 6. Torubaev Y.V., Pasynskii A.A., Pavlova A.V. et al. // J. Organomet. Chem. 2015. V. 777. P. 88.
- Torubaev Y.V., Shapovalov S.S., Tikhonova O.G. et al. // Polyhedron. 2020. V. 177. P. 114298.
- Hieber W., Beck J. // Z. Anorg. Allg. Chem. 1958. V. 296. S. 91.
- Seyferth D., Henderson R.S., Song L. // Organometallics. 1982. V. 1. P. 125.
- 10. *Tard C., Pickett C.J.* // Chem. Rev. 2009. V. 109. P. 2245.
- 11. Song L.-C., Tang M.-Y., Mei S.-Z. et al. // Organometallics. 2007. V. 26. P. 1575.
- 12. Song L.-C., Wang H.-T., Ge J.-H. et al. // Organometallics. 2008. V. 27. P. 1409.
- 13. Nann T., Ibrahim S.K., Woi P.-M. et al. // Angew. Chem. Int. Ed. 2010. V. 49. P. 1574.

- 14. Wang F., Wang W.-G., Wang X.-J. et al. // Angew. Chem. Int. Ed. 2011. V. 50. P. 3193.
- 15. Wen F., Wang X., Huang L. et al. // ChemSusChem. 2012. V. 5. P. 849.
- Wang F., Wang W.-G., Wang H.-Y. et al. // ACS Catal. 2012. V. 2. P. 407.
- 17. Simmons T.R., Berggren G., Bacchi M. et al. // Coord. Chem. Rev. 2014. V. 270–271. P. 127.
- 18. Хризанфорова В.В., Карасик А.А., Будникова Ю.Г. // Успехи химии. 2017. Т. 86. С. 298.
- 19. *Hai L., Zhang T., Zhang X. et al.* // Electrochem. Commun. 2017. V. 82. P. 66.
- Shupp J.P., Rose A.R., Rose M.J. // Dalton Trans. 2017. V. 46. P. 9163.
- 21. Arsenyeva K.V., Ershova I.V., Chegerev M.G. et al. // J. Organomet. Chem. 2020. V. 927. P. 121524.
- 22. Seyferth D., Song L.-C., Henderson R.S. // J. Am. Chem. Soc. 1981. V. 103. P. 5103.
- 23. Пушкаревский Н.А., Огиенко М.А., Куратьева Н.В., Конченко С.Н. // Изв. АН. Сер. хим. 2008. № 1. С. 35.
- 24. *Zhuang B., Chen J., He L. et al.* // J. Organomet. Chem. 2003. V. 682. P. 59.
- 25. Konchenko S.N., Sanden T., Pushkarevsky N.A. et al. // Chem. Eur. J. 2010. V. 16. P. 14278.
- 26. Dehnen S., Eichhöfer A., Fenske D. // Eur. J. Inorg. Chem. 2002. P. 279.
- 27. Tran D.T.T., Kowalchuk C.M., Taylor N.J., Corrigan J.F. // Inorg. Chem. 2002. V. 41. P. 5693.
- 28. Komuro T., Matsuo T., Kawaguchi H., Tatsumi K. // Angew. Chem. 2003. V. 115. № 4. P. 481.
- 29. Fuhr O., Dehnen S., Fenske D. // Chem. Soc. Rev. 2013. 42. P. 1871.
- *Гордон А., Форд Р.* Спутник химика. М.: Мир, 1976. 541 с.
- 31. Busby R., Hursthouse M.B., Jarrett P.S. et al. // Dalton Trans. 1993. P. 3767.
- 32. *Finn M.G.* Pentacarbonylchloromanganese. e-EROS Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Ltd., 2001. p. 1.
- 33. Sinha P., Wilson A.K., Omary M.A. // J. Am. Chem. Soc. 2005. V. 127. P. 12488.
- White C., Yates A., Maitlis P.M., Heinekey D.M. // Inorg. Synth. 1992. V. 29. P. 228.
- 35. Seyferth D., Henderson R.S., Fackle J.P., Mazany A.M. // J. Organomet. Chem. 1981. V. 213. P. C21.
- APEX2 (version 1.08), SAINT (version 7.03), and SADABS (version 2.11). Madison (WI, USA): Bruker Advanced X-ray Solutions, 2004.
- Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. № 1. P. 112.
- 38. Groom C.R., Bruno I.J., Lightfoot M.P., Ward S.C. // Acta Crystallogr. B. 2016. 72. P. 171.
- 39. Lozano A.A., Santana M.D., Garcia G. et al. // Z. Anorg. Allg. Chem. 2005. V. 631. P. 2062.
- 40. Seyferth D., Gallagher M.K. // Inorg. Chem. Acta. 1983. V. 73. P. 159.
- Schmidbaur H., Probst T., Steigelmann O., Muller G. // Z. Naturforsch. B. 1989. V. 44. P. 1175.