УДК 541.49+546.719+546.742+548.736

Посвящается памяти нашего коллеги проф. А.А. Пасынского

ОСОБЕННОСТИ КООРДИНАЦИИ КАТИОНОВ [Ni(En)₂]²⁺ К КЛАСТЕРНОМУ АНИОНУ [{Re₄(µ₃-CCN)₄}(CN)₁₂]⁸⁻

© 2021 г. А. С. Пронин¹, А. И. Смоленцев¹, Ю. В. Миронов^{1, *}

¹Институт неорганической химии им. А.В. Николаева СО РАН, г. Новосибирск, Россия

**e-mail: yuri@niic.nsc.ru* Поступила в редакцию 25.01.2021 г. После доработки 15.02.2021 г. Принята к публикации 18.02.2021 г.

Высокотемпературной реакцией ReI₃ с KCN и последующей перекристаллизацией из водного раствора при добавлении Me₄NI получен кластерный комплекс (Me₄N)K₇[{Re₄(μ_3 -CCN)₄}(CN)₁₂] · 10H₂O (I). Анион комплекса I содержит лиганды μ_3 -CCN³⁻, стабилизирующиеся за счет координации к треугольным граням тетраэдрического металлокластера {Re₄}. На примере [Ni(En)₂]²⁺ показано, что лиганды μ_3 -CCN³⁻ амбидентатны и могут взаимодействовать с катионами переходных металлов аналогично концевым CN-группам, что приводит к образованию координационного полимера [Ni(En)₂]{Ni(En)₂]₃{Re₄(μ_3 -CCN)₄}(CN)₁₂] · 7.5H₂O (II). Строение комплексов I и II установлено методом РСА (CIF files CCDC № 2057450 (I) и 2057451 (II)).

Ключевые слова: рений, тетраэдрические кластерные комплексы, кристаллическая структура, координационный полимер

DOI: 10.31857/S0132344X21080065

Кластерные соединения переходных металлов 5-7 групп, благодаря их структурному разнообразию и проявляемым физико-химическим свойствам, изучаются уже в течение нескольких десятилетий. Среди наиболее интересных свойств этих соединений можно выделить яркую люминесценцию в красной и ближней инфракрасной областях [1-3] и обратимые окислительно-восстановительные превращения [4, 5]. Интересной и менее изученной областью является использование кластерных комплексов молибдена, вольфрама и рения в качестве строительных блоков для синтеза функциональных координационных полимеров [6–8]. Высокая симметрия и большой объем кластерных комплексов делают их удобными для конструирования кристаллических координационных полимеров и металлоорганических каркасов, в то время как спектроскопические и окислительно-восстановительные характеристики кластеров могут использоваться для придания желаемых свойств получаемому продукту [5]. Свойства кластерных соединений определяются как составом, так и геометрией кластерного ядра, поэтому поиск методов синтеза новых кластерных комплексов остается актуальной задачей.

В течение последних нескольких лет мы изучали образование кластерных фаз при взаимодействии оксидов и иодидов молибдена, вольфрама и рения с неорганическими цианидами при температурах от 350 до 550°С [9-15]. Характерной особенностью этих реакций является их протекание при температурах ниже температур плавления соответствующих цианидов. Мы показали, что использование оксидов и иодидов в качестве исходных соединений при относительно невысоких температурах синтеза приводит к возможности получения соединений с новыми типами кластерных ядер и/или необычными внутренними лигандами. В качестве примеров можно привести битетраэдрические комплексы вольфрама с лигандами µ₃-CCN³⁻ [15] или тетраэдрические комплексы рения с лигандами μ_3 -PO³⁻, μ_3 -PO³⁻, μ_3 -As³⁻ и µ₃-AsO³⁻ [9, 16].

В настоящей работе в продолжение наших исследований по получению кластерных комплексов рения исходя из ReI_3 мы сообщаем о синтезе и строении нового тетраэдрического кластера $(Me_4N)K_7[{Re_4(\mu_3-CCN)_4}(CN)_{12}] \cdot 10H_2O$ (I). Данный комплекс был получен реакцией между ReI₃ с избытком КСN при температуре 480°С и последующей перекристаллизацией из воды при добавлении Me₄NI. Дальнейшее взаимодействие соединения I с [Ni(En)₂]Cl₂ (En = этилендиамин) в концентрированном аммиаке привела к образованию координационного полимера состава [Ni(En)₂-(NH₃)₂][{Ni(En)₂}₃{Re₄(μ_3 -CCN)₄}(CN)₁₂] · 7.5H₂O (II). В данном соединении лиганды CCN³⁻ проявляют амбидентатный характер и участвуют в образовании каркаса полимера.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

 ${\rm ReI}_3$ получали по известной методике [17]. Другие реагенты и растворители использовали в виде коммерчески доступных реактивов без дополнительной очистки. Соотношение тяжелых элементов определяли методом энергодисперсионного элементного анализа (EDS) с помощью настольного сканирующего микроскопа Hitachi TM3000 TableTop SEM на оборудовании Bruker QUANTAX 70 EDS. Элементный анализ выполняли на приборе Euro-Vector EA3000 Elemental Analyzer. ИК-спектры в диапазоне 4000–400 см⁻¹ записывали для образцов, приготовленных в виде таблеток с бромидом калия, на спектрометре Bruker Vertex 80.

Синтез (Me₄N)K₇[{Re₄(μ_3 -CCN)₄}(CN)₁₂] · 10H₂O **(I).** Смесь ReI₃ (0.300 г, 0.53 ммоль) и цианида калия (0.345 г, 5.30 ммоль) тщательно перетирали в ступке, помещали в кварцевую ампулу, которую вакуумировали и запаивали. Ампулу нагревали до 480°С за 4 ч, выдерживали при этой температуре в течение 72 ч, затем охлаждали со скоростью 50°С/ч. Осторожно! При открытии ампулы возможно выделение высокотоксичного дициана. Продукты реакции растворяли в воде, кипятили и отфильтровывали. К раствору добавляли 0.200 г Ме₄NI, упаривали до объема 3 мл и охлаждали до комнатной температуры. Целевой продукт в виде красных кристаллов, пригодных для РСА, выделяли путем диффузии паров МеОН в полученный водный раствор. Выход I 0.078 г (34%).

EDS: K : Re = 6.8 : 4.0. μ K-спектр (v, см⁻¹): 1616 δ (OH), 2130, 2086, 2065 v(CN), 3432 v(OH).

Найдено, %:	C 16.51;	H 1.64;	N 13.79.				
Для C ₂₄ H ₃₂ N ₁₇ O ₁₀ K ₇ Re ₄							
вычислено, %:	C 16.59;	H 1.85;	N 13.71.				

Синтез [Ni(En)₂(NH₃)₂][{Ni(En)₂}₃{Re₄(μ_3 -CCN)₄}-(CN)₁₂] · 7.5H₂O (II). Раствор [Ni(En)₂]Cl₂ (0.015 г, 0.06 ммоль) в 30%-ном водном растворе аммиака (5 мл) осторожно наслаивали в стеклянной пробирке на раствор (Me₄N)K₇[{Re₄(μ_3 -CCN)₄}-(CN)₁₂] · 10H₂O (0.020 г, 0.012 ммоль) в 5 мл H₂O. Через неделю образовавшиеся темно-красные кристаллы отфильтровывали и высушивали на бумажном фильтре. Выход II 0.022 г (87%).

EDS: Ni : Re = 4.1 : 4.0. I/K-cnektp (v, cm^{-1}): 1618 δ (OH), 2132, 2098, 2074 v(CN), 2800–3000 v(CH), 3312, 3261 v(NH), 3454 v(OH).

РСА І и ІІ проведен на автодифрактометре Вruker-Nonius X8 Арех с использованием излучения Мо K_{α} ($\lambda = 0.71073$ Å) с графитовым монохроматором. Поглощение учтено полуэмпирически по интенсивностям эквивалентных рефлексов (SADABS) [18]. Структура расшифрована прямым методом и уточнена полноматричным МНК по F^2 в анизотропном приближении для неводородных атомов (SHELXL) [19]. Атомы водорода лигандов NH₃ и Еп в II локализованы геометрически. Атомы водорода сольватных молекул воды не локализованы. Рисунки выполнены в программе DIAMOND [20]. Основные кристаллографические данные и параметры уточнения структур I и II представлены в табл. 1.

Координаты атомов и другие параметры структур депонированы в Кембриджском банке структурных данных (ССDС № 2057450 (I) и 2057451 (II); deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk/data_request/cif).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Недавно было показано, что ReI_3 является перспективным прекурсором для синтеза новых кластеров рения при температурах, при которых другие исходные соединения остаются инертными. Так, реакция ReI_3 с KCN при 480°C приводит к образованию комплекса $K_8[{Re_4(\mu_3-CCN)_4}-(CN)_{12}] \cdot 5H_2O \cdot KCN$ [9]. Соединение стабильно на воздухе и демонстрирует отличную растворимость в H_2O , однако попытки растворить полученный комплекс в других доступных растворителях оказались безуспешными.

Надеясь перейти от водных растворов к органическим, в данной работе мы попытались получить соль с органическим катионом, добавив в систему Me_4NI . Получив монокристаллы и определив кристаллическую структуру методом PCA, было установлено, что в случае использования Me_4NI продуктом является комплекс $(Me_4N)K_7[{Re_4(\mu_3-CCN)_4}(CN)_{12}] \cdot 10H_2O$ (I) (это подтверждается данными элементного анализа). Как и калиевая соль, соединение I оказалось растворимо только в воде.

Согласно структурным данным, соединение I кристаллизуется в кубической сингонии, пр. гр. *F*-43*m*, Z = 4. Кристаллическая структура I включает в себя кластерный анион [{Re₄(μ_3 -CCN)₄}-(CN)₁₂]^{8–} (рис. 1), семь катионов K⁺, один катион Me₄N⁺ и десять молекул некоординированной воды. Строение аниона в I наиболее близко напо-

	Таблица 1	 Кристалло: 	графические	данные и па	раметры у	уточнения	структур	Іи]	
--	-----------	--------------------------------	-------------	-------------	-----------	-----------	----------	-----	--

	Значение				
Параметр	Ι	II			
Брутто-формула	C ₂₄ H ₃₂ N ₁₇ O ₁₀ K ₇ Re ₄	C ₃₆ H ₈₆ N ₃₄ O _{7.5} Ni ₄ Re ₄			
М	1737.16	2103.02			
Сингония	Кубическая	Моноклинная			
Пр. гр.	<i>F</i> -43 <i>m</i>	$P2_{1}/c$			
<i>a</i> , Å	16.9835(9)	14.7439(3)			
b, Å	16.9835(9)	20.5652(4)			
<i>c</i> , Å	16.9835(9)	22.7708(5)			
α, град	90	90			
β, град	90	90.3290(10)			
ү, град	90	90			
<i>V</i> , Å ³	4898.7(8)	6904.2(2)			
Ζ	4	4			
ρ(выч.), г/см ³	2.355	2.023			
μ, мм ⁻¹	10.509	8.112			
<i>F</i> (000)	3232	3720			
Размеры кристалла, мм	0.08 imes 0.08 imes 0.08	0.28 imes 0.26 imes 0.10			
Интервалы индексов <i>h</i> , <i>k</i> , <i>l</i>	$-19 \le h \le 19,$ $-22 \le k \le 22,$ $-22 \le l \le 22$	$-15 \le h \le 19,$ $-26 \le k \le 18,$ $-29 \le l \le 29$			
Измерено отражений	6080	44 052			
Независимых отражений	615	15796			
<i>R</i> _{int}	0.0521	0.0262			
Отражений с <i>I</i> > 2σ(<i>I</i>)	586	14224			
$R_1, wR_2 (I \ge 2\sigma(I))$	0.0316, 0.0816	0.0329, 0.0795			
R_1 , wR_2 (все отражения)	0.0337, 0.0827	0.0390, 0.0815			
$\Delta \rho_{\rm min} / \Delta \rho_{\rm max}$, $e {\rm \AA}^{-3}$	-0.743/1.019	-1.264/2.815			

минает строение тетраэдрических халькоцианидных комплексов [{ Re_4Q_4 }(CN)₁₂]^{*n*-} ($\text{Q} = \text{S}^{2-}$, Se^{2-} , Te^{2-}) [21–23] и недавно полученных пниктогенсодержащих представителей цианокластерных комплексов типа [{ Re_4X_4 }(CN)₁₂]^{*n*-} ($X = \text{PO}^{3-}$, PO_2^{3-} , As^{3-} , AsO^{3-}) [9, 10, 16]. Это типичный 12электронный кластерный комплекс, имеющий шесть двухэлектронных связей метал–метал, однако длина связи Re–Re (2.6837(14) Å) заметно сокращена (~0.05–0.20 Å) по сравнению со значениями, наблюдаемыми в вышеупомянутых соединениях. К каждой грани тетраэдра Re_4 координирован тригонально-пирамидальным образом μ_3 -мостиковый лиганд CCN³⁻ с расстоянием Re- C_{CCN} 2.07(2) Å. Геометрические параметры лигандов μ_3 -CCN³⁻ хорошо соответствуют тем, о которых сообщалось ранее [13, 15, 24, 25]: длины связей С–С и С–N составляют 1.47(5) и 1.13(4) Å соответственно.

Рис. 1. Строение кластерного аниона $[\text{Re}_4(\text{CCN})_4^-(\text{CN})_{12}]^{8-}$. Приведены тепловые эллипсоиды 30%-ной вероятности.

Одним из интересных свойств аниона [{ $Re_4(\mu_3 - CCN)_4$ }($CN)_{12}$]^{8–} является амбидентатный характер лигандов CCN^{3-} и их участие в образовании каркаса координационного полимера [$Cu(En)_2$]-[$Cu(En)(NH_3)_2$]₃[{ $Re_4(\mu_3 - CCN)_4$ }($CN)_{12}$] · 5H₂O [13]. В данной работе мы продолжили изучение возможности использования аниона [{ $Re_4(\mu_3 - CCN)_4$ }($CN)_{12}$]^{8–} в качестве строительного блока. Так, взаимодействие соединения I с [$Ni(En)_2$]Cl₂ в концентрированном аммиаке привела к образованию полимера состава [$Ni(En)_2(NH_3)_2$][{ $Ni(En)_2$ }₃-{ $Re_4(\mu_3 - CCN)_4$ }($CN)_{12}$]·7.5H₂O (II).

Соединение II кристаллизуется в моноклинной сингонии, пр. гр. $P2_1/c$, Z = 4. Геометрические параметры кластерного аниона аналогичны таковым в соединении I. В частности, длины связей Re–Re и Re–C_{CCN} меняются в интервалах 2.6713(3)–2.6961(3) и 2.071(5)–2.104(5) Å, а С–С и С–N в лигандах ССN^{3–} составляют 1.402(8)– 1.417(8) и 1.162(9)–1.174(9) Å соответственно.

Катионная часть II включает четыре симметрически независимых иона никеля(II), один из которых имеет искаженное октаэдрическое строение и координирует по два линанда NH_3 и Еп. Три других иона никеля(II) координируют только два лиганда En, что приводит к образованию плоско-квадратных комплексов $[Ni(En)_2]^{2+}$. Эти частицы участвуют в мостиковых взаимодействиях с пятью цианидными лигандами каждого аниона $[Re_4(CCN)_4(CN)_{12}]^{8-}$ (рис. 2). При этом три из

Рис. 2. Мостиковые взаимодействия катионов $[Ni(En)_2]^{2+}$ с лигандами CN^- и CCN^{3-} аниона $[Re_4(CCN)_4(CN)_{12}]^{8-}$ в структуре II.

пяти мостиковых лигандов CN^- принадлежат одному атому рения, а два – другому, в то время как лиганды CN^- двух оставшихся атомов рения не участвуют в координации с катионом $[Ni(En)_2]^{2+}$. Длины мостиковых связей $Ni-N_{CN}$ (2.068(5)–2.098(5) Å) сопоставимы с длинами связей $Ni-N_{NH3/En}$ (2.075(7)–2.112(6) Å). Кроме того, один из лигандов CCN^{3-} каждого аниона $[Re_4(CCN)_4-(CN)_{12}]^{8-}$ образует контакт Re-CCN-Ni ($Ni-N_{CCN}$ 2.170(6) Å), что делает все центры Ni(II) шестикоординированными. Многочисленные мостиковые цианидные взаимодействия в II, а также водородные связи с участием лигандов NH_3 , En, CCN^{3-} , CN^- и сольватных молекул H_2O приводят к образованию трехмерного каркаса, как показано на рис. 3.

Таким образом, путем реакции между Rel₃ с избытком KCN при температуре 480°С и последующей перекристаллизацией из воды при добавлении Me₄NI был получен тетраэдрический кластерный комплекс рения $(Me_4N)K_7[{Re_4(\mu_3-CCN)_4}(CN)_{12}]$ · ·10H₂O. Дальнейшая реакция полученного соединения с $[Ni(En)_2]Cl_2$ в концентрированном аммиаке привела к образованию координационного полимера состава $[Ni(En)_2(NH_3)_2][{Ni(En)_2}_3-$ {Re₄(µ₃-CCN)₄}(CN)₁₂] · 7.5H₂O, в котором лиганды CCN³⁻ проявляют амбидентатный характер и участвуют в образовании каркаса полимера. Кристаллические структуры полученных соединений были определены методом рентгеноструктурного анализа.

Авторы заявляют, что у них нет конфликта интересов.

Рис. 3. Упаковка катионов $[Ni(En)_2]^{2+}$ и анионов $[Re_4(CCN)_4(CN)_{12}]^{8-}$ в структуре II вдоль кристаллографической оси *a*.

ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке Российского научного фонда (проект № 18-13-00058).

СПИСОК ЛИТЕРАТУРЫ

- 1. Sokolov M.N., Brylev K.A., Abramov P.A. et al. // Eur. J. Inorg. Chem. 2017. № 35. P. 4131.
- Kirakci K., Fejfarova K., Kucerakova M. et al. // Chem. Rev. 2014. V. 2014. № 14. P. 2331.
- 3. *Efremova O.A., Brylev K.A., Kozlova O. et al.* // J. Mater. Chem. C. 2014. V. 2. № 40. P. 8630.
- 4. *Fujii S., Horiguchi T., Akagi S. et al.* // Inorg. Chem. 2016. V. 55. № 20. P. 10259.
- Litvinova Y.M., Gayfulin Y.M., Kovalenko K.A. et al. // Inorg. Chem. 2018. V. 57. № 4. P. 2072.
- 6. *Litvinova Y.M., Gayfulin Y.M., van Leusen J. et al.* // Inorg. Chem. Front. 2019. V. 6. № 6. P. 1518.
- Alexandrov E.V., Virovets A.V., Blatov V.A. et al. // Chem. Rev. 2015. V. 115. № 22. P. 12286.
- Efremova O.A., Mironov Y.V., Fedorov V.E. // Eur. J. Inorg. Chem. 2006. № 13. P. 2533.
- Pronin A.S., Smolentsev A.I., Kozlova S.G. et al. // Inorg. Chem. 2019. V. 58. № 11. P. 7368.
- 10. Pronin A.S., Gayfulin Y.M., Smolentsev A.I. et al. // J. Clust. Sci. 2019. V. 30. № 5. P. 1253.
- 11. Pronin A.S., Smolentsev A.I., Mironov Y.V. // Russ. Chem. Bull. 2019. V. 68. № 4. P. 777.

- 12. Пронин А.С., Яровой С.С., Смоленцев А.И., Миронов Ю.В. // Коорд. химия. 2019. Т. 45. № 2. С. 106 (Pronin A.S., Yarovoy S.S., Smolentsev A.I., Mironov Yu. V.// Russ. J. Coord. Chem. 2019. V. 45. № 2. Р. 119). https://doi.org/10.1134/S1070328419020052
- Pronin A.S., Gayfulin Y.M., Smolentsev A.I. et al. // Inorg. Chem. 2020. V. 59. № 14. P. 9710.
- 14. *Pronin A.S., Smolentsev A.I., Mironov Y.V.* // J. Struct. Chem. 2020. V. 61. № 1. P. 95.
- 15. Yarovoy S.S., Smolentsev A.I., Kozlova S.G. et al. // Chem. Commun. 2018. V. 54. № 98. P. 13837.
- 16. *Pronin A.S., Smolentsev A.I., Mironov Y.V.* // Russ. Chem. Bull. 2020. V. 69. № 11. P. 2129.
- 17. Malatesta L. // Inorg. Synth. 1963. V. 7. № 7. P. 185.
- APEX2 (version 1.08), SADABS (version 2.11), SHELXTL (version 6.12). Madison (WI, USA): Bruker Advanced X-ray Solutions, 2004.
- 19. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
- 20. DIAMOND (version 3.2a). Bonn (Germany): Crystal Impact GbR, 2010.
- Mironov Y.V., Fedorov V.E. // Russ. Chem. Bull. 2002. V. 51. № 4. P. 569.
- 22. *Mironov Y.V., Virovets A.V., Artemkina S.B. et al.* // J. Struct. Chem. 1999. V. 40. № 2. P. 313.
- 23. Laing M., Kiernan P.M., Griffith W.P. // Chem. Commun. 1977. № 7. P. 221.
- 24. Jach F., Bruckner S.I., Ovchinnikov A. et al. // Angew. Chem. Int. Ed. 2017. V. 56. № 11. P. 2919.
- Pei X.L., Yang Y., Lei Z. et al. // J. Am. Chem. Soc. 2013. V. 135. № 17. P. 6435.

КООРДИНАЦИОННАЯ ХИМИЯ том 47 № 8 2021