УДК 547.31+547.39+546.562

К 90-летию академика Н.Т. Кузнецова

ВЛИЯНИЕ ТРИФТОРМЕТИЛЬНЫХ ГРУПП НА КРИСТАЛЛИЧЕСКУЮ УПАКОВКУ БИЯДЕРНОГО КОМПЛЕКСА МЕДИ(II) НА ОСНОВЕ N₂O₃-ПЕНТАДЕНТАТНОГО ГИДРОКСИ-бис(CF₃-EHAMUHOKETOHA)

© 2021 г. Ю. О. Эдилова^{1, 2}, Ю. С. Кудякова¹, П. А. Слепухин^{1, 2}, Я. В. Бургарт¹, В. И. Салоутин¹, Д. Н. Бажин^{1, *}

¹Институт органического синтеза им. И.Я. Постовского УрО РАН, Екатеринбург, Россия ²Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, Екатеринбург, Россия *e-mail: dnbazhin@gmail.com Поступила в редакцию 19.03.2021 г. После доработки 21.04.2021 г.

Принята к публикации 24.04.2021 г.

Взаимодействие 1,1,1-трифтор-4-метокси-3-пентен-2-она (L¹) с 1,3-диаминопропан-2-олом приводит к получению N,N'-(2-гидроксипропан-1,3-диил)-*бис*(трифторацетилацетимина) (H₃L²) с выходом 82%. Синтезированный N₂O₃-лиганд в реакции с ацетатом меди(II) в отсутствие дополнительных оснований дает биядерный комплекс состава [Cu₂L²(OAc)] (I), структура которого установлена методом (CIF file CCDC № 2071133).

Ключевые слова: енаминокетоны, основания Шиффа, биядерные комплексы меди(II), рентгеноструктурный анализ

DOI: 10.31857/S0132344X21090024

На протяжении нескольких десятилетий биядерные комплексы меди(II) остаются одними из привлекательных объектов исследований. Комплексы Cu(II) с мостиковыми µ-фенокси, µ-алкокси или μ-гидрокси группами, формирующими биядерный металлоостов, являются модельными системами для изучения спин-спиновых обменных взаимодействий между двумя неспаренными электронами [1-5]. С другой стороны, проявляемое цитотоксичное действие комплексов Cu(II) по отношению к раковым клеткам человека является основой для направленного дизайна лигандов, способных к селективному связыванию и дальнейшему расщеплению вредоносных ДНК. что снижает развитие опухолей [6]. Не менее важными являются исследования Cu₂-комплексов в различных каталитических реакциях, что является с экономической и экологической точек зрения обоснованной альтернативой используемым катализаторам на основе металлов платиновой группы [7-9].

В качестве лигандов для построения биядерного остова с атомами меди(II) зачастую используют основания Шиффа [1, 10–16]. Енаминокетоны, содержащие дополнительные донорные атомы расширяют ряд полидентатных соединений, которые в зависимости от условий получения приводят к моно- и полиядерным комплексам меди(II) [17-23].

Введение фторсодержащих заместителей в структуру лигандов играет важную роль в самоорганизации молекул, в том числе при кристаллизации металлокомплексов [24–26]. Наравне с хорошо известными межмолекулярными взаимодействиями (водородные связи, π – π -стэкинг, С–Н... π) все больше внимания уделяется слабым контактам (таким как С–F...H, F...F или С–F... π), определяющим структуру и свойства кристаллов [26].

В настоящей работе на основе нового фторсодержащего функционализированного енаминокетона (H_3L^2) осуществлен синтез биядерного комплекса меди(II) [Cu₂L²(OAc)] (I) в мягких условиях и исследованы особенности его кристаллической структуры.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Все операции, связанные с синтезом лиганда H_3L^2 и комплекса I, выполняли на воздухе с использованием коммерчески доступных реактивов: $Cu(OAc)_2 \cdot H_2O$ ("ч. д. а.", Вектон), 1,3-диамино-

пропан-2-ол (99%, Alfa Aesar), диэтиловый эфир ("ч.д.а", Вектон), ацетонитрил ("ч. д. а.", Вектон), метанол ("х. ч.", Вектон). Трифторметилсодержащий алкоксиенон (L¹) синтезирован по известной методике [27] из 2-метоксипропена, трифторуксусного ангидрида в присутствии пиридина в дихлорметане.

Спектры ЯМР ¹H, ¹⁹F, ¹³С регистрировали на спектрометре Bruker DRX-500 (500 МГц) с Me_4Si и C_6F_6 в качестве внутренних стандартов. ИК-спектры соединений регистрировали на ИК-Фурье спектрометре PerkinElmer Spectrum One в интервале 400–4000 см⁻¹ с использованием приставки диффузного отражения для твердых веществ. Элементный анализ выполнен на автоматическом анализаторе PerkinElmer PE 2400 Series II.

Синтез N,N'-(2-гидроксипропан-1,3-диил)бис(трифторацетилацетимина) (H₃L²). К охлажденному до 0°С раствору 1,3-диаминопропан-2ола (0.41 г, 4.5 ммоль) в 25 мл диэтилового эфира добавляли по каплям алкоксиенон L¹ (1.53 г, 9 ммоль). Реакционную массу перемешивали до выпадения белого осадка, который отфильтровывали и сушили на воздухе. Выход 1.35 г (82%). Белый порошок, $T_{пл} = 142-144$ °С.

Найдено, %:	C 42.96;	H 4.32;	N 7.54.
Для C ₁₃ H ₁₆ N ₂ O ₃ F ₆	ó		
вычислено, %:	C 43.10;	H 4.45;	N 7.73.

ИК-спектр (v, см⁻¹): 3304, 3135 (O–H), 2949, 2929 v(C–H), 1616 (C=O), 1577 (C=C), 1441 v_{as}(CH₃), 1250, 1188, 1137 v(C–F). Спектр ЯМР ¹H (500 МГц; CD₃CN; δ , м.д. (*J*, Гц)): 2.11 (с., 6H, 2 CH₃), 3.39 (м., 2H, CH₂), 3.52 (м., 2H, CH₂), 3.96 (т.т., 1H, *J*_{HH} = 7.7, 3.7, C<u>H</u>OH), 5.38 (с., 2H, 2 CH=), 11.20 (с., 2H, NH). Спектр ЯМР ¹⁹F (470 МГц; CD₃CN; δ , м.д.): 87.29 (с., CF₃). Спектр ЯМР ¹³C (125 МГц; CD₃CN; δ , м.д., (*J*, Гц)): 19.95 (с., CH₃), 47.96 (с., CH₂NH), 69.40 (с., CHOH), 89.94 (с., <u>C</u>CH₃), 119.0 (кв., ²*J*_{CF} = 288, CF₃), 172.38 (с., <u>C</u>HCO), 175.12 (кв., ³*J*_{CF} = 32, C=O).

Синтез комплекса [Cu₂L(OAc)] (I). К соединению H_3L^2 (128 мг, 0.35 ммоль) в 10 мл метанола добавляли Cu(OAc)₂ · H_2O (139 мг, 0.7 ммоль) и перемешивали при комнатной температуре 1 ч, после чего приливали 50 мл воды. Образовавшийся осадок отфильтровывали и сушили. Далее полученный комплекс растворяли в ацетонитриле, пропускали через слой Celite® 545. Медленное упаривание растворителя приводило к образованию голубых кристаллов комплекса I. $T_{\text{пл}} = 303 - 304^{\circ}$ C.

Найдено, %:	C 32.83;	Н 2.73;	N 5.10.
Для C ₁₅ H ₁₆ N ₂ O ₅	F ₆ Cu ₂		
вычислено, %:	C 33.03;	H 2.96;	N 5.14.

Выход 183 мг (93%). ИК-спектр (v, см⁻¹): 2952, 2841 v(C–H), 1625 v(C=O), 1568 (C=C), 1479, 1466 v_{as}(CH₃), 1248–1149 v(C–F).

РСА. Кристаллографические данные для монокристалла комплекса I получены на автоматическом чырехкружном дифрактометре с ССD-детектором Xcalibur 3 по стандартной процедуре (Мо K_{α} -излучение, графитовый монохроматор, ω -сканирование с шагом 1° при 295(2) К). Введена эмпирическая поправка на поглощение. Структура определена прямым статистическим методом и уточнена полноматричным МНК по F^2 в анизотропном приближении для всех неводородных атомов. Атомы водорода помещены в геометрически рассчитанные положения и уточнены в модели "наездника". Все расчеты проведены в программной оболочке Olex [28] с использованием программного пакета SHELX [29].

Координаты атомов и другие параметры структуры I депонированы в Кембриджском банке структурных данных (ССDС № 2071133; deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk/ data_request/cif).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Взаимодействием алкоксиенона L¹ с диаминопропанолом в соотношении 2 : 1 в эфире при охлаждении впервые получен бис-CF₃-енаминокетон H₃L², содержащий помимо двух способных к хелатированию N,O-енаминокетонных фрагментов дополнительную гидроксигруппу, формирующую два тридентатных NO2-фрагмента (схема 1). Строение лиганда H₃L² подтверждено с помощью данных ЯМР и ИК-спектроскопии, а также элементного анализа. В спектре ЯМР ¹Н соединения H_3L^2 в растворе CD₃CN наблюдаются синглеты при 2.11. 5.36 и 11.20 м.д., относящиеся к енаминокетонному фрагменту, а именно метильному заместителю, метиновому протону и группе N-Н соответственно. Мультиплеты диаминопропанольной части регистрируются при $\delta_{\rm H}$ = 3.39, 3.52 и 3.96 м.д. В спектре ЯМР ¹⁹F наблюдается синглет трифторметильной группы при $\delta_F = 87.3$ м.д., находящийся в диапазоне, характерном для трифторацетилсодержащих соединений [18-22]. Один набор сигналов углерода лиганда H₃L² также регистрируется в спектре ЯМР ¹³С. Таким образом, в растворе CD_3CN оба енаминокетонных фрагмента соединения H_3L^2 существуют в наиболее выгод-

ной *Z*,*Z*-форме, по-видимому, благодаря внутримолекулярным водородным связям.

Ранее для нефторированного аналога H_3L^2 N,N'-(2-гидроксипропан-1,3-диил)-*бис*(ацетилацетимина) (H_3L^3) была получена "кубановая" структура [(Cu(HL³))₄] в реакции с перхлоратом меди(II) в присутствии триэтиламина [30]. В аналогичных условиях попытки выделить продукты взаимодействия H_3L^2 с солями двухвалентной меди были безуспешными. Однако в отсутствие азотистого основания реакция гидрокси-*бис*(CF₃-енаминокетона) H_3L^2 с ацетатом меди(II) приводила к образованию комплекса I с хорошим выходом (схема 2). Таким образом, ацетат-анионы выступают в качестве мягкого основания для депротонирования лиганда H_3L^2 . Медленное упаривание ацетонитрильного раствора соединения I дает кристаллы, пригодные для проведения PCA (рис. 1).

Схема 2.

По данным РСА, нейтральный биядерный комплекс меди(II) І кристаллизуется в пространственной группе P2₁/с моноклинной системы (рис. 1, табл. 1). Плоско-квадратное координационное окружение двух атомов меди(II) образуется за счет участия енаминокетонных фрагментов, μ -гидроксигруппы лиганда H_3L^2 , а также за счет и-мостикового ацетат аниона. При этом вокруг каждого атома меди формируются три различных металлоцикла: шестичленный и пятичленный с двумя разными гетероатомами (А и В, рис. 1); шестичленный с тремя атомами кислорода, включающий два атома металла (С, рис. 1). Плоскости двух хелатных енаминокетонных фрагментов характеризуются незначительным отклонением со значением двугранного угла 6.6(4)°. Расстояние между атомами меди в комплексе I составляет 3.481(1) Å, что сопоставимо с одним из значений (3.438(1) Å) для Си...Си в кластере [(Сu(HL³))₄] на основе нефторированного аналога $H_{3}L^{3}$ [30].

Введение трифторметильной группы в енаминокетонный фрагмент приводит к образованию внутримолекулярного короткого контакта между атомом фтора и метиновым атомом водорода, равного 2.49(7) Å. Молекулы комплекса I образуют псевдодимерные структуры с межплоскостным расстоянием в ~3.4 Å (плоскости, проходящие через атомы N(1)O(1)N(2)O(1) молекул). В псевдодимерах симметрично реализуются два межмолекулярных контакта F...H между CF₃- и CH₃-группами, равных 2.517(5) Å (рис. 2). Атомы кислорода O(3) и O(3)' мостиковых алкоксидных групп выходят из плоскости молекул на 0.267 Å, что приводит к сближениям Cu(2)–O(3)' и Cu(2)'–O(3), равным 3.108(6) Å с наименьшим межмолекулярным расстоянием между атомами меди Cu(2)–Cu(2)' в 3.778(1) Å (рис. 2).

Псевдодимеры формируют стопки за счет контактов F...Н между атомами фтора и атомами H(7), H(13) алкоксидных и метильных групп комплекса I (рис. 3).

В данной работе показано, что функционализированный фторсодержащий енаминокетон легко вступает в реакцию комплексообразования с ацетатом меди(II). В отличие от нефторированных аналогов для осуществления данного взаимодействия не требуется использование основных агентов, в том числе триэтиламина. При этом пентадентат-

Рис. 1. Молекулярная структура комплекса І.

Рис. 2. Псевдодимер комплекса I. Атомы водорода частично не показаны. Межмолекулярный контакт F(4)...H(3)' и F(4)'...H(3) составляет 2.517(5) Å, расстояние Cu(2)...O(3)' и Cu(2)'...O(3) равны 3.108(6) Å, Cu(1)...Cu(1)' составляет 6.391(1) Å.

ный лиганд участвует в образовании биядерного комплекса меди(II), в качестве мостикового солиганда сохраняется один ацетат-анион. Установлено, что трифторметильные группы образуют

короткие внутри- и межмолекулярные контакты F...H, формируя кристаллическую структуру комплекса, особенностью которой является образование *псевдо*-димеров.

КООРДИНАЦИОННАЯ ХИМИЯ том 47 № 9 2021

Параметр	Значение	
Брутто-формула	$C_{15}H_{16}N_2O_5F_6Cu_2$	
M	545.38	
Сингония	Моноклинная	
Пр. гр.	$P2_{1}/c$	
a, Å	10.834(1)	
b, Å	11.519(1)	
<i>c</i> , Å	15.284(3)	
α, град	90.00	
β, град	101.99(2)	
γ, град	90.00	
<i>V</i> , Å ³	1865.8(5)	
Ζ	4	
ρ(выч.), г см ⁻³	1.942	
μ, мм ⁻¹	2.3708	
Размер кристалла, мм	$0.39 \times 0.19 \times 0.08$	
θ_{min} — θ_{max} , град	3.76–26.21	
<i>F</i> (000)	1088	
<i>R</i> _{int}	0.0905	
Интервалы индексов отражений	$-13 \le h \le 10,$ $-14 \le k \le 14,$ $-18 \le l \le 19$	
Измерено отражений	12134	
Независимых отражений	3803	
Число отражений с <i>I</i> > 2σ(<i>I</i>)	2238	
GOOF	1.000	
R -факторы по $F^2 \ge 2\sigma(F^2)$	$R_1 = 0.0600, wR_2 = 0.1387$	
<i>R</i> -факторы по всем отражениям	$R_1 = 0.1136, wR_2 = 0.1802$	
Остаточная электронная плотность (max/min), <i>e</i> /Å ³	0.61/-0.68	

Таблица 1. Основные кристаллографические характеристики и параметры рентгеноструктурного эксперимента для комплекса I

Связь	d, Å	Угол	ω, град
Cu(1)–O(1)	1.898(5)	O(1)Cu(1)N(1)	94.70(20)
Cu(1)–N(1)	1.939(6)	N(1)Cu(1)O(3)	85.06(19)
Cu(1)–O(4)	1.929(5)	O(1)Cu(1)O(4)	85.67(20)
Cu(1)–O(3)	1.918(4)	O(3)Cu(1)O(4)	95.83(19)
Cu(2)–O(2)	1.910(5)	O(2)Cu(2)N(2)	93.98(22)
Cu(2)–N(2)	1.931(5)	N(2)Cu(2)O(3)	85.22(20)
Cu(2)–O(5)	1.932(5)	O(2)Cu(2)O(5)	86.08(20)
Cu(2)–O(3)	1.912(5)	O(3)Cu(2)O(5)	94.68(18)
		Cu(1)O(3)Cu(2)	130.67(22)

Таблица 2. Основные длины связей и валентные углы комплекса І

Авторы заявляют об отсутствии конфликта интересов.

БЛАГОДАРНОСТИ

Рентгеноструктурный анализ и физико-химические исследования комплексов проводили с использованием оборудования Центра коллективного пользования "Спектроскопия и анализ органических соединений" на базе Института органического синтеза им. И.Я. Постовского УрО РАН. Авторы искренне признательны рецензенту данной статьи за ценные замечания и исправления.

Рис. 3. Межмолекулярные взаимодействия F...H в комплексе I. Расстояния F(6)...H(13) и F(6)...H(7) равны, соответственно, 2.968(6) и 2.726(5) Å.

КООРДИНАЦИОННАЯ ХИМИЯ том 47 № 9 2021

ФИНАНСИРОВАНИЕ

Работа выполнена в рамках базовой темы РАН (№ гос. регистрации АААА-А19-119012290117-6).

СПИСОК ЛИТЕРАТУРЫ

- 1. Novoa N., Justaud F., Hamon P. et al. // Polyhedron. 2015. V. 86. P. 81.
- Ямбулатов Д.С., Николаевский С.А., Луценко И.А. и др. // Коорд. химия. 2020. Т. 46. С. 698 (Yambulatov D.S., Nikolaevskii S.A., Lutsenko I.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. P. 772). https://doi.org/10.1134/S1070328420110093
- Popov L.D., Shcherbakov I.N., Vlasenko V.G. et al.// J. Struct. Chem. 2017. V. 58. P. 1685.
- Bazhin D.N., Kudyakova Y.S., Slepukhin P.A. et al. // Mendeleev Commun. 2018. V. 26. P. 54. https://doi.org/10.1016/j.mencom.2018.03.032
- Ovcharenko V.I., Fokin S.V., Romanenko G.V. et al. // Russ. Chem. Bull. 2011. V. 60. P. 2457.
- Glaser T., Mollard G.F., Anselmetti D. // Inorg. Chim. Acta. 2016. V. 452. P. 62.
- Presti E.L., Monzani E., Santagostini L. et al. // Inorg. Chim. Acta. 2018. V. 481. P. 47.
- Sanyal R., Kundu P., Rychagova E. et al. // New J. Chem. 2016. V. 40. P. 6623.
- Haack P., Limberg C. // Angew. Chem. Int. Ed. 2014. V. 53. P. 4282.
- Thompson L.K., Mandal S.K., Tandon S.S. et al. // Inorg. Chem. 1996. V. 35. P. 3117.
- Miyagawa Y., Tsatsuryan A., Haraguchi T. et al. // New J. Chem. 2020. V. 44. P. 16665. https://doi.org/10.1039/D0NJ02481C
- Repich H.H., Orysyk S.I., Orysyk V.V. et al. // J. Mol. Struct. 2017. V. 1146. P. 222. https://doi.org/10.1016/j.molstruc.2017.05.140
- Cheng F.-Y., Tsai C.-Y., Huang B.-H. et al. // Dalton Trans. 2019. V. 48. P. 4667. https://doi.org/10.1039/C9DT00471H
- Gennarini F., Kochem A., Isaac J. et al. // Inorg. Chim. Acta. 2018. V. 481. P. 113. https://doi.org/10.1016/j.ica.2017.09.067
- Daneshmand P., Pinon L., Schaper F. // Dalton Trans. 2018. V. 47. P. 10147. https://doi.org/10.1039/C8DT02140F

- Vrdoljak V., Pavlović G., Maltar-Strmečki N. // New J. Chem. 2016. V. 40. P. 9263. https://doi.org/10.1039/C6NJ01036A
- 17. Chopin N., Chastanet G., Le Guennic B. et al. // Eur. J. Inorg. Chem. 2012. P. 5058.
- Кудякова Ю.С., Горяева М.В., Бургарт Я.В. и др. // Изв. РАН. Сер. хим. 2009. Т. 58. С. 1207 (Kudyakova Y.S., Goryaeva M.V., Burgart Y.V. et al. // Russ. Chem. Bull. 2009. V. 58. P. 1241). https://doi.org/10.1007/s11172-009-0161-9
- Кудякова Ю.С., Горяева М.В., Бургарт Я.В. и др. // Изв. РАН. Сер. хим. 2010. Т. 59. С. 1544 (Kudyakova Y.S., Goryaeva M.V., Burgart Y.V. et al. // Russ. Chem. Bull. 2010. V. 59. P. 1582). https://doi.org/10.1007/s11172-010-0281-2
- Кудякова Ю.С., Горяева М.В., Бургарт Я.В. и др. // Изв. РАН. Сер. хим. 2010. Т. 59. С. 1707 (Kudyakova Y.S., Goryaeva M.V., Burgart Y.V. et al. // Russ. Chem. Bull. 2010. V. 59. P. 1753). https://doi.org/10.1007/s11172-010-0308-8
- Kudyakova Y.S., Burgart Y.V., Goryaeva M.V., Saloutin V.I. // Mendeleev Commun. 2012. V. 22. P. 284. https://doi.org/10.1016/j.mencom.2012.09.020
- Кудякова Ю.С., Горяева М.В., Бургарт Я.В., Салоутин В.И. // Журн. орган. химии. 2011. Т. 47. С. 339 (Kudyakova Y.S., Goryaeva M.V., Burgart Y.V., Saloutin V.I. // Russ. J. Org. Chem. 2011. V. 47. Р. 331). https://doi.org/10.1134/S107042801103002X
- Kudyakova Y.S., Bazhin D.N, Goryaeva M.V. et al. // Russ. Chem. Rev. 2014. V. 83. P. 120. https://doi.org/10.1070/RC2014v083n02ABEH004388
- 24. Suresh A., Ghosh S., Chopra D. // J. Mol. Struct. 2021. V. 1224. P. 129045.
- 25. Vasylyeva V., Shishkin O.V., Maleev A.V., Merz K. // Cryst. Growth Des. 2012. V. 12. P. 1032.
- 26. *Berger R., Resnati G., Metrangolo P. et al.* // Chem. Soc. Rev. 2011. V. 40. P. 3496.
- 27. Bonacorso H.G., Nogara P.A., Silva F.A. et al. // J. Fluor. Chem. 2016. V. 190. P. 31.
- 28. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
- 29. *Sheldrick G.M.* // Acta Crystallogr. A. 2008. V. 64. P. 112.
- 30. *Mukherjee A., Nethaji M., Chakravarty A.R.* // Angew. Chem. Int. Ed. 2004. V. 43. P. 87.