УДК 546.562:541.49:548.736:548.737:579

СИНТЕЗ И СТРОЕНИЕ ДИСУЛЬФАНИЛАМИДГЛИОКСИМА И КОМПЛЕКСНЫХ СОЕДИНЕНИЙ Ni(II) И Cu(II) С ЭТИМ ЛИГАНДОМ. СТИМУЛИРУЮЩИЕ ПРОТЕОЛИТИЧЕСКИЕ СВОЙСТВА [Cu(DsamH₂)₃]SO₄ · 5H₂O

© 2022 г. П. Н. Боурош^{1, 2,} *, Э. Б. Коропчану³, А. П. Рижа², Д. Уреке², А. А. Чилочи⁴, С. Ф. Клапко⁴, Е. Г. Дворнина⁴, С. В. Лаблюк⁴, И. И. Булхак²

¹Институт прикладной физики, Кишинев, Республика Молдова ²Институт химии, Кишинев, Республика Молдова ³Тираспольский государственный университет, Кишинев, Республика Молдова ⁴Институт микробиологии и биотехнологии, Кишинев, Республика Молдова *e-mail: pavlina.bourosh@ifa.md Поступила в редакцию 12.05.2021 г. После доработки 23.06.2021 г.

Принята к публикации 28.06.2021 г.

При взаимодействии дихлорглиоксима с сульфаниламидом получен новый глиоксим – дисульфаниламидглиоксим (DsamH₂, L), а на его основе синтезированы два координационных соединения $[Ni(DsamH)_2] \cdot 2H_2O(I)$ и $[Cu(DsamH_2)_3]SO_4 \cdot 5H_2O(II)$, состав и структура которых определены методами элементного анализа, ИК-, УФ-, ЯМР-спектроскопии, а для L и II проведен РСА (CIF files CCDC № 2080777 и 2080778 соответственно). Доказано, что в зависимости от условий синтеза были получены как *бис*-, так и *трис*-лигандные комплексы с этим лигандом. Различная степень депротонирования лиганда DsamH₂ в комплексах I и II привели к получению как молекулярного, так и ионного комплексного соединения. Комплексное соединение II в оптимально подобранных концентрациях оказывает стимулирующие действие на синтез протеаз штаммов микромицетов биотехнологического значения *Fusarium gibbosum* CNMN FD 12 и *Trichoderma koningii* Oudemans CNMN FD 15.

Ключевые слова: дисульфаниламидглиоксим, координационные соединения никеля(II) и меди(II), структурные исследования, микроскопические грибы, протеазы **DOI:** 10.31857/S0132344X22010017

Координационные соединения *d*-металлов с хелатообразующими лигандами, привлекают внимание их устойчивостью, которая обеспечена стабильностью образованного каркаса вокруг центрального иона металла, как в твердом состоянии, так и в растворах [1-3]. При этом в образовании комплексных соединений можно выделить как вклад атома металла, так и полидентатных лигандов, а также смешанных лигандов [2, 4]. Ряд исследований последних лет подтверждает, что большое разнообразие соединений с диоксимами получено введением в основном дополнительных лигандов, что привело к образованию моно- [2, 5], ди- [6-8] и полиядерных гомометаллических комплексов [9, 10]. Интерес к соединениям с диоксимами поллерживается также возможностями их использования в качестве моделей физиологически важных веществ [11, 12], в микробиологии [13, 14], медицине [15] и сельском хозяйстве [16], а в последнее время исследованы и люминесцентные свойства соединений этого класса [9, 10]. Диверсификация диоксимов, особенно их объемное увеличение с добавлением донорных группировок, влияет как на состав и структуру координационных соединений, так и на свойства, в том числе биологические [17–19].

Перспективное направление в воспроизводстве естественного биосинтеза связано с синтезом химических соединений, которые могут быть использованы как модели биологических объектов, исследуя их воздействие на метаболические процессы микроорганизмов. Установлено, что внедрение различных диоксиматов Co(III) в питательные среды некоторых микроорганизмов стимулирует биосинтез ферментов у штаммовпродуцентов и повышает накопление биомассы [14, 20]. Таким образом, актуальной задачей является изучение биологической активности новых координационных соединений с металлами с целью выявления возможного их практического использования, при этом результаты могут также служить теоретической основой для целенаправленного синтеза соединений с заданными свойствами.

При конденсации дихлорглиоксима с сульфаниламидом получен новый диоксим – дисульфаниламидглиоксим ($DsamH_2$, L). При взаимодействии $DsamH_2$ с хлоридом никеля и сульфатом меди(II) синтезированы координационные соединения [Ni($DsamH_2$] · 2H₂O (I) и [Cu($DsamH_2$)₃]SO₄ · 5H₂O (II), состав и структура которых определены методами элементного анализа, ИК-, УФ-, ЯМР-спектроскопии, а для L и II кристаллическая структура определена методом РСА. Соединение II тестировано как стимулирующее синтез протеаз штаммов микромицетов биотехнологического значения *Fusarium gibbosum* CNMN FD 12 и *Trichoderma koningii* Oudemans CNMN FD 15.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реагенты NiCl₂ · 2H₂O, CuSO₄ · 5H₂O, NaOH, Na₂CO₃, сульфаниламид, 25%-ый аммиачный раствор и растворители ("х. ч."), полученные из коммерческих источников и дихлорглиоксим, полученный синтетическим путем, использовались без дополнительной очистки.

Синтез DsamH₂ (L) выполняли по методике [21, 22], но при более долгом перемешивании в течении 5–6 ч. Выход 0.28 г (63%). Вещество растворимо в ДМФ, ДМСО, менее растворимо в спиртах.

Найдено, %:	C 39.14;	H 3.58;	N 19.54.
Для $C_{14}H_{16}N_6O_6S_2$			
вычислено, %:	C 39.25;	Н 3.76;	N 19.62.

Для получения соединений I и II использовали методику [22].

Синтез [Ni(DsamH)₂] · 2H₂O (I). К теплому раствору 0.214 г (0.5 ммоль) дисульфаниламидглиоксима в 30 мл метанола добавляли 0.06 г (0.25 ммоль) NiCl₂ · 6H₂O в 15 мл метанола. Смесь перемешивали в течении 15 мин при 60°С. При перемешивании добавляли 5–6 капель аммиака, после чего в растворе появлялся осадок коричневого цвета. Осадок отфильтровывали, промывали холодным метанолом, эфиром, после чего высушивали на воздухе. Выход 0.2 г (43%). Вещество растворимо в ДМФ, ДМСО, но слабо растворимо в метаноле. Получить качественные монокристаллы, пригодные для PCA не удалось, вероятно, из-за слабой растворимости комплекса в легко улетучиваемых растворителях.

Найдено, %: С 35.47; Н 3.54; N 17.62; Ni 5.92. Для С₂₈Н₃₄N₁₂O₁₄S₄Ni вычислено, %: С 35.41; Н 3.61; N 17.70; Ni 6.18.

Синтез [Cu(DsamH₂)₃]SO₄ · 5H₂O (II). Дисульфаниламидглиоксим массой 0.214 г (0.5 ммоль) растворяли в 40 мл метанола, раствор нагревали на водяной бане до 60°С (раствор 1). Сульфат меди(II) пятиводный массой 0.063 г (0.25 ммоль) растворяли в минимальном количестве воды, после чего добавляли 20 мл метанола (раствор 2). Раствор 2 капельно, при постоянном перемешивании, добавляли к раствору 1, полученный раствор отфильтровывали и оставляли для медленного испарения при комнатной температуре. В течение 5 сут в растворе образовывались кристаллы в виде продолговатых пластинок. Выход 0.4 г (52%). Вещество слабо растворимо в ДМФ, ДМСО.

Найдено, %: С 32.72; Н 3.71; N 16.34; Си 3.99. Для С₄₂Н₅₈N₁₈O₂₇S₇Cu

вычислено, %: C 32.86; H 3.81; N 16.42; Cu 4.14.

Состав и строение соединений L, I, II устанавливали на основе элементного анализа, ИК-, УФи ЯМР-спектроскопии, а для монокристаллов L и II – методом РСА. ИК-спектры снимали на FT-IR Perkin-Elmer Spectrum 100 в вазелиновом масле в области 4000–400 см⁻¹, АТР – 4000–650 см⁻¹, УФспектры – на спектрофотометре Perkin-Elmer Lambda 25. Спектры ЯМР ¹Н, ¹³С регистрировали на спектрометре 400 Brucker с рабочей частотой для ¹Н 400.13 МГц и для ¹³С 100.61 МГц в растворах ДМСО-d₆, используя внутренний стандарт ТМС. Сигналы выражены в м.д.

РСА. Экспериментальные данные для L и II получены при комнатной температуре 293(2) К на дифрактометре Xcalibur E (Мо K_{α} -излучение, графитовый монохроматор). Параметры элементарной ячейки уточнены по всему массиву, и остальные экспериментальные данные получены с использованием комплекса программ CrysAlis Oxford Diffraction [23]. Структура соединений решена прямыми методами и уточнена методом наименьших квадратов в анизотропном полноматричном варианте для неводородных атомов (SHELX-97) [24]. Позиции атомов водорода сольватных молекул воды определены из разностного Фурье-синтеза, остальных атомов Н – рассчитаны геометрически. Все атомы Н уточнены изо-тропно в модели "жесткого тела" с $U_{\rm эф\phi} = 1.2 U_{\rm экв}$ или $1.5 U_{\rm экв}$ соответствующих атомов – С, N и О. Характеристики эксперимента и уточнения структуры соединений L и II приведены в табл. 1, некото-

Таблица 1. Кристаллографические данные и характеристики эксперимента для L и II

Параметры	L	Ш
Эмпирическая формула	$C_{14}H_{16}N_6O_6S_2$	$C_{42}H_{58}N_{18}O_{27}S_7Cu$
M	428.45	1535.02
Сингония	Тригональная	Моноклинная
Пр. гр.	<i>P</i> 3 ₁ 2 ₁	$P2_{1}/c$
<i>a</i> , Å	8.2460(3)	15.3303(9)
b, Å	8.2460(3)	14.9756(7)
c, Å	23.6703(17)	28.782(2)
α, град	90	90
β, град	90	97.818(6)
ү, град	120	90
$V, Å^3$	1393.85(12)	6546.4(7)
Ζ	3	4
ρ(выч.), г/см ³	1.531	1.557
μ, мм ⁻¹	1.027	0.651
<i>F</i> (000)	666	3172
Размеры кристала, мм	$0.18\times0.18\times0.12$	0.50 imes 0.30 imes 0.02
Область θ, град	2.98-25.50	2.86-25.05
Интервалы индексов отражений	$-9 \le h \le 5,$	$-18 \le h \le 17,$
	$-3 \le k \le 9$,	$-10 \le k \le 17,$
	$-17 \le l \le 28$	$-34 \le l \le 26$
Число измеренных/независимых рефлексов (<i>R</i> _{int})	24/2/1680 (0.0263)	24527/11594 (0.0932)
Число рефлексов с <i>I</i> > 2 <i>σ</i> (<i>I</i>)	1524	3262
Заполнение, %	99.8 ($\theta = 25.50^{\circ}$)	99.9 ($\theta = 25.05^{\circ}$)
Число уточняемых параметров	128	876
GOOF	1.000	1.007
R факторы ($I \ge 2\sigma(I)$)	$R_1 = 0.0471$	$R_1 = 0.0632$
	$wR_2 = 0.1002$	$wR_2 = 0.1429$
<i>R</i> факторы (по всему масиву)	$R_1 = 0.0542$	$R_1 = 0.2095$
	$wR_2 = 0.1073$	$wR_2 = 0.1830$
$\Delta \rho_{\rm max} / \Delta \rho_{\rm min}$, <i>e</i> Å ⁻³	0.243/-0.302	0.870/-0.430

рые межатомные расстояния и валентные углы – в табл. 2, геометрические параметры межмолекулярных водородных связей (**MBC**) – в табл. 3.

Позиционные и тепловые параметры атомов соединений L и II депонированы в Кембрижском банке структурных данных (КБСД) (№ 2080777, 2080778 соответственно); deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk/data_request/cif).

Биологические методы. Объектами исследований служили штаммы мицелиальных грибов *Fu*sarium gibbosum CNMN FD 12 и Trichoderma koningii Oudemans CNMN FD 15 – активные продуценты комплекса протеолитических ферментов (кислых, нейтральных и щелочных протеаз) [25, 26]. Эти штаммы хранятся в Национальной коллекции непатогенных микроорганизмов Республики Молдова при Институте микробиологии и биотехнологии.

Культивирование продуцентов осуществлялось глубинным способом.

Активность кислых (pH 3.6) и нейтральных (pH 7.4) протеаз в культуральной жидкости определяли по методу Вильштеттера, который основан на определении количества свободных карбоксильных групп, образующихся при гидролизе 5%-ного раствора желатина. При этом за единицу протеолитической активности принимали количество фермента, которое образует 1 мг аминного азота

48

	В координал	ционном полиэдре Cu(I	I) соединения II				
Связь	<i>d</i> , Å	Связь <i>d</i> , Å					
Cu(1)–N(1)	2.019(6)	Cu(1)–N(4)	1(1)–N(4) 1.989(6)				
Cu(1) - N(2)	1.978(6)	Cu(1) - N(5)	Cu(1) - N(5) 2.005(6)				
Cu(1) - N(3)	2.508(5)	Cu(1)–N(6)	2.	282(6)			
Угол	ω, град	Угол	Угол ω , град				
N(1)CuN(2)	79.6(3)	N(2)CuN(6)	N(2)CuN(6) 100.6(2)				
N(1)CuN(3)	100.0(2)	N(3)CuN(4)	71.	4(3)			
N(1)CuN(4)	168.8(2)	N(3)CuN(5)	82.	4(3)			
N(1)CuN(5)	94.9(3)	N(3)CuN(6)	154.	2(2)			
N(1)CuN(6)	91.0(2)	N(4)CuN(5)	91.	0(2)			
N(2)CuN(3)	104.3(2)	N(4)CuN(6)	99.	9(2)			
N(2)CuN(4)	95.4(3)	N(5)CuN(6)	73.3(2)				
N(2)CuN(5)	171.9(3)						
Воф	рагментах органиче	ской молекулы L и коор	одинированного лиганда	авII			
	L		II				
Связь	<i>d</i> , Å						
N(1)–C(1)	1.283(5)	1.299(9)	1.298(9)	1.302(9)			
N(1)–O(1)	1.421(4)	1.379(7)	1.394(6)	1.388(7)			
N(2)–C(2)		1.311(9)	1.311(9)	1.296(9)			
N(2)–O(2)		1.395(7)	1.395(7) 1.399(6)				
$C(1)-C(1)^*/C(2)$	1.488(8)	1.480(10)	1.480(10) 1.489(9) 1.495(19				
Угол	ω, град						
O(1)N(1)C(1)	108.7(3)	112.9(6)	111.3(6)	113.0(6)			
O(2)N(2)C(2)		110.9(6)	111.2(5)	110.1(7)			
N(1)C(1)C(1)*/(2)	115.3(3)	113.7(7)	113.3(7)	111.2(7)			
N(2)C(2)C(1)		109.6(6) 114.5(6) 112.0(7)					

Таблица 2. Межатомные расстояния (*d*) и валентные углы (ω) в соединении II и лиганде L

за 1 ч в стандартных условиях опыта [27]. Статистическую обработку результатов проводили с использованием компьютерных программ по методу Доспехова [28].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

При конденсации дихлорглиоксима с сульфаниламидом в молярном соотношении 1:2 был получен дисульфаниламидглиоксим (схема 1) [22].

СИНТЕЗ И СТРОЕНИЕ ДИСУЛЬФАНИЛАМИДГЛИОКСИМА...

	Расстояние, Å			Угол	Преобразования симметрии			
Контакт D–Н…А	D–H	Н…А	D…A	DHA, град	для А			
O(1)-H(1)···O(2)	0.82	2.03	2.838(5)	167	-x + y + 1, -x, z - 1/3			
N(2)-H(1)···O(3)	0.86	2.35	3.122(5)	149	<i>x</i> , <i>y</i> , <i>z</i>			
N(3)-H(2)····N(1)	0.96	2.11	3.028(5)	158	-x + 2, -x + y + 2, -z + 1/3			
N(3)-H(1)···N(3)	0.92	2.11	3.004(5)	163	x - y + 1, -y + 1, -z + 2/3			
I I								
O(1)–H(1)····O(2 <i>S</i>)	0.82	1.75	2.563(7)	171	<i>x</i> , <i>y</i> , <i>z</i>			
O(2)–H(2)····O(4 <i>S</i>)	0.82	1.79	2.605(7)	177	-x + 2, y + 1/2, -z + 3/2			
O(3)–H(3)····O(3 <i>S</i>)	0.82	1.94	2.762(7)	174	<i>x</i> , <i>y</i> , <i>z</i>			
O(4)–H(4)····O(3 <i>S</i>)	0.82	1.83	2.651(7)	178	-x + 2, y + 1/2, -z + 3/2			
O(5)–H(5)···O(1w)	0.79	2.31	2.936(7)	137	<i>x</i> , <i>y</i> , <i>z</i>			
O(6)-H(6)···O(3)	0.82	2.46	3.142(7)	141	-x + 2, y + 1/2, -z + 3/2			
N(11)-H(1)…O(11)	0.86	2.33	3.049(12)	141	-x+2, -y+1, -z+1			
N(21)-H(2)···O(62)	0.86	2.47	3.224(12)	150	x + 1, y, z			
N(22)-H(1)…O(32)	0.86	2.17	2.853(11)	136	-x + 3, y - 1/2, -z + 3/2			
N(22)–H(2)····O(1w)	0.86	2.21	3.025(9)	158	-x + 2, y - 1/2, -z + 3/2			
N(31)–H(1)····O(2w)	0.86	2.36	3.161(10)	156	-x + 2, y - 1/2, -z + 3/2			
N(32)-H(1)····O(12)	0.90	2.53	3.276(13)	141	x, -y + 3/2, z + 1/2			
N(41) - H(1) - O(3w)	0.86	2.27	3.054(10)	151	-x + 2, y + 1/2, -z + 3/2			
N(42)–H(2)····O(1 <i>S</i>)	0.90	1.95	2.739(11)	145	-x+2, -y+1, -z+2			
$N(51)-H(1)\cdots O(3w)$	0.86	2.07	2.905(8)	162	<i>x</i> , <i>y</i> , <i>z</i>			
N(52)–H(2)…O(7w)	0.86	1.98	2.82(2)	166	<i>x</i> , <i>y</i> , <i>z</i>			
$N(61)-H(2)\cdots O(2w)$	0.86	2.11	2.935(9)	161	<i>x</i> , <i>y</i> , <i>z</i>			
O(1w)–H(1)…O(52)	0.85	2.04	2.815(9)	151	-x + 1, y - 1/2, -z + 3/2			
$O(1w)-H(2)\cdots O(1S)$	0.93	2.01	2.934(9)	171	<i>x</i> , <i>y</i> , <i>z</i>			
O(2w)–H(1)…O(21)	0.83	2.01	2.845(10)	179	-x+2, -y+1, -z+1			
O(2w) - H(2) - O(42)	0.87	2.03	2.899(11)	179	x, -y + 3/2, z - 1/2			
$O(3w)-H(1)\cdots O(4w)$	0.87	2.06	2.929(14)	180	-x+2, -y+1, -z+1			
$O(3w)-H(2)\cdots O(2S)$	0.90	2.08	2.979(9)	179	<i>x</i> , <i>y</i> , <i>z</i>			
$O(4w)-H(1)\cdots O(6w)$	0.85	1.85	2.70(2)	179	-x + 3, -y + 1, -z + 1			
$O(4w) - H(2) \cdots N(32)$	0.88	2.48	3.16(2)	134	x, -y + 3/2, z - 1			
$O(5w)-H(1)\cdots O(4S)$	0.92	1.86	2.77(2)	170	x, y + 1, z			
O(5w)–H(2)…O(51)	0.85	1.86	2.71(2)	179	<i>x</i> , <i>y</i> , <i>z</i>			
O(6w)-H(1)…O(6w)	0.85	2.31	3.16(4)	173	-x + 3, -y + 1, -z + 1			
O(6w)–H(2)…N(12)	0.90	2.46	3.26(3)	148	<i>x</i> , <i>y</i> , <i>z</i>			
O(6w)–H(2)…O(12)	0.90	2.43	3.26(2)	152	<i>x</i> , <i>y</i> , <i>z</i>			
O(7 <i>w</i>)–H(1)····O(61)	0.85	2.59	3.34(2)	177	<i>x</i> , <i>y</i> , <i>z</i>			
$O(7w)-H(2)\cdots O(1S)$	0.85	2.48	3.33(2)	179	-x + 1, y + 1/2, -z + 3/2			

Таблица 3. Геометрические параметры межмолекулярых водородных связей в структуре L и II

В ИК-спектре DsamH₂ наблюдаются полосы при 3424, 3357, 3283 v(NH), 3076 см⁻¹ v(OH), которые смещены в сторону более низких значений частот благодаря молекулярным ассоциациям на основе оксимных NOH- и NH-групп, а также при 1642 v(C=N), 1592 v(CC)_{аром}, 1302, 1150 v(SO), 935 v(NO) и 767, 725 см⁻¹ δ (CH) [29–32].

В спектре ЯМР ¹Н DsamH₂ два дублета при 7.54 м.д. (2H, J=8.78 Гц) и 6.89 м.д. (2H, J=8.78 Гц) принадлежат ароматическому кольцу, сигнал при 7.16 м.д. соответствует NH_2 -группе, а сигнал при 8.77 м.д. принадлежит NH-группе сульфаниламидного фрагмента. Результаты спектра ЯМР¹Н подтверждают, что конденсация сульфаниламида с дихлордиоксимом происходит через NH₂-группу, непосредственно связанную с ароматическим кольцом, поскольку она претерпевает самое сильное смещение в слабое поле, а при интегрировании сигналов становится заметным потеря протона у этой группы. Сигнал, соответствующий протонам оксимной группы, присутствует при 10.89 м.д. В спектре ЯМР 13 С DsamH₂ сигналы 118.71 и 126.77 м.д. соответствуют третичным атомам углерода, при 136.17 и 143.01 м.д. – углерода ароматического кольца, а сигнал при 142.50 м.д. принадлежит оксимному атому углерода.

При взаимодействии солей меди или никеля с дисульфаниламидглиоксимом получены два различных комплексных соединения — *бис*-диоксимат никеля и *mpuc*-диоксимин меди, так как учитывалось, что образование *mpuc*-диоксиминов характерно при pH ~2, а *бис*-диоксиматов при pH ~5–6. При этом получение слабокислой среды осуществлялось добавлением 1–2 капель аммиачного раствора, а кислотной — добавлением соляной кислоты, подобно получению комплексов с дианилинглиоксимом [33].

В случае диоксимата Ni(II) с DsamH₂ в УФспектре присутствуют полосы при 202 и 280 нм, которые указывают на наличие лиганда в комплексе. При этом при добавлении капли раствора аммиака наблюдается уменьшение интенсивности полосы в области 280 нм, связанное, по-видимому, с образованием внутримолекулярных водородных связей, характерных для *бис*-диоксиматов, что способствует сдвигу электронного облака с ароматического кольца к металлоциклу.

В ИК-спектре бис-диоксимата Ni(II) (I) значение v(OH) 3076 см⁻¹ – следствие сильной внутримолекулярной водородной связи типа O–H···O. Так как оксимные группы =NOH в бис-диоксиматах переходных металлов образуют сильные водородные связи типа O–H···O, полоса при 3650–3100 см⁻¹, соответствующая колебанию v(OH) некоординированных оксимных молекул [30, 32], смещается в спектрах в области 2350 и 2340 см⁻¹, например для Ni(Dmg)₂ и Pd(Dmg)₂ соответственно (Dmg – анион диметилглиоксима). При этом установлена зависимость частоты v(OH) от расстояния O–H···O [30, 32]. В ИК-спектре *трис*-диоксимина Cu(II) (II) присутствуют полосы (см⁻¹): 3469–3208 v(NH), 3071–3075 v(OH), 1643–1646 v(C=N), 1588–1595 v(CC)_{аром}, 900–913 v(NO) и 741–747 δ (CH). Однако в спектре *бис*-диоксимата Ni(II) (I) проявляются как большинство из вышеприведенных полос, так и полосы, характерные для ионизированной оксимной группы при 1255 и 1093 см⁻¹.

В спектре ЯМР для I присутствует сигнал протона оксимной группы, который подтверждает образование внутримолекулярных водородных связей. Существенные сдвиги претерпевают сигналы протонов групп NH и атомов углерода ароматических колец, связанных с этими группами, что объясняется смещением электронной плотности от диоксимных фрагментов к металлоциклу. То же самое наблюдается и в спектрах ЯМР ¹³С комплексов I и II.

Соединение L кристаллизуется в тригональной пространственной группе РЗ₁2₁ (табл. 1). Независимая часть элементарной ячейки L содержит 1/2 органической молекулы DsamH₂ с симметрией C₂. Молекулярная структура L показана на рис. 1. Диоксимный фрагмент DsamH₂ стабилизирован в *анти* (E, E) конформацию, при этом торсионные углы NCCN, образованные с вовлечением атомов азота N(1) и N(2), равны, соответственно, 57.5° и –49.1°. Анализ результатов КБСД [34] указывает на подобное строение некоординированных диоксимов, при этом кристаллизованных как в виде нейтральных молекул, так и как протонированных органических катионов. Межатомные расстояния О-N и N-C в оксимных фрагментах в L несущественно отличаются от подобных в нейтральных и в органических катионах модифицированных диоксимов с аминогруппой [35–38]. Например, в L межатомное расстояние O–N равно 1.420(3) Å (табл. 2), а в нейтральных N,N'-бис(2-(морфолино)этиламимолекулах но)глиоксима [35] – 1.434 и (2Z,3Z)хиноксалин-2,3(1H,4H)диондиоксима [36] – 1.422 Å.

В кристалле L молекулы $DsamH_2$ объединены системой MBC O—H···N и N—H···O (табл. 3), в которых в качестве доноров протонов вовлечены OH-группы оксимных фрагментов и NH-группы как внутренних, так и концевых фрагментов молекулы, а как акцепторы выступают атомы азота оксимных фрагментов и атомы кислорода сульфо-групп. При этом в кристалле можно выделить формирование различных слоев (рис. 2).

Соединение II кристаллизуется в моноклинной пространственной группе *P2*₁/*c*. В независимой части элементарной ячейки соединения II ионного типа находится один комплексный кати-

Рис. 1. Структура молекулы DsamH₂ и нотация кристаллографически независимых атомов в L.

он [Cu(DsamH₂)₃]²⁺ в общем положении (рис. 3), один анион SO₄²⁻ и семь молекул кристаллизационной воды, четыре из которых с коэффициентом заполнения 1/2. Координационный полиэдр Cu(II) в комплексном катионе имеет форму искаженной тетрагональной бипирамиды, образованной набором донорных атомов N₆; все атомы азота, принадлежащие оксимным группам трех нейтральных лигандов DsamH₂. Каждый органический лиганд DsamH₂ координируется к центральному атому металла хелатно-бидентатным способом, образуя пятичленные металлоциклы. Длины связей Cu–N в координационном полиэдре находятся в интервале 1.978(6)–2.508(5) Å (табл. 2). Подобное строение найдено в *трис*-комплексах Ni(II) [21, 33, 39–42] и Со(II) [43–46], в которых производные этого лиганда координированы бидентатнохелатным способом в основном как нейтральный лиганд. Комплексные катионы [Cu(DsamH₂)₃]²⁺ дополнительно стабилизированы слабыми внутримолекулярными π ... π -взаимодействиями между ароматическими фрагментами лигандов, при этом расстояния центроид...центроид в них равны 3.580, 3.680 и 3.868 Å.

Анализ КБСД [34] выявил моноядерные *моно*и *бис*-комплексы меди с оксамидоксимом [47–51], один биядерный комплекс и один координационный полимер Cu(II), содержащие по одному из этих лигандов, координированному бидентатнохелатно к каждому атому металла, в которых мо-

Рис. 2. Объединение молекул DsamH₂ водородными связями в слои вдоль оси *z* в кристалле L.

Рис. 3. Структура комплексного катиона $[Cu(DsamH_2)_3]^{2+}$ с нотацией атомов в II.

стиковыми лигандами служат анионы SO_4^{2-} [49]. При этом в комплексе Ni(II) с оксамидоксимом [52] для дополнительного сульфанилато-лиганда обнаружены два различных монодентатных способа координирования — как через один атом О, так и через один атом N. Так как в КБСД [34] обнаружены комплексы переходных металлов с лигандами, содержащими бензолсульфамидный фрагмент, координированные через атом О или N [53, 54], можно предположить, что при определенных условиях лиганд DsamH₂ может быть вовлечен в комплекс как мостиковый.

В кристалле II комплексные катионы $[Cu(DsamH_2)_3]^{2+}$, анионы SO_4^{2-} и кристаллизационные молекулы воды объединены сложной системой MBC (табл. 3), в которых в качестве доноров протонов вовлечены OH-группы оксимных фрагментов и NH-групп как внутренних, так и концевых фрагментов комплексных катионов и молекулы воды, а как акцепторы выступают атомы азота и кислорода концевых SO_2NH_2 -групп

лигандов, а также атомы О анионов SO₄²⁻ и кристаллизационных молекул воды. Комплексные катионы между собой связаны как MBC O–H···O и N–H···O, так и слабыми межмолекулярными

π...π-взаимодействиями между ароматическими кольцами соседних молекул (расстояние центроид...центроид 4.044-4.284 Å). При этом комплексные катионы объединены между собой МВС с вовлечением внешнесферных компонентов: $O-H\cdots O$ с анионом SO_4^{2-} , $O-H\cdots O(w)$, $N-H\cdots O(w)$, $O(w)-H\cdots O$ и $O(w)-H\cdots N$ с вовлечением молекул воды, а также MBC O(w)-H···O между молекулами воды и анионами (рис. 4). В кристалле II комплексные катионы $[Cu(DsamH_2)_3]^{2+}$ и анионы SO₄²⁻ упаковываются сравнительно плотно, так что пустоты, доступные для кристаллизационных молекул, составляют 670.7 Å³ из объема элементарной ячейки (или 10.2%), при этом без сравнительно объемного аниона SO₄²⁻ пустоты составляют 989.8 Å³ из объема элементарной ячейки (или 15.1%). Таким образом, в II комплексные катионы $[Cu(DsamH_2)_3]^{2+}$, объединенные МВС, образуют собственную супрамолекулярную структуру, а внешние анионы SO_4^{2-} и кристаллизационные молекулы воды, располагаясь в

сталлизационные молекулы воды, располагаясь в полостях посредством MBC, стабилизируют ее и существенно влияют на стабильность кристаллической структуры в целом.

Рис. 4. Фрагмент кристаллической структуры II.

Влияние координационного соединения II на биосинтез протеаз штаммом микроскопического гриба *Fusarium gibbosum* CNMN FD 12 изучалось в динамике на 4-е, 5-е и 6-е сут культивирования — период, соответствующий максимуму биосинтеза изучаемых ферментов при классическом культивировании продуцента.

При добавлении комплекса меди II в питательную среду, максимальное значение энзиматической активности регистрируется при концентрации 5.0 мг/л, на 5-е сут культивирования продуцента, и совпадает со временем проявления максимума в контрольном варианте. Активность кислых протеаз в этот момент составляет 4.284 ед./мл по сравнению с 2.77 ед./мл в контроле, превышая уровень контроля на 54.5%. С увеличением концентрации до 10.0 и 15.0 мг/л активность кислых протеаз уменьшается в среднем на 5% по сравнению с контролем (табл. 4).

Активность нейтральных протеаз в экспериментальном варианте значительно превышает уровень контроля при всех испытуемых концентраци-

	Активность кислых протеаз (рН 3.6)						
Концентрация координационных соединений (мг/л)	4-е сут		5-е сут		6-е сут		
	ед./мл	% к контролю	ед./мл	% к контролю	ед./мл	% к контролю	
5.0	0.25 ± 0.01	50.0	4.28 ± 0.07	154.5	2.02 ± 0.04	171.4	
10.0	0.59 ± 0.04	116.7	2.69 ± 0.07	97.0	0.76 ± 0.07	64.3	
15.0	0.42 ± 0.01	84.0	2.52 ± 0.07	90.9	0.17 ± 0.01	14.3	
Контроль	0.50 ± 0.04	100.0	2.77 ± 0.04	100.0	1.18 ± 0.07	100.0	
	Активность нейтральных протеаз (рН 7.4)						
5.0	2.02 ± 0.04	160.0	6.30 ± 0.04	187.5	3.53 ± 0.04	140.0	
10.0	1.60 ± 0.04	126.7	5.96 ± 0.07	177.5	4.20 ± 0.08	166.7	
15.0	1.34 ± 0.07	104.3	4.79 ± 0.04	142.5	2.52 ± 0.07	100.0	
Контроль	1.26 ± 0.01	100.0	3.36 ± 0.07	100.0	2.52 ± 0.04	100.0	

Таблица 4. Влияние комплекса Cu(II) (II) на протеолитическую активность микромицета *Fusarium gibbosum* CNMN FD 12

БОУРОШ и др.

	Активность кислых протеаз (рН 3.6)						
Концентация координационных соединений (мг/л)	8-е сут		9-е сут		10-е сут		
	ед./мл	% к контролю	ед./мл	% к контролю	ед./мл	% к контролю	
5.0	1.76 ± 0.03	222.8/110.7*	0.92 ± 0.01	57.9	0.59 ± 0.04	140.5	
10.0	1.93 ± 0.01	244.3/121.4*	0.08 ± 0.03	5.0	0.42 ± 0.02	100.0	
15.0	0.84 ± 0.04	106.3					
Контроль	0.79 ± 0.01	100.0	1.59 ± 0.07	100.0	0.42 ± 0.02	100.0	
Активность нейтральных протеаз (pH 7.4)							
5.0	4.04 ± 0.04	177.9/136.0*	4.53 ± 0.08	152.5	3.15 ± 0.04	138.8	
10.0	3.03 ± 0.07	133.5	2.64 ± 0.07	88.9	3.27 ± 0.01	144.1/110.1*	
15.0	2.01 ± 0.04	88.5	2.52 ± 0.01	84.8	2.64 ± 0.02	116.3	
Контроль	2.27 ± 0.01	100.0	2.97 ± 0.02	100.0	2.27 ± 0.01	100.0	

Таблица 5. Влияние комплекса Cu(II) (II) на протеолитическую активность микромицета *Trichoderma koningii* Oudemans CNMN FD 15

* По сравнению с контролем того же дня/по сравнению с максимальным значением контроля (9-е сут).

ях, составляя 6.30, 5.96 и 4.79 ед./мл соответственно, по сравнению с 3/36 ед./мл в контрольном варианте, что на 42.5–87.5% выше контроля.

Максимум биосинтеза кислых протеаз мицелиального гриба *Trichoderma koningii* Oudemans CNMN FD (1.76–1.93 ед./мл) зарегистрирован на 8-е сут культивирования, превышая значение максимума контроля (1.59 ед./мл, 9-е сут) на 10.7–21.4%. Благоприятными концентрациями для биосинтеза являются 5.0 и 10.0 мг/л, а самые высокие значения достигнуты при концентрации 10 мг/л (1.93 ед./мл) (табл. 5).

Максимум активности нейтральных протеаз 4.53 ед/мл при концентрации комплекса 5.0 мг/л, проявляется на 9-е сут культивирования продуцента и совпадает с проявлением максимума биосинтеза в контрольном варианте, превышая уровень контроля на 52.5%. При данной концентрации активность нейтральных протеаз выше контроля в течение всего периода культивирования (8–10-е сут), превышая на 36.0% максимальный уровень контроля уже на 8-е сут. При концентрации комплекса в 10 мг/л активность нейтральных протеаз превышает уровень контроля (на 10.1%) только на 10-е сут культивирования.

Таким образом, выявлено, что новый диоксим — дисульфаниламидглиоксим — ведет себя подобно дианилинглиоксиму: *трис*-диоксимины и *бис*-

диоксиматы получаются в зависимости от рН растворов. Введение дополнительных фрагментов, содержащих различные функциональные группировки, в диоксимный лиганд увеличивает его дентатность, а также влияет на способы вовлечения его в систему водородных связей. Комплексное соединение Cu(II) с лигандом DsamH₂ в оптимально подобранных концентрациях обеспечивает стимулирующее действие на синтез протеаз штаммов микромицетов биотехнологического значения *Fusarium gibbosum* CNMN FD 12 и Trichoderma koningii Oudemans CNMN FD 15, увеличивая активность кислых и нейтральных протеаз на 21.4-54.5% и, соответственно, 52.5-87.5% по сравнению с контролем. В результате это соединение представляет интерес в биотехнологических разработках как потенциальный биостимулятор ферментообразования у штаммов мицелиальных грибов-продуцентов.

Авторы заявляют об отсутствии конфликта интересов.

ФИНАНСИРОВАНИЕ

Работа выполнена в рамках проектов Государственных программ 20.80009.5007.15 и 20.80009.5007.28 Национального агентства исследований и развития Республики Молдова.

СПИСОК ЛИТЕРАТУРЫ

- 1. Janiak Ch. // Dalton Trans. 2003. P. 2781.
- Боурош П.Н., Коропчану Э.Б., Симонов Ю.А. и др. // Коорд. химия. 2002. Т. 28. № 9. С. 689 (Bourosh P.N., Coropceanu E.B., Siminov Yu.A. et al. // Russ. J. Coord. Chem. 2002. V. 28. № 9. Р. 647). https://doi.org/10.1023/A:1020095101054
- 3. *Melnic E., Coropceanu E.B., Forni A. et al.* // Cryst. Growth Des. 2016. V. 16. № 11. P. 6275.
- 4. *Croitor L., Coropceanu E.B., Chisca D. et al.* // Cryst. Growth Des. 2014. V. 14. № 6. P. 3015.
- Coropceanu E.B., Croitor L., Fonari M.S. // Polyhedron. 2012. V. 38. № 1. P. 68.
- 6. *Coropceanu E., Croitor L., Gdaniec M. et al.* // Inorg. Chim. Acta. 2009. V. 362. № 7. P. 2151.
- Coropceanu E.B., Croitor L., Botoshansky M.M. et al. // Polyhedron. 2011. V. 30. № 15. P. 2592.
- 8. *Coropceanu E., Rija A., Lozan V. et al.* // Cryst. Growth Des. 2016. V. 16. № 2. P. 814.
- 9. Croitor L., Coropceanu E.B., Siminel A.V. et al. // CrystEngComm. 2012. V. 14. № 10. P. 3750.
- 10. Coropceanu E.B., Croitor L., Siminel A.V. et al. // Polyhedron. 2016. V. 109. P. 107.
- 11. Bresciani Pahor N., Farcolin M., Marzilli L.G. et al. // Coord. Chem. Rev. 1985. V. 63. P. 1.
- 12. Randaccio L., Bresciani Pahor N., Zangrando E., Marzilli L.G. // Chem. Soc. Rev. 1989. V. 18. P. 225.
- Десятник А.А., Гэрбэлэу Н.В., Коропчану Э.Б. и др. // Коорд. химия. 2002. Т. 28. № 2. С. 144 (Desyatnik А.А., Gerbeleu N.V., Koropchanu E.B. et al. // Russ. J. Coord. Chem. 2002. V. 28. № 2. Р. 135). https://doi.org/10.1023/A:1014240303176
- Боурош П.Н., Коропчану Э.Б., Десятник А.А. и др. // Коорд. химия. 2009. Т. 35. № 10. С. 761 (Bourosh P.N., Koropchanu E.B., Ciloci A.A. et al. // Russ. J. Coord. Chem. 2009. V. 35. № 10. Р. 751). https://doi.org/10.1134/S1070328409100078
- 15. Mokhir A., Krämer R., Voloshin Y.Z, Varzatskii O.A. // Bioorg. Med. Chem. Let. 2004. V. 14. № 11. P. 2927.
- Коропчану Э.Б., Булхак И., Штефырцэ А.А. и др. // Коорд. химия. 2017. Т. 43. № 3. С. 156 (*Coropceanu E.B.,* Bulhac I.I., Shtefyrtse A.A. et al. // Russ. J. Coord. Chem. 2017. V. 43. № 3. Р. 164). https://doi.org/10.1134/S1070328417030046
- 17. Ocak U., Kantekin H., Gok Y., Misir M.N. // New J. Chem. 2003. V. 27. P. 1251.
- Gumus G., Ahsen V., Lebrun C. et al. // New J. Chem. 2004. V. 28. P. 177.
- Уреке Д., Рижа А., Булхак И. и др. // Журн. неорган. химии. 2020. Т. 65. № 12. С. 1633 (Ureche D., Rija A., Bulhac A. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 12. Р. 1838). https://doi.org/10.1134/S0036023620120189
- Боурош П.Н., Коропчану Э.Б., Чилочи А.А. и др. // Коорд. химия. 2013. Т. 39. № 11. С. 669 (Bourosh P.N., Coropceanu E.B., Ciloci A.A. et al. // Russ. J. Coord. Chem. 2013. V. 39. № 11. Р. 777). https://doi.org/10.1134/S107032841311002X
- 21. Yuksel F., Gurek G., Durmus M. et al. // Inorg. Chim. Acta. 2008. V. 361. № 8. P. 2225.

КООРДИНАЦИОННАЯ ХИМИЯ том 48 № 1 2022

- Rija A., Bulhac I., Coropceanu E. et al. // Chem. J. Mold. 2011. V. 6. № 2. P. 73. http://www.cjm.asm.md/ sites/default/files/article_files/Rija%20016%20.pdf
- CrysAlis RED, O.D.L. Version 1.171.34.76. Data Collection and Processing Software for Agilent X-ray Diffractometers, 2003.
- 24. *Sheldrick G.M.* // Acta Crystallogr. A. 2008. V. 64. № 1. P. 112.
- 25. Deseatnic-Ciloci A., Tiurina J., Lupascu G. et al. // Brevet MD 4186. BOPI 2012. № 11.
- Deseatnic-Ciloci A., Tiurina J., Lupascu G. et al. // Brevet MD 4285. BOPI 2014. № 5.
- 27. Грачева И.М., Грачев Ю.П., Мосичев М.С. и др. Лабораторный практикум по технологии ферментных препаратов. М.: Легкая и пищ. пром-ть, 1982. 240 с.
- Доспехов Б. Планирование полевого опыта и статическая обработка данных. М.: Колос, 1985. С. 192.
- 29. Беллами Л. Инфракрасные спектры сложных молекул. М.: Изд-во ИЛ, 1963. 590 с.
- 30. *Гордон А., Форд Р.* Спутник химика. М.: Мир, 1976. 541 с.
- Тарасевич Б.Н. ИК спектры основных классов органических соединений. Справочные материалы. М., 2012. 54 с.
- 32. *Накамото К*. Инфракрасные спектры неорганических и координационных соединений. М.: Мир, 1966. 411 с.
- Коропчану Э.Б., Уреке Д., Рижа А.П. и др. // Коорд. химия. 2021. Т. 47. № 1. С. 21 (*Coropceanu E.B., Ureche D., Rija A.P. et al.* // Russ. J. Coord. Chem. 2021. V. 47. № 1. Р. 17). https://doi.org/10.1134/S1070328421010024
- 34. *Allen F.H.* // Acta Crystallogr. B. 2002. V. 58. № 3–1. P. 380.
- 35. Durmus M., Ahsen V., Luneau D., Pecaut J. // Inorg. Chim. Acta. 2004. V. 357. P. 588.
- Kakanejadifard A., Amani V. // Acta Crystallogr. E. 2008. V. 64. P. o1512.
- 37. Endres H., Schendzielorz M. // Acta Crystallogr. C. 1984. V. 40. P. 453.
- 38. Уреке Д., Булхак И., Рижа А. и др. // Коорд. химия. 2019. Т. 45. № 12. С. 720 (Ureche D., Bulhac I., Rija A. et al. // Russ. J. Coord. Chem. 2019. V. 45. № 12. P. 843).
 - https://doi.org/10.1134/S107032841912008X
- Belombe M.M., Nenwa J., Kammoe A.L., Poudeu P.F.P. // Acta Crystallogr. E. 2006. V. 62. P. m2583.
- 40. Belombe M.M., Nenwa J., Mbiangue Y.A. et al. // Acta Crystallogr. E. 2008. V. 64. P. m1440.
- 41. Endres H., Jannack T. // Acta Crystallogr. B. 1980. V. 36. P. 2136.
- 42. Nenwa J., Djonwouo P.L., Belombe M.M. et al. // ScienceJet. 2013. V. 2. P. 43.
- 43. Belombe M.M., Nenwa J., Mbiangue Y.A. et al. // Dalton Trans. 2009. P. 4519.
- 44. Belombe M.M., Nenwa J., Bebga G. et al. // Acta Crystallogr. E. 2007. V. 63. P. m2037.

- 45. Bekaroglu O., Sarisaban S., Koray A.R. et al. // Acta Crystallogr. B. 1978. V. 34. P. 3591.
- 46. Belombe M.M., Nenwa J., Lonnecke P., Hey-Hawkins E. // Z. Anorg. Allg. Chem. 2009. V. 635. P. 420.
- 47. *Kawata S., Kitagawa S., Machida H. et al.* // Inorg. Chim. Acta. 1995. V. 229. P. 211.
- 48. Endres H., Genc N., Nothe D. // Z. Naturforsch. B. 1983. V. 38. P. 90.
- 49. *Endres H., Nothe D., Rossato E., Hatfield W.E. //* Inorg. Chem. 1984. V. 23. P. 3467.
- Endres H., Genc N. // Acta Crystallogr. C. 1983. V. 39. P. 704.
- Nenwa J., Djonwouo P.L., Nfor E.N. et al. // Z. Naturforsch. B. 2014. V. 69. P. 321.
- 52. Endres H. // Z. Anorg. Allg. Chem. 1984. V. 513. P. 78.
- 53. *Tommasino J.-B., Pilet G., Renaud F.N.R. et al.* // Polyhedron. 2012. V. 37. P. 27.
- 54. *Xiao B., Gong T.-J., Xu J. et al.* // J. Am. Chem. Soc. 2011. V. 133. P. 1466.