УДК 546.183+546.267+546.593+546.863+547.239.2+547.31+547.53.024+548.312.2

СИНТЕЗ И СТРОЕНИЕ КОМПЛЕКСОВ ЗОЛОТА $[Ph_3PR][Au(CN)_2Cl_2]$ (R = CH₂CH=CHCH₃, CH₂CN) И Ph₃PC(H)(CN)Au(CN)₂Cl

© 2022 г. Д. П. Шевченко^{1, *}, А. Е. Хабина¹, В. В. Шарутин¹, О. К. Шарутина¹, В. С. Сенчурин¹

¹Южно-Уральский государственный университет (национальный исследовательский университет), Челябинск, Россия *e-mail: Shepher56@gmail.com

Поступила в редакцию 23.05.2021 г. После доработки 14.07.2021 г. Принята к публикации 23.07.2021 г.

Взаимодействием хлоридов органилтрифенилфосфония с дихлородицианоауратом калия в воде с последующей перекристаллизацией из ацетонитрила получены ионные комплексы [Ph₃PR][Au(CN)₂Cl₂] (R = CH₂CH=CHCH₃ (I), CH₂CN (II)). Наряду с основным продуктом II, были выделены кристаллы молекулярного комплекса Ph₃PC(H)(CN)Au(CN)₂Cl (III). Полученные соединения охарактеризованы методами рентгеноструктурного анализа (CIF files CCDC № 1957185 (I), 2060227 (II), 2066549 (III)), ЯМР- и ИК-спектроскопии. По данным РСА, комплексы I и II состоят из органилтрифенилфосфониевых катионов со слабоискаженными тетраэдрически-координированными атомами фосфора и центросимметричных квадратных анионов [Au(CN)₂Cl₂][¬], которые в случае комплекса II образуют координационные псевдополимерные цепи посредством межанионных контактов Au···Cl (3.40 Å). В комплексе III атомы фосфора и золота также тетраэдрически и квадратно координированы; илидный атом углерода располагается у золота в *mpaнс*-положении относительно атома хлора.

Ключевые слова: дихлородицианоаурат, органилтрифенилфосфоний, трифенилфосфанилиденацетонитрил, синтез, строение, рентгеноструктурный анализ **DOI:** 10.31857/S0132344X22010054

При разработке новых потенциально полезных соединений значительное внимание уделяется возможности участия молекул и других структурных единиц в нековалентных взаимодействиях, которые играют важную роль в определении физико-химических свойств, а также биологической активности данных соединений [1–6]. Кроме того, в настоящее время немалый интерес у исследователей вызывают металлоорганические координационные полимеры (**МОКП**) [7–12].

Среди обилия строительных блоков для МОКП важное место занимают цианидные комплексы, в частности соединения одновалентного и трехвалентного золота, обладающие такими свойствами, как люминесценция [13–16], двойное лучепреломление [17–19], вапохромизм [20– 22], отрицательный коэффициент термического расширения [23, 24] и магнетизм [13, 25–27]. Стратегический выбор вспомогательных лигандов и противоионов позволяет модифицировать указанные свойства.

С целью обнаружения новых цианоауратных координационных полимеров и в продолжение ряда исследований, посвященных изучению строения и свойств дигалогенодицианоауратных комплексов [28–33], мы осуществили синтез комплексов [Ph₃PCH₂CH=CHCH₃][Au(CN)₂Cl₂] (I) и [Ph₃PCH₂CN][Au(CN)₂Cl₂] (II) (в смеси с побочным продуктом Ph₃PC(H)(CN)Au(CN)₂Cl (III)), а также описали особенности их строения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез проводили на воздухе. Коммерчески доступные хлориды (бут-2-енил)трифенилфосфония (97%, Alfa Aesar) и цианометилтрифенилфосфония (98%, Alfa Aesar), а также ацетонитрил (о. с. ч., Криохром) использовали без дополнительной очистки. Дихлородицианоаурат калия и цианометилид трифенилфосфония получали по методикам [17, 34].

Синтез дихлородицианоаурата (бут-2-енил)трифенилфосфония (I). К раствору 0.100 г (0.28 ммоль) дихлородицианоаурата калия в 10 мл воды прибавляли при перемешивании водный раствор 0.094 г (0.28 ммоль) хлорида (бут-2-енил)трифенилфосфония. Образовавшийся желтый осадок отфильтровывали, промывали водой и сушили. Перекристаллизацией из ацетонитрила получили кристаллы светло-желтого цвета. Выход комплекса I 0.160 г (90%). $T_{\text{пл}} = 146^{\circ}\text{C}.$

ИК-спектр (v, см⁻¹): 3065, 3053, 3030, 2990, 2945, 2905, 2851, 2216, 1638, 1616, 1585, 1485, 1435, 1398, 1377, 1339, 1315, 1180, 1159, 1111, 1055, 997, 970, 922, 839, 795, 746, 737, 723, 689, 615, 540, 503, 486, 451, 426.

Найдено, %:	C 45.05;	H 3.57.
Для $C_{24}H_{22}N_2PCl_2Au$		
вычислено, %:	C 45.23;	Н 3.49.

Соединение II – дихлородицианоаурат цианометилтрифенилфосфония – синтезировали по методике, аналогичной для I. Получили светложелтые кристаллы. Выход 71%. $T_{пл} = 121^{\circ}$ С.

ИК-спектр (v, см⁻¹): 3061, 3024, 2930, 2866, 2766, 2259, 1587, 1483, 1441, 1393, 1319, 1252, 1186, 1113, 995, 843, 756, 743, 723, 689, 550, 503, 453, 428.

Найдено, %:	C 42.34,	H 2.79.
Для $C_{44}H_{34}N_6P_2Cl_4Au_2$		
вычислено, %:	C 42.46,	Н 2.76.

Молекулярный комплекс III получили в качестве побочного продукта (6%) при синтезе комплекса II, а также встречным синтезом, для которого приведена методика.

Синтез (цианометилтрифенилфосфоний)хлородицианозолота (III). К раствору 0.100
m r (0.28
m ммоль) дихлородицианоаурата калия в 10 мл ацетонитрила прибавляли при перемешивании 0.084
m r (0.28
m ммоль) цианометилилида трифенилфосфония. После испарения растворителя из фильтрата выделили бесцветные кристаллы. Выход III 0.134
m r (82%). $T_{mn} = 112°C$.

ИК-спектр (v, см⁻¹): 3059, 3024, 2930, 2866, 2766, 2257, 2156, 2143, 1587, 1483, 1439, 1395, 1339,

1317, 1250, 1186, 1113, 997, 843, 756, 743, 723, 689, 547, 500, 428.

Найдено, %:	C 45.09,	H 2.81.
Для C ₂₂ H ₁₆ N ₃ PClAu		
вычислено, %:	C 45.11,	H 2.76.

ИК-спектры соединений I–III записывали на ИК-Фурье спектрометре Shimadzu IRAffinity-1S; образцы готовили таблетированием с KBr (область поглощения 4000-400 см⁻¹).

РСА кристаллов I–III проводили на дифрактометре D8 QUEST Bruker (Мо K_{α} -излучение, $\lambda =$ = 0.71073 Å, графитовый монохроматор). Сбор, редактирование данных и уточнение параметров элементарной ячейки, а также учет поглощения проведены по программам SMART и SAINT-Plus [35]. Все расчеты по определению и уточнению структур выполнены по программам SHELXL/PC [36] и OLEX2 [37]. Структуры определены прямым методом и уточнены методом наименыших квадратов в анизотропном приближении для неводородных атомов. Основные кристаллографические данные и результаты уточнения структур приведены в табл. 1, основные длины связей и валентные углы – в табл. 2.

Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных (№ 1957185 (I), 2060227 (II), 2066549 (III) для структур I–III соответственно, deposit@ ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Комплексы I и II были получены в результате взаимодействия водных растворов дихлородицианоаурата калия с хлоридами органилтрифенилфосфония (1 : 1 мольн.) с последующей перекристаллизацией из ацетонитрила.

$$K[Au(CN)_{2}Cl_{2}] + [Ph_{3}PR]Cl \xrightarrow{2.CH_{3}CN} [Ph_{3}PR][Au(CN)_{2}Cl_{2}] + KCl,$$

$$R = CH_{2}CH = CHCH_{3}(I), CH_{2}CN(II)$$

Наряду с основным продуктом — ионным комплексом II светло-желтого цвета — был выделен минорный продукт в виде неокрашенных кристаллов цианометилтрифенилфосфоний)хлородицианозолота (III) с выходом 6%. Вероятно, в реакционной смеси в условиях синтеза происходит образование цианометилида трифенилфосфония Ph₃PC(H)CN, атакующего анионы [Au(CN)₂Cl₂]⁻ с образованием комплекса III.

Нами был осуществлен встречный синтез III взаимодействием дихлородицианоаурата калия с цианометилидом трифенилфосфония, специально полученным по методике [34]. В данном случае основным продуктом реакции был комплекс III, выделенный с выходом 82%.

КООРДИНАЦИОННАЯ ХИМИЯ том 48 № 1 2022

ристаллографические,	цанные, параметры экспер	оимента и уточнения стру	ктуры соединений I—I
Параметр -		Значение	
	Ι	II	III
	637.27	1244.44	585.76
	Моноклинная	Моноклинная	Моноклинная
	P2/c	$P2_1$	$P2_{1}/c$

II Таблица 1. Кристалло

	I	11	111
М	637.27	1244.44	585.76
Сингония	Моноклинная	Моноклинная	Моноклинная
Пр. гр.	<i>P</i> 2/ <i>c</i>	<i>P</i> 2 ₁	$P2_{1}/c$
a, Å	16.983(8)	8.710(5)	8.370(5)
b, Å	8.483(3)	14.036(6)	14.984(8)
<i>c</i> , Å	17.082(7)	19.376(9)	17.232(13)
α, град	90.00	90.00	90
β, град	91.18(2)	90.10(3)	92.63(3)
ү, град	90.00	90.00	90
<i>V</i> , Å ³	2460.4(18)	2368.7(19)	2159(2)
Ζ	4	2	4
ρ(выч.), г/см ³	1.720	1.745	1.802
μ, мм ⁻¹	6.275	6.517	7.024
<i>F</i> (000)	1232.0	1192.0	1120.0
Размер кристалла, мм	$0.34 \times 0.27 \times 0.11$	$0.44 \times 0.31 \times 0.22$	$0.65 \times 0.5 \times 0.46$
Область сбора данных по θ, град	5.86-65.66	5.9-54.28	5.93-56.996
Интервалы индексов отражений	$-25 \le h \le 25, \\ -12 \le k \le 12, \\ -25 \le l \le 25$	$-11 \le h \le 11, \\ -18 \le k \le 18, \\ -24 \le l \le 24$	$-11 \le h \le 11,$ $-20 \le k \le 20,$ $-23 \le l \le 23$
Измерено отражений	75 175	36915	43689
Независимых отражений (<i>R</i> _{int})	8951 (0.0425)	10456 (0.0313)	5463 (0.0611)
Отражений с <i>I</i> > 2σ(<i>I</i>)	8951	10456	5463
Переменных уточнения	274	523	254
GOOF	1.074	1.077	1.060
R -факторы по $F^2 > 2\sigma(F^2)$	$R_1 = 0.0357,$ $wR_2 = 0.0681$	$R_1 = 0.0395,$ $wR_2 = 0.0959$	$R_1 = 0.0460,$ $wR_2 = 0.1149$
<i>R</i> -факторы по всем отражениям	$R_1 = 0.0593,$ $wR_2 = 0.0775$	$R_1 = 0.0438,$ $wR_2 = 0.0990$	$R_1 = 0.0508,$ $wR_2 = 0.1192$
Остаточная электронная плот- ность (max/min), $e/Å^3$	1.42/-1.72	1.31/-2.86	2.71/-3.69

ШЕВЧЕНКО и др.

	,		
Связь	d, Å	Угол	ω, град
		I	
Au(1)-Cl(1)	2.2947(13)	Cl(1)Au(1)Cl(1a)	177.81(7)
Au(2)-Cl(2)	2.2808(12)	C(7)Au(1)C(7a)	179.0(2)
Au(1) - C(7)	2.002(4)	C(7a)Au(1)Cl(1a)	90.45(12)
Au(2)–C(8)	2.015(4)	C(7)Au(1)Cl(1a)	89.57(12)
P(1) - C(1)	1.793(3)	Cl(2)Au(2)Cl(2b)	180.0
P(1)–C(11)	1.797(3)	C(8)Au(2)C(8b)	179.999(1)
P(1)–C(21)	1.793(3)	C(8b)Au(2)Cl(2b)	89.65(12)
P(1)-C(27)	1.812(3)	C(8)Au(2)Cl(2b)	90.35(12)
Преобразова	и ния симметрии:	C(1)P(1)C(11)	108.18(15)
(a) $-x$, y , $3/2 - z$;	(b) $1 - x, 2 - y, 1 - z$	C(1)P(1)C(27)	111.17(16)
			11111/(10)
Au(1)-Cl(1)	2.281(2)	$\frac{1}{Cl(1)Au(1)Cl(2)}$	178.28(10)
Au(1) - Cl(2)	2.286(2)	C(9)Au(1)C(10)	178.9(5)
Au(1) - C(9)	1.955(12)	C(9)Au(1)Cl(1)	89.6(3)
Au(1) - C(10)	2.054(12)	C(9)Au(1)Cl(2)	89.8(3)
Au(2)–Cl(3)	2.275(2)	C(10)Au(1)Cl(1)	90.0(3)
Au(2)–Cl(4)	2.280(2)	C(10)Au(1)Cl(2)	90.7(3)
Au(2)–C(39)	2.023(13)	Cl(3)Au(2)Cl(4)	178.49(10)
Au(2)–C(40)	2.021(12)	C(39)Au(2)C(40)	178.7(4)
P(1) - C(1)	1.792(7)	C(39)Au(2)Cl(3)	90.8(3)
P(1) - C(11)	1.786(7)	C(39)Au(2)Cl(4)	89.9(3)
P(1)-C(21)	1.792(7)	C(40)Au(2)Cl(3)	90.5(3)
P(1) - C(7)	1.827(7)	C(40)Au(2)Cl(4)	88.9(3)
P(2) - C(31)	1.797(6)	C(1)P(1)C(21)	111.7(3)
P(2) - C(41)	1.765(7)	C(11)P(1)C(7)	106.1(3)
P(2)–C(51)	1.789(7)	C(41)P(2)C(31)	112.3(3)
P(2)–C(37)	1.826(7)	C(41)P(2)C(37)	105.8(3)
		III	
Au(1)-Cl(1)	2.318(2)	C(7)Au(1)Cl(1)	177.76(15)
Au(1)–C(9)	1.997(8)	C(9)Au(1)C(10)	176.3(3)
Au(1)–C(10)	2.006(7)	C(9)Au(1)C(7)	93.7(2)
Au(1) - C(7)	2.121(5)	C(9)Au(1)Cl(1)	88.5(2)
C(7) - C(8)	1.427(9)	C(10)Au(1)C(7)	88.2(2)
P(1) - C(1)	1.786(6)	C(10)Au(1)Cl(1)	89.7(2)
P(1)-C(11)	1.801(7)	P(1)C(7)Au(1)	113.8(3)
P(1)–C(21)	1.791(7)	C(8)C(7)Au(1)	111.1(4)
P(1)-C(7)	1.851(6)	C(8)C(7)P(1)	112.7(4)
C(8) - N(1)	1.137(10)	C(11)P(1)C(7)	105.4(3)
C(9)–N(2)	1.124(11)	C(21)P(1)C(7)	113.9(3)

Таблица 2. Длины связей (*d*) и валентные углы (ω) в структурах I–III

КООРДИНАЦИОННАЯ ХИМИЯ том 48 № 1 2022

Рис. 1. Общий вид комплекса I (термические эллипсоиды приведены с 50% вероятностью).

Рис. 2. Общий вид комплекса II (термические эллипсоиды приведены с 50% вероятностью; атомы водорода не показаны).

Отметим, что вследствие высокой подвижности метиленового атома водорода хлорида цианометилтрифенилфосфония образование илидного комплекса также возможно в ходе прямого С–Наурирования, однако данный процесс более характерен для соединений золота(I) и обычно проходит в присутствии оснований [38–40].

В ИК-спектрах соединений I–III полосы поглощения валентных колебаний связей С \equiv N наблюдаются при 2216 (I), 2259 (II), 2257, 2156 и 2143 (III) см⁻¹ и имеют низкую интенсивность. Колебаниям связей Р–С_{Рh} соответствуют полосы поглощения в области 1450—1435 и 1005—995 см⁻¹ (1435, 997 (I), 1441, 995 (II), 1439, 997 (III) см⁻¹). Также в ИК-спектре комплекса I наблюдаются полосы поглощения, которые можно отнести к колебаниям связей v(C=C) (1683 см⁻¹) и δ (HC=CH) (970 см⁻¹) бут-2-енильного фрагмента [41].

По данным PCA, кристаллы комплексов I и II состоят из органилтрифенилфосфониевых катионов и центросимметричных квадратных дихлородицианоауратных анионов (рис. 1 и 2 соответственно). Координация атомов фосфора незна-

Рис. 3. Общий вид комплекса III (термические эллипсоиды приведены с 50% вероятностью).

чительно искажена: углы СРС изменяются в интервалах $108.18(15)^{\circ}-111.17(16)^{\circ}$ (I) и $105.8(3)^{\circ}-112.3(3)^{\circ}$ (II). Бут-2-енильний заместитель в комплексе II присутствует в форме *транс*-изомера, углы С(27)С(28)С(29) и С(28)С(29)С(30) в котором составляют $123.5(4)^{\circ}$ и $123.8(5)^{\circ}$ соответственно. Атомы золота в анионах [Au(CN)₂Cl₂]⁻ имеют практически неискаженную квадратную геометрию с *транс*-углами CAuC и *цис*-углами CAuCl, близкими к 180° и 90° .

Связи Р–С_{Аlk} (1.812(3) Å (I), 1.826(7) и 1.827(7) Å (II)) длиннее связей Р–С_{Ph} (1.793(3)–1.797(3) Å (I) и 1.765(7)–1.797(6) Å (II)). Расстояния Au–С 2.002(4), 2.015(4) Å (I) и 1.955(12)–2.054(12) Å (II) меньше суммы ковалентных радиусов атомов золота и *sp*-гибридизованного углерода (2.05 Å [42]). Длины связей Au– Cl (2.2808(12), 2.2947(13) Å (I), 2.275(2)–2.286(2) Å (II)) также меньше суммы ковалентных радиусов атомов золота и хлора (2.38 Å [42]).

В комплексе III атомы фосфора и золота имеют тетраэдрическую и квадратную координацию соответственно, при этом *транс*-положение относительно атома хлора у золота занято илидным атомом углерода (рис. 3). Углы СРС (105.4(3)°–113.9(3)°) незначительно отличаются от таковых для II и III; углы P(1)C(7)Au(1), C(8)C(7)Au(1) и C(8)C(7)P(1) равны 113.8(3)°, 111.1(4)° и 112.7(4)° соответственно. Связи P(1)– C_{Ph} короче, чем P(1)–C(7) (1.851(6) Å), и варьируются в интервале 1.786(6)–1.801(7) Å.

Значения *транс*-углов CAuC 176.3(3)° и 177.76(15)° свидетельствует о незначительном ис-

Рис. 4. Фрагмент координационной псевдополимерной цепи в кристаллах II.

кажении квадратной координации атома золота; *цис*-углы CAuC и CAuCl равны 93.7(2)°, 88.2(2)° и 88.5(2)°, 89.7(2)° соответственно. Расстояния $Au(1)-C_{CN}$ (1.997(8), 2.006(7) Å) практически не отличаются от таковых в ионных комплексах; расстояние Au(1)-C(7) составляет 2.121(5) Å и совпадает с суммой ковалентных радиусов атома золота и *sp*³-гибридизованного атома углерода (2.12 Å [42]). Связь Au(1)-Cl(1) (2.318(2) Å) на 0.035 Å длиннее среднего значения длин связей Au-Cl в I и II (2.283 Å), что обусловлено *транс*влиянием илидного лиганда. Следует отметить, что в структурно охарактеризованном комплексе Ph₃PC(H)(CN)AuCl₃ сходного строения аналогичные длины связей атома золота с атомами углерода и хлора имеют меньшие значения (Аи-С 2.083(4), Au-Cl 2.3095(13) Å) [43].

Структурная организация в кристаллах I–III обусловлена водородными связями С–H····N \equiv C (2.58, 2.64 Å (I), 2.28–2.43 Å (II), 2.40–2.55 Å (III)) и С–H····Cl–Au (2.83 Å (I), 2.81, 2.84 Å (II), 2.81 Å (III)). В кристалле II анионы [Au(CN)₂Cl₂]⁻ образуют координационные псевдополимерные цепи, ориентированные вдоль кристаллографической оси *a* (рис. 4) и построенные на основе межани-онных контактов Au(1)···Cl(3) и Au(2)···Cl(1) (3.40 Å), длины которых меньше суммы ван-дерваальсовых радиусов атомов золота и хлора (3.41 Å [44]).

Таким образом, взаимодействием хлорида (бут-2-енил)трифенилфосфония с дихлородицианоауратом калия получен ионный мономерный комплекс – дихлородицианоаурат (бут-2-енил)трифенилфосфония. В аналогичной реакции с участием хлорида цианометилтрифенилфосфония наблюдается образование дихлородицианоаурата цианометилтрифенилфосфония, структура которого содержит обусловленные контактами Au…Cl псевдополимерные цепи из анионов [Au(CN)₂Cl₂]⁻, а также минорного продукта реакции – илидного комплекса (цианометилтрифенилфосфоний)хлородицианозолота.

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Janiak C.* // Dalton Trans. 2003. № 14. P. 2781. https://doi.org/10.1039/B305705B
- Desiraju G.R. // Angew. Chem., Int. Ed. 2007. V. 46. № 44. P. 8342. https://doi.org/10.1002/anie.200700534
- Dunitz J.D., Gavezzotti A. // Chem. Soc. Rev. 2009. V. 38. № 9. P. 2622. https://doi.org/10.1039/B822963P
- Sculfort S., Braunstein P. // Chem. Soc. Rev. 2011. V. 40. № 5. P. 2741. https://doi.org/10.1039/C0CS00102C
- Alkorta I., Elguero J., Frontera A. // Crystals. 2020.
 V. 10. № 3. P. 180. https://doi.org/10.3390/cryst10030180
- Rodina T.A., Loseva O.V., Ivanov A.V. // J. Struct. Chem. 2021. V. 62. P. 123. https://doi.org/10.1134/S0022476621010157
- Batten S.R., Champness N.R. // Phil. Trans. R. Soc. A. 2017. V. 375. № 2084. ID 20160025. https://doi.org/10.1098/rsta.2016.0032
- Furukawa H., Cordova K.E., O'Keeffe M., Yaghi O.M. // Science. 2013. V. 341. № 6149. ID 1230444. https://doi.org/10.1126/science.1230444
- Liu J., Chen L., Cui H. et al. // Chem. Soc. Rev. 2014.
 V. 43. № 16. P. 6011. https://doi.org/10.1039/C4CS00094C
- Liu J.-Q., Luo Z.-D., Pan Y. et al. // Coord. Chem. Rev. 2020. V. 406. P. 213145. https://doi.org/10.1016/j.ccr.2019.213145
- 11. Baranov A.Yu., Rakhmanova M.I., Samsonenko D.G. et al. // Inorganica Chim Acta. 2019. V. 494. P. 78. https://doi.org/10.1016/j.ica.2019.05.015
- 12. Petrovskii S.K., Paderina A.V., Sizova A.A. et al. // Dalton Trans. 2020. V. 49. № 38. P. 13430. https://doi.org/10.1039/D0DT02583F
- Kumar K., Stefańczyk O., Chorazy S. et al. // Inorg. Chem. 2019. V. 58. № 9. P. 5677. https://doi.org/10.1021/acs.inorgchem.8b03634
- Nicholas A.D., Bullard R.M., Pike R.D., Patterson H. // Eur. J. Inorg. Chem. 2019. V. 2019. № 7. P. 956. https://doi.org/10.1002/ejic.201801407
- 15. Belyaev A., Eskelinen T., Dau T. et al. // Chem. Eur. J. 2017. V. 24. № 6. P. 1404. https://doi.org/10.1002/chem.201704642
- 16. Ovens J.S., Christensen P.R., Leznoff D.B. // Chem. Eur. J. 2016. V. 22. № 24. P. 8234. https://doi.org/10.1002/chem.201505075
- 17. Ovens J.S., Geisheimer A.R., Bokov A.A. et al. // Inorg. Chem. 2010. V. 49. № 20. P. 9609. https://doi.org/10.1021/ic101357y
- Katz M.J., Leznoff D.B. // J. Am. Chem. Soc. 2009. V. 131. № 51. P. 18435. https://doi.org/10.1021/ja907519c
- Thompson J.R., Goodman-Rendall K.A.S., Leznoff D.B. // Polyhedron. 2016. V. 108. P. 93. https://doi.org/10.1016/j.poly.2015.12.026
- Lefebvre J., Korčok J.L., Katz M.J., Leznoff D.B. // Sensors. 2012. V. 12. № 3. P. 3669. https://doi.org/10.3390/s120303669

КООРДИНАЦИОННАЯ ХИМИЯ том 48 № 1 2022

- 21. Varju B.R., Ovens J.S., Leznoff D.B. // Chem. Commun. 2017. V. 53. № 48. P. 6500. https://doi.org/10.1039/C7CC03428H
- Ovens J.S., Leznoff D.B. // Chem. Mater. 2015. V. 27. № 5. P. 1465. https://doi.org/10.1021/cm502998w
- Ovens J.S., Leznoff D.B. // Inorg. Chem. 2017. V. 56. № 13. P. 7332. https://doi.org/10.1021/acs.inorgchem.6b03153
- 24. Ovens J.S., Leznoff D.B. // CrystEngComm. 2018. V. 20. № 13. P. 1769. https://doi.org/10.1039/C7CE02167D
- 25. *Lefebvre J., Chartrand D., Leznoff D.B.* // Polyhedron. 2007. V. 26. № 9–11. P. 2189. https://doi.org/10.1016/j.poly.2006.10.045
- Lefebvre J., Tyagi P., Trudel S. et al. // Inorg. Chem. 2009. V. 48. № 1. P. 55. https://doi.org/10.1021/ic801094m
- 27. *Geisheimer A.R., Huang W., Pacradouni V. et al.* // Dalton Trans. 2011. V. 40. № 29. P. 7505. https://doi.org/10.1039/C0DT01546F
- Sharutin V.V., Sharutina O.K., Tarasova N.M., Efremov A.N. // Russ. J. Inorg. Chem. 2020. V. 65. № 2. P. 169. https://doi.org/10.1134/S0036023620020151
- 29. Sharutin V.V., Sharutina O.K., Efremov A.N., Eltsov O.S. // Russ. J. Coord. Chem. 2020. V. 46. № 9. P. 631. https://doi.org/10.1134/S1070328420090031
- 30. Шарутин В.В. // Вест. Южно-Урал. гос. ун-та. Сер. хим. 2020. Т. 12. № 2. С. 74 (*Sharutin V.V.* // Bull. South Ural State Univ., Ser. Chem. 2020. V. 12. № 2. P. 74). https://doi.org/10.14529/chem200208
- Sharutin V.V., Sharutina O.K., Tarasova N.M. et al. // Russ. Chem. Bull. 2020. V. 69 № 10. P. 1892. https://doi.org/10.1007/s11172-020-2975-4
- 32. *Efremov A.N., Sharutin V.V., Sharutina O.K. et al.* // Изв. вузов. Сер. хим. технол. 2020. Т. 63. № 3. С. 10. https://doi.org/10.6060/ivkkt.20206303.6097
- 33. Шевченко Д.П., Хабина А.Е. // Вест. Южно-Урал. гос. ун-та. Сер. хим. 2021. Т. 13. № 1. С. 58 (*Shevchenko D.P., Khabina A.E.* // Bull. South Ural State Univ. Ser. Chem. 2021. V. 13. № 1. Р. 58). https://doi.org/10.14529/chem210106
- 34. Johnson A. Doctoral Thesis. Zaragoza: Zaragoza University, 2018. 401 p.
- SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Madison (WI, USA): Bruker AXS Inc., 1998.
- SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Madison (WI, USA): Bruker AXS Inc., 1998.
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- Vicente J., Chicote M.T. // Coord. Chem. Rev. 1999.
 V. 193–195. P. 1143. https://doi.org/10.1016/S0010-8545(99)00083-1

- 39. *Djordjevic B., Schuster O., Schmidbaur H.* // Z. Naturforsch. B. 2005. V. 60. № 2. P. 169. https://doi.org/10.1039/C3CY00240C
- 40. *Ahlsten N., Perry G.J.P., Cambeiro X.C. et al.* // Catal. Sci. Technol. 2013. V. 3. № 11. P. 2892. https://doi.org/10.1515/znb-2005-0207
- 41. Преч Э., Бюльманн Ф., Аффольтер К. Определение строения органических соединений. М.: Мир, 2006. 440 с.
- 42. Cordero, B., Gómez V., Platero-Prats A.E. et al. // Dalton Trans. 2008. № 21. P. 2832. https://doi.org/10.1039/B801115J
- 43. Johnson A., Marzo I., Gimeno M.C. // Chem. Eur. J. 2018. № 45. P. 11693. https://doi.org/10.1002/chem.201801600
- 44. *Mantina M., Chamberlin A.C., Valero R. et al.* // J. Phys. Chem. A. 2009. V. 113. № 19. P. 5806. https://doi.org/10.1021/jp8111556