УДК 547.772.1:546.47

К 90-летию академика Ю.А. Золотова

СИНТЕЗ, КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА КООРДИНАЦИОННЫХ ПОЛИМЕРОВ КАДМИЯ С ДИ(ПИРАЗОЛ-1-ИЛ)АЛКАН-4,4'-ДИКАРБОНОВЫМИ КИСЛОТАМИ

© 2022 г. Е. А. Першина^{1, 2}, Н. П. Бурлуцкий³, Д. И. Павлов¹, А. А. Рядун¹, В. П. Федин¹, А. С. Потапов^{1, 4, *}

¹ Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия ² Новосибирский государственный университет, Новосибирск, Россия ³ Национальный исследовательский Томский политехнический университет, Томск, Россия ⁴ Некоммерческое акционерное общество "Торайгыров Университет", Павлодар, Казахстан *e-mail: potapoy@niic.nsc.ru

Поступила в редакцию 16.05.2022 г. После доработки 18.05.2022 г. Принята к публикации 18.05.2022 г.

Синтезированы координационные полимеры кадмия(II) с производными ди(пиразол-1-ил)алканов – *бис*(3,5-диметилпиразол-1-ил)метан-4,4'-дикарбоновой кислотой (H_2L^1) и 1,3-*бис*(пиразол-1-ил)пропан-4,4'-дикарбоновой кислотой (H_2L^2). Кристаллическая структура продуктов была установлена методом рентгеноструктурного анализа (ССDС № 2172853 (I), 2172854 (II)). Ионы Cd²⁺ и дикарбоновая кислота с одной метиленовой группой между пиразольными циклами образуют трехмерный координационный полимер с однократным взаимопрорастанием координационных сеток, тогда как в случае трех метиленовых групп образуется двухмерный координационный полимер, слои которого связаны водородными связями с участием молекул воды в координационной сфере ионов Cd²⁺. В спектрах люминесценции полученных координационных полимеров наблюдалось две полосы – с локальным внутрилигандным возбуждением и переносом заряда металл-лиганд.

Ключевые слова: координационные полимеры, кадмий, пиразол, дикарбоновые кислоты, люминесценция

DOI: 10.31857/S0132344X2210005X

Ди(пиразол-1-ил)алканы являются нейтральными бидентатными лигандами, координационная химия которых изучена достаточно хорошо и охарактеризованы комплексы с большинством ионов металлов [1]. Вместе с тем наличие только двух донорных атомов азота в этих лигандах приводит, как правило, к образованию молекулярных комплексов или непористых координационных полимеров [2]. Введение в пиразольные циклы функциональных групп с донорными атомами, способными образовывать дополнительные координационные связи с ионами металлов, должно существенно расширить разнообразие возможных координационных соединений с такими лигандами. Карбоксильные производные самого пиразола ранее успешно применялись для синтеза пористых металл-органических координационных полимеров с ценными сорбционными, каталитическими и люминесцентными свойствами [3–5]. При этом координационная химия дикарбоксильных производных ди(пиразол-1-ил)алканов еще только начинает изучаться и до сих пор была ограничена производными ди(пиразол-1-ил)метана [6, 7]. Недавно нами были разработаны методики синтеза 4,4'-дикарбоксильных производных ди(пиразол-1ил)алканов с различной длиной полиметиленого линкера и заместителями в пиразольных циклах [8, 9].

В настоящей работе сообщается о первых примерахсинтезаметалл-органическихкоординационных полимеров с двумя из таких лигандов – $\delta uc(3,5$ -диметилпиразол-1-ил)метан-4,4'-дикарбоновой кислотой ($\mathbf{H_2L^1}$)и 1,3- δuc (пиразол-1-ил)пропан-4,4'-дикарбоновой кислотой ($\mathbf{H_2L^2}$, схема 1).

Схема 1.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Коммерчески доступные растворители и реагенты марки "х. ч." использовали без дополнительной очистки. Лиганды H₂L¹ и H₂L² синтезировали по разработанным нами ранее методикам [8]. Исходные ди(пиразол-1-ил)алканы получали как описано в [10, 11]. ИК-спектры поглощения в таблетках КВг в диапазоне 4000-400 см⁻¹ записывали на Фурье-спектрометре VERTEX 80. Элементный анализ выполняли на CHNS-анализаторе Vario MICRO cube. Дифрактограммы порошкообразных образцов регистрировали на дифрактометре Bruker D8 ADVANCE (излучение CuK_{α}). Термогравиметрический анализ (ТГА) выполняли на термоанализаторе NETZSCH TG 209 F1 при линейном нагревании образцов со скоростью 10°С/мин в атмосфере гелия.

Спектры фотолюминесценции и возбуждения люминесценции, а также времена жизни фотолюминесценции снимали на спектрофлуориметре Fluorolog-3 (Horiba Jobin Yvon) с охлаждаемым модулем регистрации фотонов PC177CE-010, оснащенным фотоэлектронным умножителем R2658. Прибор оснащен системой измерения времени жизни флуоресценции на основе технологии времякоррелированного счета единичных фотонов (TCSPC) для измерения кинетики затухания эмиссии. Для измерения времен жизни в наносекундном диапазоне прибор укомплектован набором твердотельных лазеров различных длин волн.

РСА. Кристаллографические данные для соединений I и II получены при 170 К на автоматическом дифрактометре Agilent Xcalibur, оснащенном двухкоординатным детектором AtlasS2 (графитовый монохроматор, $\lambda(MoK_{\alpha}) = 0.71073$ Å, ω -сканирование с шагом 0.5°). Интегрирование, учет поглощения, определение параметров элементарной ячейки проведены с использованием пакета программ CrysAlisPro [12]. Кристаллические структуры расшифрованы с использованием пакета SHELXT [13] и уточнены полноматричным MHK в анизотропном (за исключением атомов водорода) приближении с использованием пакета SHELXL [14]. Кристаллографические данные и детали дифракционного эксперимента приведены в табл. 1.

583

Координаты атомов и другие параметры соединений I и II депонированы в Кембриджском центре кристаллографических данных (ССDС № 2172853 (I), 2172854 (II); deposit@ccdc.cam.ac.uk; www: http://www.ccdc.cam.ac.uk).

Синтез координационного полимера {[Cd(L¹)] · DMF}_n (I). В стеклянную виалу объемом 4 мл с завинчивающейся крышкой помещали Cd(NO₃)₂ · · 4H₂O (16 мг, 0.052 ммоль) и дикарбоновую кислоту H₂L¹ (15 мг, 0.051 ммоль), добавляли 1 мл смеси ДМФА–H₂O–EtOH (4:2:1) и выдерживали в термошкафу при 100°C в течение 48 ч. Выпавшие желтоватые кристаллы отфильтровывали, промывали этанолом и высушивали на воздухе. Выход 18 мг (75%).

ИК-спектр (v, см⁻¹): 3022 v(C-H_{алиф}), 2926 v(C-H_{алиф}), 1657 v_{as}(COO⁻), 1572 v(Pz), 1485 v_s(COO⁻), 1008 v(Pz).

Найдено, %:	C 40.4;	H 4.5;	N 14.3.
Для C ₁₆ H ₂₁ N ₅ O ₅	Cd		
вычислено, %:	C 40.39;	Н 4.45;	N 14.72.

Синтез координационного полимера {[Cd(L²)-(H₂O)₂] · DMF}_n (II) выполняли аналогично соединению I из Cd(NO₃)₂ · 4H₂O (16 мг, 0.052 ммоль) и дикарбоновой кислоты H₂L² (14 мг, 0.053 ммоль) в 10 мл смеси ДМФА-H₂O-EtOH (4 : 2 : 1). Выход бесцветных кристаллов 16 мг (64%).

ИК-спектр (ν , см⁻¹): 3287 ш ν (O–H), 3130 ν (C– H_{аром}), 2941 ν (C–H_{алиф}), 1659 ν _{as}(COO⁻), 1562 ν (Pz), 1429 ν _s(COO⁻), 1004 ν (Pz).

Найдено, %:	C 34.6;	H 4.0;	N 14.1.			
Для C ₁₄ H ₂₁ N ₅ O ₇ Cd						
вычислено, %:	C 34.76;	H 4.38;	N 14.48.			

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Координационные полимеры I и II были получены при взаимодействии нитрата кадмия с дикарбоновыми кислотами H_2L^1 или H_2L^2 в сольвотермальных условиях в смеси растворителей ДМФА– H_2O –EtOH (4 : 2 : 1) при 100°С. Условия синтеза оптимизировали варьированием температуры и состава растворителя с целью получения монокристаллов, пригодных для рентгеноструктурного анализа.

Соединение I кристаллизуется в тетрагональной сингонии, в хиральной пространственной

Параматр	Значение		
параметр	Ι	II	
Формула	$C_{13}H_{14}N_4O_4Cd$	$C_{14}H_{21}N_5O_7Cd$	
Μ	402.69	483.77	
Сингония	Тетрагональная	Моноклинная	
Пр. группа	<i>P</i> 4 ₃ 2 ₁ 2	$P2_1/n$	
Ζ	8	4	
a, Å	12.4691(5)	11.1572(3)	
b, Å	12.4691(5)	12.0791(3)	
<i>c</i> , Å	21.1780(12)	13.1659(4)	
β, град	90	91.814(2)	
<i>V</i> , Å ³	3292.7(3)	1773.47(8)	
ρ(выч.), г см ⁻³	1.625	1.812	
μ, см ⁻¹	1.35	1.28	
<i>F</i> (000)	1600	976	
Измеренных отражений	8851	8648	
Независимых отражений (<i>R</i> _{int})	3714 (0.046)	3943 (0.020)	
Отражений с <i>I</i> > 2σ(<i>I</i>)	3431	3514	
Число параметров	203	256	
R_1	0.055	0.023	
wR_2	0.129	0.049	
GOOF	1.25	1.040	
$\Delta \rho_{max} / \Delta \rho_{min}$, e Å ⁻³	1.39/-0.73	0.38/-0.34	
Параметр Флэка	0.04(3)		

Таблица 1. Кристаллографические данные и параметры эксперимента и уточнения для соединений І и ІІ

группе *P*4₃2₁2 (табл. 1). Асимметрическая единица включает одну молекулу лиганда L¹ в депротонированной форме и один ион Cd²⁺. Элементарная ячейка содержит восемь формульных единиц. Ион Cd²⁺ находится в искаженном октаэдрическом окружении и координирует три аниона лиганда L¹ – два посредством карбоксильных групп с бидентатной координацией и один за счет атомов азота в положениях 2 пиразольных циклов по бидентатно-циклическому типу координации (рис. 1а). В результате анионы лиганда L¹ связывают ионы Cd²⁺ в трех направлениях с образованием трехмерного координационного полимера (рис. 1б). Связывающие соселние ионы Cd²⁺ лиганды L¹ располагаются по спирали, что обусловливает хиральность структуры в целом. При упаковке две сетки координационного полимера взаимно конкатенированы (рис. 1в).

Соединение II кристаллизуется в моноклинной сингонии, в центросимметричной пространственной группе $P2_1/n$ (табл. 1). Асимметрическая единица включает один ион Cd²⁺, одну молекулу ли-

ганда L² в депротонированной форме, две молекулы воды и одну молекулу ДМФА. Элементарная ячейка включает четыре формульных единицы. Ион Cd²⁺ находится в незначительно искаженном октаэдрическом окружении и координирует три аниона лиганда L² – два посредством карбоксильных групп с монодентатной координацией и один за счет атомов азота в положениях 2 пиразольных циклов по бидентатно-циклическому типу координации с образованием восьмичленного хелатного цикла (рис. 2а). Два координационных места иона Cd²⁺ занимают две молекулы воды. В целом соединение II представляет собой двухмерный координационный полимер, слои которого располагаются параллельно кристаллографической плоскости ab (рис. 26). Упаковка слоев приводит к образованию каналов, ориентированных вдоль кристаллографической оси с, заполненных сольватными молекулами ДМФА. При упаковке слои связываются водородными связями между координированными молекулами воды (рис. 2в, межатомное расстояние O(5) - O(6)) 2.849(2) Å), а также между молекулами воды и

Рис. 1. Элементарное звено координационного полимера I (а); структура трехмерной сетки I (б); фрагмент кристаллической структуры I, показывающий однократное взаимопрорастание координационных сеток. Тепловые эллипсоиды показаны с вероятностью 50%, атомы водорода не показаны.

КООРДИНАЦИОННАЯ ХИМИЯ том 48 № 10 2022

Рис. 2. Элементарное звено координационного полимера II (а); фрагмент двухмерной сетки II (б); фрагмент кристаллической структуры II, показывающий образование водородных связей с участием молекул воды. Тепловые эллипсоиды показаны с вероятностью 50%, атомы водорода не показаны, сольватные молекулы ДМФА не показаны.

атомами кислорода карбоксилатных групп (расстояние O(3)—O(5) 2.665(2) Å). Молекулы воды также образуют водородные связи с атомами кислорода сольватных молекул ДМФА (O(5)—O(7) 2.662(2) Å) и атомами кислорода карбоксильных групп в пределах одного слоя (O(1)—O(6) 2.583(2) Å).

Значения длин связей в координационных полиэдрах ионов Cd^{2+} в соединениях I и II приведены в табл. 2.

Фазовая и химическая чистота соединений I и II была подтверждена методами рентгенофазового и элементного анализов, расчетные и экспери-

Соединение І		Соеди	Соединение II		
Связь	d, Å	Связь	d, Å		
Cd(2)-O(5)	2.237(7)	Cd(1)–O(3)	2.2625(14)		
$Cd(2) - O(2)^{i}$	2.281(8)	Cd(1)–O(2) ⁱⁱⁱ	2.3076(14)		
Cd(2)-N(1 ⁱⁱ⁾ⁱⁱ	2.319(6)	$Cd(1) - N(2)^{iv}$	2.3106(16)		
Cd(2)-N(3 ⁱⁱ⁾ⁱⁱ	2.353(7)	$Cd(1) - N(1)^{iv}$	2.3322(16)		
Cd(2)-O(30) ⁱ	2.372(8)	Cd(1)–O(5)	2.3486(15)		
Cd(2)–O(1)	2.487(8)	Cd(1)–O(6)	2.3552(15)		
Cd(2)–C(7)	2.678(10)				
$Cd(2) - C(9)^{i}$	2.704(9)				
$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2} + 2 - y + 1 - z + 1/2 + 1/2 - y + 1/2 - z + 5/4 = \frac{10}{2} + 1 - y - 1 - z + \frac{1}{2} + \frac{1}{2} - z + \frac{3}{2} + \frac{1}{2} + $					

Таблица 2. Избранные длины связей в структурах соединений I и II

Рис. 3. Экспериментальные (вверху) и расчетные (внизу) дифрактограммы порошков координационных полимеров I (а) и II (б).

КООРДИНАЦИОННАЯ ХИМИЯ том 48 № 10 2022

ментальные дифрактограммы приведены на рис. 3.

По данным ТГА, соединение I практически не теряет массу при нагревании до 300°С, а затем происходит потеря включенных молекул растворителя, протекающая одновременно с разложением каркаса (рис. 4). Термическое разложение соединения II протекает в несколько ступеней. В интервале 85–125°С происходит потеря двух координированных молекул воды и частично сольватных молекул ДМФА. Полное удаление молекул ДМФА заканчивается при 280°С, а выше этой температуры начинается разложение координационного полимера (рис. 4).

В ИК-спектрах координационных полимеров наблюдаются характеристичные интенсивные полосы валентных колебаний пиразольных циклов вблизи 1560 и 1005 см⁻¹, а также полосы асимметричных и симметричных валентных колеба-

Рис. 4. Термогравиметрические кривые координационных полимеров I и II.

ний карбоксилатных групп. В ИК-спектре соединения I эти полосы расположены на меньшем расстоянии друг от друга ($\Delta = v_{as}(\text{COO}^-) - v_s(\text{COO}^-) = 172 \text{ см}^{-1}$) по сравнению со спектром соединения II ($\Delta = 230 \text{ см}^{-1}$). Различие в положениях указанных полос согласуется с различным способом координации карбоксилатных групп бидентатно-циклическим в соединении I и монодентатным в соединении II [15].

Координационные соединения кадмия(II) часто проявляют выраженную люминесценцию [16, 17], в связи с этим нами были исследованы люминесцентные свойства синтезированных координационных полимеров I и II и входящих в их состав лигандов. В спектре возбуждения фотолюминесценции лиганда H_2L^1 наблюдается широкая полоса с максимумом поглощения при 272 нм и плечом около 310 нм, соответствующими $n-\pi^*$ - и $\pi-\pi^*$ -переходам в пиразольных циклах. Полоса эмиссии имеет колебательную структуру с максимумом 380 нм, положение которого не зависит от длины волны возбуждения (рис. 5а). Спектры возбуждения и эмиссии лиганда H_2L^2 содержат по одной полосе с максимумами 277 и 343 нм.

Спектры возбуждения люминесценции соединений I и II имеют сложный вил и состоят из нескольких полос с максимумами 376. 291 нм для соединения I и 376, 309, 274 нм для соединения II (рис. 5б). В спектре эмиссии соединения І наблюдается полоса при 370 нм и плечо около 460 нм. Аналогично, в спектре эмиссии соединения II присутствует полоса с максимумом 340 нм, а длинноволновая полоса вместо плеча имеет выраженный максимум при 470 нм (рис. 5б). Близость положений максимумов поглощения и эмиссии коротковолновых полос к соответствующим полосам в спектрах свободных лигандов позволяет отнести их к внутрилигандной флуоресценции, а появляющиеся в спектрах эмиссии координационных полимеров I и II длинноволновые полосы следует связывать с переходами металл-лиганд (MLCT).

Таким образом, были синтезированы и структурно охарактеризованы координационные полимеры кадмия с дикарбоксильными производными ди(пиразол-1-ил)алканов, демонстрирующих потенциал этих новых лигандов для построения координационных полимеров различной размерности. Координационный полимер II является первым примером координационного соединения с дикарбоновой кислотой H_2L^2 , а I — лишь вторым примером с анионами кислоты H_2L^1 в качестве лигандов.

Авторы заявляют, что у них нет конфликта интересов.

Рис. 5. Спектры возбуждения и эмиссии фотолюминесценции дикарбоновых кислот H_2L^1 , H_2L^2 (а) и координационных полимеров I и II (б).

ФИНАНСИРОВАНИЕ

Работа выполнена при поддержке Комитета науки Министерства образования и науки Республики Казахстан (грант № АР08856049). Физико-химическая характеризация синтезированных соединений осуществлялась в центре коллективного пользования ИНХ СО РАН при поддержке Министерства науки и высшего образования Российской Федерации (проекты № 121031700321-3 и 121031700313-8).

СПИСОК ЛИТЕРАТУРЫ

 Pettinari C., Pettinari R. // Coord. Chem. Rev. 2005. V. 249. P. 663.

- Potapov A.S., Domina G.A., Petrenko T.V. et al. // Polyhedron. 2012. V. 33. P. 150.
- Liu Q., Song Y., Ma Y. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 488.
- Belousov Y.A., Drozdov A.A., Taydakov I.V. et al. // Coord. Chem. Rev. 2021. V. 445. Art 214084.
- 5. Wu T., Huang S., Yang H. et al. // ACS Mater. Lett. 2022. V. 4. P. 751.
- 6. *Kivi C.E., Gelfand B.S., Dureckova H. et al.* // Chem. Commun. 2018. V. 54. P. 14104.
- 7. Gimeno-Fonquernie P., Liang W., Albalad J. et al. // Chem. Commun. 2022. V. 58. P. 957.
- Burlutskiy N.P., Potapov A.S. // Molecules. 2021. V. 26. 413.
- 9. Pershina E.A., Pavlov D.I., Burlutskiy N.P., Potapov A.S. // Molbank. 2021. № 4. Art. M1298.
- 10. Potapov A.S., Domina G.A., Khlebnikov A.I., Ogorodnikov V.D. // European J. Org. Chem. 2007. P. 5112.

- Potapov A.S., Khlebnikov A.I. // Polyhedron. 2006. V. 25. P. 2683.
- 12. CrysAlisPro. Agilent Technologies. Version 1.171.34.49 (release 20-01-2011 CrysAlis171.NET).
- 13. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
- 14. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
- Deacon G.B., Phillips R.J. // Coord. Chem. Rev. 1980. V. 33. P. 227.
- Ковалев В.В., Кокунов Ю.В., Шмелев М.А. и др. // Коорд. химия. 2021. Т. 47. № 4. С. 237 (Kovalev V.V., Kokunov Y.V., Shmelev M.A et al. // Russ. J. Coord. Chem. 2021. V. 47. Р. 272). https://doi.org/10.1134/S1070328421040047
- Павлов Д.И., Рядун А.А., Самсоненко Д.Г. и др. // Изв. АН. Сер. хим. 2021. Т. 70. № 5. С. 857 (Pavlov D.I., Ryadun A.A., Samsonenko D.G. et al. // Russ. Chem. Bull. 2021. V. 70. P. 857). https://doi.org/10.1007/s11172-021-3159-6