УДК 547.796.1:541

СИНТЕЗ И ИССЛЕДОВАНИЕ КОМПЛЕКСОВ 3,4-бис(ДИФЕНИЛФОСФИНИЛ)-2,5-ДИМЕТИЛГЕКСА-2,4-ДИЕНА С СОЛЯМИ Mn(II)

© 2022 г. В. П. Моргалюк¹, О. И. Артюшин¹, А. В. Вологжанина¹, П. В. Дороватовский², Б. В. Локшин¹, А. Г. Буяновская¹, Р. У. Таказова¹, В. К. Брель^{1, *}

¹Институт элементоорганических соединений им. А.Н. Несмеянова РАН, Москва, Россия ²НИЦ "Курчатовский институт", Москва, Россия

*e-mail: v_brel@mail.ru Поступила в редакцию 08.04.2022 г. После доработки 06.05.2022 г. Принята к публикации 11.05.2022 г.

Изучены координационные свойства 3,4-*бис*(дифенилфосфинил)-2,5-диметилгекса-2,4-диена (L²) на примере комплексов с хлоридом и перхлоратом марганца(II). Установлено, что хлорид марганца(II) с *бис*-фосфиноксидом L² образует комплекс состава 1 : 1, а с перхлоратом марганца(II) — комплекс состава 2 : 1. Кристаллическое строение комплексов *бис*-фосфиноксида L² с дихлоридом марганца (CCDC № 2165179) и перхлоратом марганца (CCDC № 2165180) подтверждено рентгенодифракционными данными.

Ключевые слова: фосфиноксиды, 1,3-бутадиены, комплексы, соли марганца, кристаллическая структура

DOI: 10.31857/S0132344X22110068

В последнее время комплексы Mn(II) с фосфорорганическими лигандами различного строения привлекают внимание благодаря их уникальным фотофизическим свойствам, высокой стабильности и низкой стоимости [1]. Например, комплексы дигалогенидов марганца с трифенилфосфиноксидом демонстрируют яркую фото- и триболюминесценцию [2, 3]. При взаимодействии хелатирующих бис(фосфиноксидов), как $Ph_2P(O)CH_2P(O)Ph_2$ и $Ph_2P(O)CH_2CH_2P(O)Ph_2$, с галогенидами Mn(II) синтезированы комплексы $[Mn(L)_3]$ Hal₂ и $[Mn(L)_3]$ MnHal₄ (Hal = Cl, Br), с высокими эмиссионными свойствами [4-6]. Совсем недавно с использованием комплексов дихлорида и дибромида марганца с 4.6-бис(дифенилфосфинил)дибензофураном были получены перспективные PhOLED на основе Mn(II) [7]. На основе 1,2,4,5-тетракисфосфинил бензола и перхлората марганца(II) осуществлен синтез координационного полимера [8]. При использовании в качестве лиганда 2,3-бис(дифенилфосфинил)-1,3-бутадиена (L¹) был описан синтез органо-неорганических гибридных комплексов [Mn(L¹)₃]-[MnHal₄]. Следует отметить, что данные комплексы, содержащие четырех- и гексакоординированные ионы Mn²⁺, проявляют высокие фотофизические свойства. Было показано, что в катионе $[Mn(L^1)_3]^{2+}$ ион Mn^{2+} имеет октаэдрическую геометрию $[MnO_6]$ (O_h), в то время как анион $[MnHal_4]^{2-}$ – тетраэдрическую (T_d) [4].

Представлялось интересным продолжить изучение координационных свойств солей Mn(II) с другими бидентатными фосфинилсодержащими лигандами на алкадиеновой платформе, в частности с 3,4-*бис*(дифенилфосфинил)-2,5-диметилгекса-2,4-диеном (L²), ранее хорошо зарекомендовавшим себя при изучении экстракции U(VI) и Th(IV) из азотнокислых сред [9].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали ацетонитрил марки "х.ч.", который перегоняли над P_2O_5 для обезвоживания и хранили над CaH_2 . Коммерческий этанол использовали без предварительной очистки. Лиганд L^2 получали по ранее описанной методике [9].

ИК-спектры регистрировали на VERTEX 70v Fourier-transform ИК спектрометре (Германия). Элементный анализ (С, Н) выполняли на автоматическом анализаторе CarloErba 1106, на Р – спектрофотометрически на приборе Cary 100 Scan, анализ на Cl – титриметрически (0.001 M AgNO₃), на Mn – по несгораемому остатку. Синтез (3,4-бис(дифенилфосфинил)-2,5-диметилгекса-2,4-диен)-дихлорида-марганца(II) (I). К суспензии 24 мг (0.12 ммоль) тонко измельченного MnCl₂ · 4H₂O в 5 мл ацетонитрила при перемешивании добавляли 130 мг (0.25 ммоль) L². Перемешивали до растворения MnCl₂ · 4H₂O, затем упаривали раствор при 20°C и пониженном давлении 14 мм рт. ст. до объема 2 мл. Осадок, выпавший в течение 7 сут, отфильтровывали, промывали 2 × 4 мл бензолом, сушили на воздухе, затем промывали водой (2 × 5 мл) и сушили при пониженном давлении 14 мм рт. ст. над P₂O₅ до постоянного веса. Выход комплекса I 58 мг (76%) в виде мелкокристаллического вещества белого цвета. $T_{разл} = 180-185^{\circ}$ С.

ИК (КВг; v, см⁻¹): 3059, 2944, 1607, 1607, 1576; 1300–1274, 1128.

Найдено, %: С 60.07; Н 5.06; Р 9.30; Сl 10.82. Для С₃₂Н₃₂О₂Р₂Сl₂Мп

вычислено, %: С 60.39; Н 5.07; Р 9.73; СІ 11.14.

После перекристаллизации из горячего ацетонитрила выход комплекса I 0.046 г (60%), $T_{\text{разл}} = 190-195^{\circ}\text{C}.$

Найдено, %: С 60.02; Н 5.04; Р 9.62, Сl 11.03. Для С₃₂H₃₂Cl₂O₂P₂Cl₂Mn вычислено, %: С 60.39; Н 5.07; Р 9.73; Cl 11.14.

Синтез диперхлората *бис*[3,4-*бис*(дифенилфосфинил)-2,5-диметилтекса-2,4-диен]-марганца(II) (II). Раствор Mn(ClO₄)₂ · H₂O (53.5 мг, 0.196 ммоль) в 2 мл ацетонитрила добавляли к раствору L² (200 мг, 0.392 ммоль) в 3 мл ацетонитрила и перемешивали 2 ч, после чего растворитель отгоняли при пониженном давлении 14 мм рт. ст. Остаток, вязкое масло, растирали с эфиром (5 мл). Белые кристаллы отфильтровывали и промывали эфиром (5 мл), сушили на воздухе и перекристаллизовывали из кипящего этанола (5 мл). Отбирали кристаллы, пригодные для PCA, остальные высушивали в вакууме над P₂O₅ до постоянного веса. Выход комплекса II 187 мг (75%), $T_{разл} = 240-$ 245°C.

ИК (КВг; v, см⁻¹): 3435, 3059, 3011, 2911, 1611, 1588, 1438, 1381, 1368, 1147, 1114, 1097, 1074.

Найдено, %: С 6013; Н 530; Сl 5.46; Мп 4.5; Р 9.07. Для С₆₄Н₆₄О₁₂Р₄Сl₂Мп

вычислено, %: С 6029; Н 5.06; Cl 5.56; Mn 4,31; Р 8.93.

РСА комплекса $[MnCl_2L^2]$ (I) проведен на автоматическом четырехкружном дифрактометре с двумерным детектором Bruker Quest при 100.0(2) К. Интенсивности отражений для ком-

плекса $[Mn(EtOH)_2(L^2)_2](ClO_4)_2$ (II) измерены на станции К4.4 "Белок" Курчатовского источника синхротронного излучения (НИЦ "Курчатовский институт", Москва, Россия) при длине волны 0.745 Å при 100.0(2) К. В экспериментально определенные значения интенсивности рефлексов внесены поправки на поглощение с использованием программ SADABS (Bruker AXS Inc. Madison (WI, USA)), iMosflm [10] и Scala [11]. Структуpы расшифрованы методом сопряженного пространства, реализованном в программе SHELXT [12] и уточнены полноматричным методом наименьших квадратов SHELXL-2014 [13] по F^2 по всем данным в анизотропном приближении для всех неводородных атомов за исключением разупорядоченных с помошью программы Olex2 [14]. Разупорядоченный по двум положениям перхлорат-анион (заселенности 0.512 : 0.488) и сольватные молекулы в структуре II уточнены в изотропном приближении. Атомы водорода помещены в геометрически рассчитанные положения и уточнены в модели "наездника" с изотропными тепловыми параметрами, равными $U_{\mu_{30}} =$ $1.5U_{_{3KB}}(C)$ для метильных групп и $U_{_{H3O}} = 1.2U_{_{3KB}}(C)$ для фенильных циклов, где $U_{_{3KB}}(C)$ – эквивалентные изотропные тепловые параметры атомов, с которыми связан атом водорода. Структура II содержит разупорядоченные сольватные молекулы, вклад которых в интенсивность отражений учтен с использованием алгоритма SolventMask программы Olex2. Кристаллографические данные, параметры эксперимента и уточнения структур I и II представлены в табл. 1.

Координаты атомов и величины температурных параметров депонированы в Кембриджском банке структурных данных (ССDС № 2165179 (I) и 2165180 (II); http://www.ccdc.cam.ac.uk/structures).

Дифрактограмму образца $[MnCl_2L^2]$ после перекристаллизации измерили в режиме отражения при комнатной температуре с помощью дифрактометра Bruker D8 Advance, оснащенного детектором LynxEye и монохроматором Ge(111). Ритвельдовский анализ был проведен с помощью программы TOPAS 4.2 (Bruker AXS GmbH, Karlsruhe (Germany)) с учетом предпочтительной ориентации в приближении сферических гармоник [15].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Синтез комплексов I и II осуществлен реакцией 2,4-*бис*(дифенилфосфинил)-2,5-диметилгекса-2,4диена (L^2) с MnCl₂ и Mn(ClO₄)₂ (схема 1).

СИНТЕЗ И ИССЛЕДОВАНИЕ КОМПЛЕКСОВ

Параметр	Значение	
	Ι	II
Брутто-формула	$C_{32}H_{32}Cl_2MnO_2P_2$	C ₆₈ H ₇₆ Cl ₂ MnO ₁₄ P ₄
M	636.35	1367.00
Сингония	Ромбическая	Тетрагональная
Пр. группа	Pbca	P41212
<i>a</i> , Å	15.7136(10)	17.941(3)
b, Å	19.2881(12)	17.941(3)
<i>c</i> , Å	20.4240(12)	23.271(5)
$V, Å^3$	6190.2(7)	7490(3)
Z	8	4
ρ(выч.), г/см ³	1.366	1.212
μ , MM^{-1}	0.730	0.430
<i>F</i> (000)	2632	2860
Число отражений: измеренных/независимых	65291/9451/7136	29755/6818/4580
(N_1) /наблюдаемых (с $I > 2\sigma(I), N_2$)		
<i>R</i> _{int}	0.045	0.074
Число уточняемых параметров	356	395
<i>R</i> ₁ (по <i>N</i> ₂)	0.030	0.118
<i>wR</i> ₂ (по <i>N</i> ₁)	0.081	0.271
GOOF	1.091	1.076
Остаточная электронная плотность (max/min), e/Å ³	0.391/-0.304	1.753/-1.370

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структур I и II

Комплекс $MnCl_2 c \phi oc \phi u ноксидом L^2 синте$ $зирован реакцией <math>MnCl_2 \cdot 4H_2O c L^2$ в ацетонитриле при 20°С. По результатам РСА, ИК-спектроскопии и элементного анализа получен тетраэдрический нейтральный комплекс состава 1 : 1 $[MnL^2Cl_2]$ (I). Однако, по аналогии с литературными данными [4], не была исключена возможность синтеза катион-анионного комплекса состава 2 : 1 ($[Mn(L^2)_2][MnCl_4]$) (Ia) и имеющего такой же элементный анализ, как и комплекс I. Для проверки этого предположения комплекс I был подвергнут дополнительной перекристаллизации из горячего ацетонитрила, однако после перекристаллизации состав и строение комплекса не изменились, что было подтверждено рентгенофазовым (РФА) и элементным анализами.

Комплекс $Mn(ClO_4)_2$ с *бис*-фосфиноксидом L^2 синтезирован в растворе ацетонитрила и перекристаллизован из этанола. По результатам РСА получен октаэдрический катионный комплекс состава 1 : 2 $[Mn(L^2)_2(EtOH)_2](ClO_4)_2$ (II), который при хранении быстро терял сольватированный этанол. После высушивания при пониженном давлении 1–2 мм рт. ст. был получен комплекс состава $[Mn(L^2)_2(EtOH)_2](ClO_4)_2$ (II), состав которого был подтвержден методом ИК-спектроскопии и элементным анализом.

Рис. 1. Вид $[MnCl_2L^2]$ (а) и $[Mn(EtOH)_2(L^2)_2]^{2+}$ (б) в тепловых эллипсоидах.

Состав комплексов I и II был подтвержден данными рентгеноструктурного анализа (рис. 1). Комплекс I имеет островное строение, где атом металла координирует один бис-фосфиноксид и два аниона хлора. Анионы являются концевыми лигандами, а бис-фосфиноксид – бидентатно-хелатным. Таким образом, координационным полиэдром атома металла является искаженный тетраэдр состава MnO₂Cl₂. Независимая часть ячейки комплекса II содержит атом металла, расположенный на поворотной оси второго порядка, бидентатно-хелатный бис-фосфиноксид, монодентатную концевую молекулу этанола и разупорядоченный по двум положениям внешнесферный перхлорат-анион. Таким образом, комплекс II также является островным, а координационный полиэдр атома металла в виде искаженного октаэдра имеет состав MnO₆.

Длины связей Мп–О в тетраэдрическом комплексе I (2.0440(9)–2.06789(9) Å) короче, чем в октаэдрическом II (2.085(9)–2.112(9) и 2.307(12) Å, соответственно, для фосфиноксида и спирта). Длины связей Мп–Сl составляют 2.3255(4)–2.3295(4) Å. Координация бис-фосфиноксидных групп обусловливает удлинение связей Р=О до 1.494(10)–1.519(10) Å по сравнению с длиной 1.475(1)–1.479(1) Å внекоординированномлиганде, строение которого было опубликовано ранее [16]. Как и в случае комплексов данного лиганда с катионом уранила, строение которых было подтверждено данными PCA [9], в целом различия конформаций некоординиро-

ванного в комплексах марганца(II) можно считать обусловленными вращением двух фрагментов $Ph_2P=O$ относительно одинарной связи $P-C_{диен}$. Помимо этого, вращение относительно связей $P-C_{Ph}$ приводит к различиям во взаимном расположении фенильных колец. На рис. 2 сравниваются конформации лиганда в кристаллах комплекса и чистого вещества.

Потенциально, состав соединения І допускает образование в кристалле галогенных связей и стекинг-взаимодействий. Однако в реальности атомы хлора участвуют в образовании слабых водородных связей C-H...Cl с атомами метильных и фенильных групп, а связи С=С экранированы другими группами и не участвуют в образовании межмолекулярных п...п-взаимодействий. В результате большинство межмолекулярных контактов относится к гидрофобным взаимодействиям Н...Н и Н...С. В структуре II также существуют стерические препятствия к образованию стекингвзаимодействий или межмолекулярных водородных связей, и упаковка молекул реализуется за счет электростатических и гидрофобных взаимодействий.

После перекристаллизации I из ацетонитрила был проведен рентгенофазовый анализ образца. Полнопрофильный Ритвельдовский анализ дифрактограммы подтвердил фазовую чистоту соединения; образец соответствует кристаллической фазе [MnCl₂L²].

Состав и строение полученных комплексов I и II солей марганца с 3,4-*бис*(дифенилфосфинил)-

Рис. 2. Сравнение конформаций лиганда в кристаллах $[MnCl_2L^2]$ (синий) и L · H₂O (красный) [16]. Совмещены атомы координационного полиэдра POC₃. Атомы водорода не изображены.

2,5-диметилгекса-2,4-диена (L²) и ранее описанных комплексов для 2,3-бис(дифенилфосфинил)-1,3-бутадиена (L¹) [4] существенно различаются. Если при использовании лиганда L¹ образуются октаэдрические комплексы состава 1 : 3 $[Mn(L^1)_3]$ - $[MnBr_4]$, то при использовании лиганда L^2 , в зависимости от типа противоиона, образуется тетраэдрический комплекс состава 1 : 1 [MnL²Cl₂] и октаэдрический состава 1 : 2 $[Mn(L^2)_2(EtOH)_2]$ - $(ClO_4)_2$, в котором два координационных положения заняты атомами О этанола. Это различие в составе можно объяснить большим объемом лиганда L^2 из-за четырех метильных групп. Однако возможна и другая причина. При сравнении октаэдрических комплексов $[Mn(L^2)_2(EtOH)_2](ClO_4)_2$ и [Mn(L¹)₃][MnBr₄] [4] видно, что длины связей Mn²⁺ с кислородом фосфинильных групп Mn–O в $[Mn(L^2)_2(EtOH)_2](ClO_4)_2$ заметно меньше, чем таковые связи в $[Mn(L^1)_3][MnBr_4]$, соответственно, 2.085(9)-2.112(9) и 2.140(3)-2.154(3) Å. Поэтому лиганд L^2 расположен ближе к иону Mn^{2+} , что также уменьшает оставшийся объем около Mn²⁺, достаточный для расположения двух молекул этанола, но не более крупного L². Очевидно, что эта причина проявляет себя также и в случае однолигандного комплекса $[MnL^2Cl_2]$.

В результате выполненного исследования были изучены координационные свойства 3,4-*бис*- (дифенилфосфинил)-2,5-диметилгекса-2,4-диена (L^2) с хлоридом марганца(II) и перхлоратом марганца(II) методом рентгеноструктурного анализа. Показано, что введение метильных групп в 1,3-бутадиеновой скелет лиганда 2,3-*бис*(дифенил-фосфинил)-бута-1,3-диена (L^1) существенным образом влияет на его координационные свойства с солями марганца. Установлено, что при взаимодействии лиганда L^2 и MnCl₂ образуется комплекс состава 1 : 1 [MnCl₂L²], а с Mn(ClO₄)₂ – комплекс [Mn(L²)₂(EtOH)₂](ClO₄)₂ состава 1 : 2. Оба комплекса имеют островное строение.

Авторы заявляют, что у них нет конфликта интересов.

БЛАГОДАРНОСТИ

Элементный анализ и регистрация спектров ИК проведены при поддержке Министерства науки и высшего образования Российской Федерации с использованием научного оборудования Центра исследования строения молекул Института элементоорганических соединений РАН.

ФИНАНСИРОВАНИЕ

Работа выполнена при поддержке Российского научного фонда (грант № 20-13-00329).

СПИСОК ЛИТЕРАТУРЫ

- 1. Harriman A. // Coord. Chem. Rev. 1979. V. 28. P. 147.
- 2. *Tang Y.-Y., Wang Z.-H., Li P.-F. et al.* // Inorg. Chem. Front. 2017. V. 4. P. 154.
- 3. *Chen J., Zhang Q., Zheng F.-K. et al.* // Dalton Trans. 2015. V. 44. P. 3289.
- 4. Berezin A.S., Samsonenko D.G., Brel V.K., Artem'ev A.V. // Dalton Trans. 2018. V. 47. P. 7306.
- Bortoluzzi M., Castro J., Trave E. et al. // Inorg. Chem. Commun. 2018. V. 90. P. 105.
- Davydova M.P., Bauer I.A., Brel V.K. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. P. 695.
- 7. *Qin Y.Y., Tao P., Gao L. //* Adv. Opt. Mater. 2019. V. 7. Art 1801160.
- 8. Berezin A.S., Davydova M.P., Bagryanskaya I.Yu. et al. // Inorg. Chem. Commun. 2019. V. 107. Art 107473.
- 9. Брель В.К., Артюшин О.И., Моргалюк В.П. и др. // Коорд. химия. 2022. Т. 48. № 4. С. 206 (Brel V.K., Artyushin O.I., Morgalyuk V.P. et al. // Russ. J. Coord. Chem. V. 48. № 4. Р. 201). https://doi.org/10.1134/S1070328422040017
- 10. Battye T.G.G., Kontogiannis L., Johnson O. et al. //Acta Crystallogr. D. 2011. V. 67. P. 271.
- 11. Evans P. // Acta Crystallogr. D. 2006. V. 62. P. 72.
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3.
- 13. *Sheldrick G.M.* // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3.
- Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. // J. Appl. Cryst. 2009. V. 42. P. 339.
- 15. Jarvinen M. // J. Appl. Cryst. 1993. V. 26. P. 525.
- Chen F., Xia Y., Lin R. et al. // Org. Lett. 2019. V. 21. P. 579.