УЛК 547.772:547.024:541.572.52:546.562:548.737:541.49

КОМПЛЕКСЫ Си(II) С СF₃-ЗАМЕЩЕННЫМИ СПИН-МЕЧЕНЫМИ ПИРАЗОЛАМИ

© 2022 г. А. С. Богомяков^{1,} *, Г. В. Романенко¹, С. В. Фокин¹, Э. Т. Чубакова¹, Е. В. Третьяков², В. И. Овчаренко¹

¹Институт "Международный томографический центр", Новосибирск, Россия ²Институт органической химии им. Н.Д. Зелинского РАН, Москва, Россия *e-mail: bus@tomo.nsc.ru Поступила в редакцию 22.06.2022 г. После доработки 06.07.2022 г.

Принята к публикации 06.07.2022 г.

Синтезированы CF₃-замещенные пиразолилнитроксилы L^{R/CF₃} и комплексы Cu(II) с ними. Методом РСА исследована молекулярная и кристаллическая структура полученных соединений (СССС № 2180506—2180521). Установлено, что введение в пиразольный цикл акцепторной группы СГ₃ сни-

жает донорную способность атома N и координация нитронилнитроксилов L^{R/CF3} в гетероспиновых комплексах осуществляется только посредством атомов О нитронилнитроксильных фрагментов. Маг-

нетохимические исследования цепочечно-полимерных комплексов $[Cu(Hfac)_2L^{R/CF_3}]_n$ (Hfac = reксафторацетилацетонат-анион) в области 2-300 К обнаружили для них наличие ферромагнитного упорядочения при температуре ниже 5 К. Термически индуцированные магнитно-структурные фазовые переходы зарегистрированы в двух полиморфных модификациях молекулярного комплекса

 α -[Cu(Hfac)₂(L^{Me/CF₃})₂] и β-[Cu(Hfac)₂(L^{Me/CF₃})₂]. Данные модификации представляют собой новые примеры молекулярных гетероспиновых комплексов, способных претерпевать термически индуцированные магнитно-структурные фазовые переходы без разрушения кристаллов.

Ключевые слова: нитронилнитроксилы, пиразолы, комплексы меди, гетероспиновые комплексы, молекулярные ферромагнетики

DOI: 10.31857/S0132344X22600242

В ходе систематического исследования дышащих кристаллов на основе цепочечно-полимерных гетероспиновых комплексов бис-(гексафторацетилацетонато)меди Cu(Hfac)₂ со спин-мечеными алкилзамещенными пиразолами (L^R) (схема 1) состава [Cu(Hfac)₂ L^{R}], а также их сольватов $[Cu(Hfac)_2L^R] \cdot x$ Solv были зарегистрированы на термомагнитных кривых разнообразные магнитные аномалии, присущие природе данного класса соединений [1-5]. Было установлено, что наблюдаемые аномалии чувствительны даже к незначительным изменениям в упаковке соединений [3, 5]. Аналогичные магнитные эффекты проявляли и многоспиновые соединения [Cu(Hfac)₂L^{R/R'}] с диалкилзамещенными пиразолами (L^{R/R'}) (схема 1), исследование которых позволило не только существенно расширить круг магнитноактивных соединений, но и обнаружить комплексы, в кристаллах которых при изменении температуры реализуются обратимые топохимические реакции

полимеризации-деполимеризации и деполимеризации-полимеризации (single crystal to single crystal transformation, SC \leftrightarrow SC), сопровождающиеся гистерезисными эффектами на кривых зависимости эффективного магнитного момента (µ_{эфф}) от температуры [6-8]. Были также обнаружены ациклические олигомерные молекулярные комплексы Cu(II) со спин-мечеными пиразолами необычного состава 5:4 и циклические биядерные комплексы, способные претерпевать спиновые переходы [9].

Поскольку одним из благоприятных факторов для возникновения механической активности в кристаллах служит присутствие фторированных компонентов [10], мы предприняли попытку получения и исследования гетероспиновых комплексов, содержащих наряду со стехиометрически нежесткой фторированной акцепторной матрицей [Cu(Hfac)₂], фторированное производное спин-меченого пиразола ($\mathbf{L}^{\mathbf{R}/\mathbf{CF}_3}$) (схема 1).

В настоящей работе мы описываем методики синтеза нитронилнитроксилов L^{R/CF3}, комплексов Cu(Hfac)₂ с этими радикалами и результаты исследования строения и магнитных свойств полученных соединений.

R = Me, Et, n-Pr, i-Pr, n-Bu

R, R' = Me, Et, n-Pr, n-BuCxema 1.

R = Me, Et, n-Pr

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Гидрат сульфата 2,3-*бис*(гидроксиамино)-2,3диметилбутана [11] и 4-формил-3-трифторметил-1*H*-пиразол [12] синтезированы по описанным в литературе методикам. Коммерческие реактивы и растворители использовали без дополнительной очистки. ТСХ выполняли на пластинках Siliса Gel 60 F_{254} с закрепленным слоем сорбента на алюминиевой фольге. Для колоночной хроматографии применяли силикагель с размером зерен 0.063–0.200 мм (Merck). Элементный анализ выполнен на микроанализаторе Euro EA 3000. ИКспектры образца в таблетках КВг записывали на спектрофотометре Bruker Vector-22.

Синтез 2-(3-трифторметил-1*H*-пиразол-4-ил)-4,4,5,5-тетраметил-4,5-дигидро-1*H*-имидазол-3оксид-1-оксил (L^{H/CF_3}). К 4-формил-3-трифторме-

тил-1*H*-пиразолу (0.67 г, 4.0 ммоль) прибавляли раствор гидрата сульфата 2,3-бис-гидроксиламино-2,3-диметилбутана (1.30 г, 4.8 ммоль) в 13 мл воды, реакционную смесь перемешивали 2 ч и обрабатывали NaHCO₃ до прекращения выделения СО₂. Выделившийся 2-(3-трифторметил-1*H*-пиразол-4-ил)-4,4,5,5-тетраметил-имидазолидин-1,3диол (диол) отфильтровывали, промывали водой и ацетоном, сушили и перекристаллизовывали из смеси EtOAc с гексаном (3:1). Выход 0.85 г (74%). К перемешиваемому раствору диола (0.85 г, 2.9 ммоль) в CH₃OH (18 мл) прибавляли порциями MnO₂ (4.2 г, 49 ммоль) в течение 10 мин, затем реакционную смесь перемешивали в течение 1.5 ч при комнатной температуре. Реакционную смесь фильтровали, осадок промывали CH₃OH. Фильтрат упаривали, остаток хроматографировали на колонке с силикагелем (1.5 × 15 см). Фракцию бирюзового цвета, выходившую первой, упаривали, остаток кристаллизовали из смеси эфира с гексаном и получали нитрозопроизводное – N-(2,3-диметил-3-

КООРДИНАЦИОННАЯ ХИМИЯ том 48 № 12 2022

нитрозобутан-2-ил)-1-(3-(трифторметил)-1*H*-пиразол-4-ил)метанимин-оксид (L*) (схема 2), строение которого установлено методом РСА. Выход 44 мг (5.3%), $T_{пл} = 134 - 135^{\circ}$ С.

ИК-спектр (v, см⁻¹): 3130, 3072, 2998, 2924, 2361, 1604, 1563, 1480, 1396, 1369, 1321, 1259, 1182, 1127, 1062, 937, 919, 838, 759, 724, 669, 636.

Найдено, %: С 45.3; Н 4.5; N 19.2; F 20.2. Для С₁₁Н₁₄N₄O₂F₃

вычислено, %: С 45.4; H 4.8; N 19.2; F 19.6.

Вторую основную фракцию фиолетового цве-

та также упаривали и выделяли нитроксил L^{H/CF_3} . Выход 770 мг, 91%, $T_{IIJ} = 182 - 183^{\circ}C$ (эфир-гексан).

ИК-спектр (v, см⁻¹): 3113, 2990, 2362, 1597, 1510, 1460, 1403, 1359, 1279, 1222, 1169, 1122, 1083, 1051, 940, 805, 739, 649.

Найдено, %: С 44.9; Н 5.1; N 19.4; F 19.4. Для С₁₁Н₁₄F₃N₄O₂ вычислено, %: С 45.4; H 4.8; N 19.2; F 19.6.

Синтез 2-(1-метил-3-трифторметил-1H-пиразол-4-ил)-4,4,5,5-тетраметил-4,5-дигидро-1H-имидазол-3-оксид-1-оксил (L^{Me/CF_3}). NaH (60% в минеральном масле, 34 мг, 0.86 ммоль) прибавляли в атмосфере аргона к перемешиваемому при ком-

натной температуре раствору L^{H/CF_3} (245 мг, 0.86 ммоль) в ДМФА (3 мл). Реакционную смесь перемешивали в течение 30 мин, прибавляли диметилсульфат (102 мкл, 1.0 ммоль) и перемешивали еще 30 мин. Растворитель отгоняли в вакууме при температуре бани ~70°С, остаток хроматографировали на колонке с силикагелем $(1.5 \times 18 \text{ см})$, продукт элюировали этилацетатом. Фракцию фиолетового цвета упаривали, остаток кристаллизовали из смеси CH_2Cl_2 с гексаном (1 : 5). Выход 160 мг (62%), $T_{\pi\pi} = 110 - 111^{\circ}$ C.

ИК-спектр (v, см⁻¹): 3139, 3034, 2993, 2947, 1597, 1498, 1480, 1457, 1412, 1399, 1375, 1359, 1306, 1285, 1243, 1222, 1070, 1151, 1136, 1080, 1059, 1020, 870, 838, 768, 739, 645, 616, 588.

Найдено, %: C 46.7; H 5.1; N 18.1; F 18.4. Для C₁₂H₁₆N₄O₂F₃ вычислено, %: С 47.2; H 5.3; N 18.3; F 18.7.

Синтез 2-(1-этил-3-трифторметил-1Н-пиразол-4-ил)-4,4,5,5-тетраметил-4,5-дигидро-1Н-имидазол-З-оксид-1-оксил (L^{Et/CF3}) выполняли по аналогичной методике с использованием EtBr (0.11 мл, 1.4 ммоль). Выход 0.19 г (85%), *T*_{пл} = 128-129°C.

ИК-спектр (v, см⁻¹): 3095, 2985, 2944, 1604, 1508, 1484, 1452, 1404, 1371, 1324, 1251, 1238, 1176, 1129, 1106, 1089, 1062, 1025, 962, 861, 828, 767, 741, 656.

Найдено, %: C 48.5; H 5.3; N 17.5: F 18.2. Для C₁₃H₁₈F₃N₄O₂ вычислено, %: C 48.9; H 5.7; N 17.5; F 17.8.

Синтез 2-(1-пропил-3-трифторметил-1Н-пиразол-4-ил)-4,4,5,5-тетраметил-4,5-дигидро-1Н-имидазол-З-оксид-1-оксил (L^{Pr/CF3}) выполняли по аналогичной методике с использованием PrBr (0.073 мл, 0.80 ммоль). Выход 0.15 г (82%), T_{пп} = $= 106 - 107^{\circ}C.$

ИК-спектр (v, см⁻¹): 3126, 2990, 2943, 2878, 1604, 1509, 1490, 1450, 1406, 1370, 1327, 1281, 1240, 1220, 1143, 1061, 1017, 901, 863, 831, 741, 653.

Найдено, %: C 50.4; N 17.1; F 18.2. H 5.3; Для C₁₄H₂₀N₄O₂F₃ вычислено, %: С 50.4: H 6.0; N 16.8; F 17.1.

Синтез [Cu(Hfac)₂ L^{Me/CF_3}]_n (I). К раствору L^{Me/CF_3} (0.0300 г, 0.1 ммоль) в 2 мл CH₂Cl₂ прибавляли раствор Cu(Hfac)₂ (0.0477 г, 0.1 ммоль) в 2 мл гексана, при этом реакционная смесь приобретала

интенсивный коричнево-красный оттенок. Реакционную смесь выдерживали при -18°C в течение ~130 ч. Образовавшиеся кристаллы темнокоричневого цвета в форме призм отфильтровывали, промывали охлажденным гексаном и сушили на воздухе. Выход 0.070 г (90%).

Найдено, %:	C 33.2;	H 2.8;	N 7.3;	F 36.3.
Для C ₂₂ H ₁₈ N ₄ O	₆ F ₁₅ Cu			
вычислено, %:	C 33.7;	Н 2.3;	N 7.2,	F 36.4.

Синтез [Cu(Hfac)₂ L^{Et/CF_3}], (II). Смесь Cu(Hfac)₂ (0.0674 г, 0.14 ммоль) и $L^{\rm Et/CF_3}$ (0.0313 г, 0.1 ммоль) растворяли в 2 мл толуола. Часть растворителя медленно отдували током воздуха до объема ~1 мл, после чего реакционную смесь выдерживали при -18°С в течение 40 ч. Кристаллы коричневого цвета отфильтровывали, промывали охлажденным гексаном и высушивали на воздухе. Выход 0.039 г (50%).

Найдено, %: C 35.1; H 2.7; N 6.7; F 35.7. Для C₂₃H₂₀N₄O₆F₁₅Cu вычислено, %: С 34.7; H 2.5; N 7.0; F 35.8.

Синтез [Cu(Hfac)₂ L^{Pr/CF_3}]_{*n*} (III). Смесь Cu(Hfac)₂ (0.0472 г, 0.1 ммоль) и L^{Pr/CF3} (0.0301 г, 0.1 ммоль) растворяли в 4 мл гексана. Часть растворителя медленно отдували током воздуха до объема ~1 мл, раствор выдерживали при -18°C в течение 48 ч. Кристаллы коричневого цвета отфильтровывали, промывали охлажденным гексаном и сушили на воздухе. Выход 0.028 г (36%).

Найдено, %:	C 35.6;	H 2.6;	N 7.0;	F 35.3.
Для C ₂₄ H ₂₂ CuF	$_{15}N_4O_6$			
вычислено, %:	C 35.5;	Н 2.7;	N 6.9;	F 35.1.

Синтез α -[Cu(Hfac)₂(L^{Me/CF₃})₂] (IV). Навеску Си(Hfac)₂ (0.0300 г, 0.06 ммоль) растворяли в 1.5 мл Еt₂O. Навеску L^{Me/CF₃} (0.0200 г, 0.07 ммоль) растворяли в 3 мл Et₂O. К раствору L^{Me/CF₃} прибавляли раствор Cu(Hfac)2, при этом реакционная смесь приобретала интенсивный красно-коричневый оттенок. После тщательного перемешивания к реакционной смеси прибавляли 2 мл толуола и выдерживали ее при -18°C в течение ~17 сут. Образовавшиеся кристаллы темно-винного цвета отфильтровывали, промывали охлажденным гек-

КОМПЛЕКСЫ Сu(II)

Параметр	Значение					
	L ^{H/CF3}	L ^{Me/CF3} -a	L ^{Me/CF3} -b	L ^{Me/CF3} -c	L^{Et/CF_3}	L^{Pr/CF_3}
М	291.26		305.29		319.32	333.34
<i>Т</i> , К	296		296		296	296
Пр. группа, Z	$P2_{1}/c, 4$	$P\overline{1},2$	$P2_{1}/c, 4$	$P2_{1}/c, 8$	$P2_{1}/c, 4$	$P2_1/c, 8$
a, Å b, Å c, Å	10.3659(9) 10.1986(8) 13.1267(13)	7.4217(7) 10.1430(10) 10.1759(9)	10.2998(11) 20.745(2) 7.2967(8)	7.1341(14) 11.872(2) 35.062(7)	10.492(4) 13.397(5) 11.253(4)	7.7542(11) 17.776(2) 12.2262(18)
α, град		93.043(6)				
β, град У град	110.696(6)	100.238(6) 107.590(6)	102.072(7)	90.00(3)	100.50(3)	90.998(12)
$V, Å^3$	1298.2(2)	713.91(12)	1524.6(3)	2969.6(10)	1555.3(10)	1685.0(4)
ρ(выч.) г/см ³	1.490	1.420	1.330	1.366	1.364	1.314
θ _{max} , град	45.234	28.335	66.075	23.245	28.502	28.409
I _{hkl} измеренных/ независимых R _{int}	3798/1061 0.042	11870/3519 0.0491	7619/2459 0.0308	7124/2617 0.0341	13771/3850 0.1168	15 197/4176 0.1697
<i>I_{hkl}</i> наблюдаемых (<i>I</i> > 2σ(<i>I</i>))/ <i>N</i>	921/186	1765/195	2201/218	1900/488	882/227	1054/208
GOOF	1.027	0.916	1.026	0.989	0.645	0.971
$R_1/wR_2 \ (I \ge 2\sigma(I))$	0.0358/0.0816	0.0404/0.0944	0.0515/0.1520	0.0546/0.1469	0.0425/0.0661	0.0741/0.1296
R_1/wR_2	0.0539/0.0905	0.0928/0.1085	0.0555/0.1570	0.0724/0.1596	0.2624/0.0918	0.3133/0.1894
CCDC	2180506	2 180 509	2 180 516	2180511	2 180 520	2 180 519

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структур нитроксилов L^{R/CF3}

саном и сушили на воздухе. Выход 0.014 г (39%). $T_{\text{пл}} = 116 - 117^{\circ}\text{C}.$

Найдено, %: С 39.2; Н 3.2; N 10.4; F 30.6. Для С₃₄Н₃₄N₈O₈F₁₈Cu вычислено, %: С 37.5; Н 3.1; N 10.3; F 31.4.

Синтез β-[Cu(Hfac)₂(L^{Me/CF_3})₂] (V). Смесь навесок Cu(Hfac)₂ (0.0318 г, 0.07 ммоль) и L^{Me/CF_3} (0.0400 г, 0.13 ммоль) растворяли в 2 мл толуола. Реакционную смесь энергично перемешивали, затем полученный раствор выдерживали при -30°C в течение ~20 сут. Образовавшиеся кристаллы отфильтровывали, промывали охлажденным гексаном и сушили на воздухе. Выход 0.008 г (11%).

РСА. Наборы отражений для монокристаллов соединений получены на автоматических дифрактометрах производства Bruker AXS – SMART APEX (Мо K_{α} -излучение) с гелиевым охладителем открытого потока Helix (Oxford Cryosystems) и Apex Duo (Си K_{α} -излучение) с криосистемой Cobra (Oxford Cryosystems) по стандартной методике. Структуры расшифрованы прямыми методами и

КООРДИНАЦИОННАЯ ХИМИЯ том 48 № 12 2022

уточнены полноматричным методом наименьших квадратов анизотропно для неводородных атомов. Атомы Н были частично локализованы при синтезе разностной электронной плотности (остальные — рассчитаны геометрически) и включены в уточнение в модели наездника. Все расчеты проводили с использованием пакета программ SHELX [13]. Кристаллографические характеристики исследованных соединений и детали экспериментов представлены в табл. 1–3.

Полные наборы рентгеноструктурных данных депонированы в Кембриджском банке структурных данных (№ 2180506–2180521, http://www. ccdc.cam.ac.uk).

Магнитные измерения проводили на СКВИДмагнитометре MPMSXL (Quantum Design) в интервале температур 2–300 К в магнитном поле до 5 кЭ. Парамагнитные составляющие магнитной восприимчивости (χ) определяли с учетом диамагнитного вклада, оцененного по схеме Паскаля. Эффективный магнитный момент ($\mu_{эф\phi}$) вычисляли по формуле $\mu_{э\phi\phi} = [3k\chi T/(N_A\mu_B^2)]^{1/2} \approx (8\chi T)^{1/2}$, где N_A , μ_B и k – число Авогадро, магнетон Бора и постоянная Больцмана соответственно.

-	Значение					
Параметр	L*	$[Cu(Hfac)_2 L^{Me/CF_3}] (I)$	$[Cu(Hfac)_2 L^{Et/CF_3}] (II)$	$[Cu(Hfac)_2 L^{Pr/CF_3}] (III)$		
М	292.27	782.94	796.97	810.99		
<i>Т</i> , К	296	296	296	296		
Пр. группа, Z	$P2_1/c, 4$	<i>P</i> 1,2	Pbca, 8	Pbca, 8		
a, Å b, Å c, Å	9.552(2) 10.951(3) 13.308(4)	10.2987(5) 12.4776(6) 13.0064(6)	19.0454(5) 16.0497(5) 20.6628(6)	18.878(4) 16.199(4) 21.179(5)		
α, град		80.128(2)	90	90		
β, град	100.27(2)	84.107(2)	90	90		
ү, град		69.199(2)	90	90		
$V, Å^3$	1369.8(6)	1537.70(13)	6316.1(3)	6477(3)		
ρ(выч.) г/см ³	1.417	1.691	1.676	1.663		
θ _{max} , град	28.371	28.469	55.696	45.211		
I _{hkl} измеренных/ независимых R _{int}	12379/3409 0.0584	17865/6995 0.0563	36473/4031 0.0921	51 137/2626 0.1062		
<i>I_{hkl}</i> наблюдаемых (<i>I</i> > 2σ(<i>I</i>))/ <i>N</i>	1163/237	3038/536	2884/595	1643/452		
GOOF	0.721	1.013	0.867	1.027		
$R_1/wR_2 \ (I \ge 2\sigma(I))$	0.0398/0.0782	0.0524/0.1084	0.0385/0.0966	0.0689/0.1779		
R_1/wR_2	0.1452/0.1020	0.1483/0.1412	0.0569/0.1050	0.1151/0.2182		
CCDC	2 180 507	2 180 510	2 180 512	2 180 517		

Таблица 2. Кристаллографические данные, параметры эксперимента и уточнения структур L*, I-III

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Синтез 2-(1-*R*-3-трифторметил-1*H*-пиразол-4-ил)-4,4,5,5-тетраметил-4,5-дигидро-1*H*-имидазол-3-оксид-1-оксилов (L^{*R*/CF₃}) включал конденсацию 4-формил-3-трифторметил-1*H*-пиразола с *бис*(гидроксиламином), приводящую к образованию дигидрокси-производного, его окисление в нитронилнитроксил L^{H/CF_3} и последующее алкилирование L^{H/CF_3} (схема 3).

 $RA = Me_2SO_4$, EtBr или PrBr

Схема 3.

Реакция алкилирования замещенного пиразо-

ла L^{H/CF_3} протекала региоселективно с образованием только одного изомера, содержащего CF_3 -группу в положении 3 ароматического цикла. Об

этом свидетельствуют данные рентгеноструктурного исследования монокристаллов L^{R/CF_3} . Длины связей N–O во всех L^{R/CF_3} находятся в интервале 1.273(4)–1.289(4) Å, типичном для нитронилнит-

КОМПЛЕКСЫ Сu(II)

-	Значение						
Параметр	α -[Cu(Hfac) ₂ (L ^{Me/F₃}) ₂] (IV)		β -[Cu(Hfac) ₂ (L ^{Me/F₃}) ₂] (V)				
М	108	8.23		1088.23			
Т, К	296	120	296	240	150	120	
Пр. группа, Z	$P\overline{1}$,2		$P\overline{1}$,2		
a, Å b, Å c, Å	10.3895(2) 10.7909(2) 12.1712(2)	10.3149(3) 10.5119(3) 12.0415(3)	9.9143(13) 10.3735(13) 12.4117(17)	9.8761(5) 10.3715(5) 12.3466(6)	9.8143(3) 10.3698(3) 12.2101(3)	9.8144(3) 10.3851(6) 12.1083(4)	
α, град β, град γ, град <i>V</i> Å ³	114.9670(10) 95.5240(10) 107.4420(10) 1140_32(4)	114.6410(10) 96.652(2) 107.010(2) 1091.54(5)	71.403(9) 68.312(8) 82.932(9) 1124 2(3)	71.292(3) 67.635(3) 82.894(3) 1107 74(10)	71.068(2) 66.787(2) 82.912(2) 1080 26(6)	103.196(3) 113.618(2) 97.311(3) 1067 29(8)	
и, л О(выч.) г/см ³	1.585	1.656	1.607	1.631	1.673	1.693	
θ _{max} , град	28.028	28.484	51.763	28.534	28.404	28.368	
I_{hkl} измеренных/ независимых R_{int}	19717/5494 0.0501	19535/5394 0.0711	10752/2352 0.0318	18983/5450 0.0500	17944/5296 0.0760	18246/5264 0.0920	
<i>I_{hkl}</i> наблюдаемых (<i>I</i> > 2σ(<i>I</i>))/ <i>N</i>	3749/385	4018/386	2055/367	3256/367	2980/368	2516/342	
GOOF	0.953	0.894	1.037	0.925	0.841	0.863	
$R_1/wR_2 (I \ge 2\sigma(I))$	0.0356/0.0879	0.0378/0.0885	0.0376/0.1028	0.0402/0.0929	0.0429/0.0772	0.0473/0.0947	
R_1/wR_2	0.0579/0.0954	0.0564/0.0950	0.0425/0.1071	0.0792/0.1031	0.0849/0.0865	0.7782/0.1231	
CCDC	2180508	2 180 521	2 180 518	2 180 515	2180514	2 180 513	

Таблица 3. Кристаллографические данные, параметры эксперимента и уточнения структур IV и V

роксильных радикалов [14]. В структуре L^{H/CF_3} , в отличие от L^{R/CF_3} , молекулы образуют цепи за счет H-связей между иминной группой пиразола и одним из атомов O_{NO} (рис. 1). Для L^{Me/CF_3} удалось выделить три полиморфные модификации со-

Рис. 1. Строение цепи L^{H/CF_3} .

КООРДИНАЦИОННАЯ ХИМИЯ том 48 № 12 2022

единения ($\mathbf{L}^{\text{Me/CF}_3}$ -**a**-**c**), в которых молекулы различаются значениями углов между плоскостями пиразольного цикла и парамагнитного фрагмента { CN_2O_2 } (табл. 4), упаковкой молекул и характером межмолекулярных контактов (рис. 2). Кратчайшие расстояния между парамагнитными центрами (**ПМЦ**) – атомами O_{NO} соседних молекул во всех $\mathbf{L}^{\text{R/CF}_3}$ превышают 3.5 Å.

Температурные зависимости $\mu_{3\phi\phi}$ для нитроксилов L^{R/CF3} (R = H, Me, Et, Pr) представлены на рис. 3. Значения $\mu_{3\phi\phi}$ при 300 К близки к теоретической чисто спиновой величине 1.73 μ_B для монорадикала. При понижении температуры $\mu_{3\phi\phi}$ сначала постепенно, а ниже 100 К резко уменьшается, что указывает на доминирование антиферромагнитных обменных взаимодействий между спинами нитроксилов. Экспериментальные зависимости $\mu_{3\phi\phi}(T)$ хорошо описываются выражением, полученным при суммировании вкладов от обменно-связанных димеров (спин-Гамильтониан $H = -2JS_1S_2$) и монорадикалов, магнитная восприимчивость χ которых подчиняется закону Кюри-Вейсса:

Соединение	N–О, Å	∠CN ₂ O ₂ -Рz, град
L ^{H/CF3}	1.283(3), 1.290(3)	40.3
L^{Me/CF_3} -a	1.281(2), 1.270(2)	34.9
L ^{Me/CF3} -b	1.275(5), 1.284(5) 1.276(4), 1.267(4)	64.8 68.6
L^{Me/CF_3} -c	1.276(2), 1.281(2)	63.1
L^{Et/CF_3}	1.277(3), 1.287(3)	46.9
L^{Pr/CF_3}	1.273(4), 1.289(4)	50.0

Таблица 4. Стереохимические характеристики нитроксилов L^{R/CF3}

$$\chi = (1 - p)\chi_{\text{димер}} + p \frac{g^2 0.375}{4(T - \theta)}, \quad \text{где} \quad \chi_{\text{димер}} = \frac{3N\mu_B^2 g^2}{3kT} \frac{1}{3 + e^{-2J/kT}}$$

Оптимальные значения параметров обменного взаимодействия J, доли p и постоянной Вейсса θ составляют -24.7 см⁻¹, 3.4% и 0 К (фикс.) для L^{H/CF3}; -12.0 см⁻¹, 31% и 0 К (фикс.) для L^{Me/CF3}; -13.9 см⁻¹, 2.3% и 0 К (фикс.) для L^{Et/CF3} и -19.1 см⁻¹, 90% и 0.1 К для L^{Pr/CF3}. В случае L^{Me/CF3} образец, по-видимому, является смесью модификаций, в одной из которых нитроксилы образуют обменно-связанные димеры (69%), тогда как во второй обменные взаимодействия между спинами радикалов пренебрежимо малы (31%). Хотя для L^{Pr/CF_3} полиморфные молификации не были обнаружены, магнетохимическое исследование показало, что в образце, по-видимому, присутствует примесь модификации L^{*Pr/CF3} (10%), имеющей другую кристаллическую структуру, в которой реализуются достаточно сильные антиферромагнитные взаимодействия. Основная же масса образца представляет собой фазу со слабыми ферромагнитными обменными взаимодействиями между спинами нитроксилов, что согласуется с данными PCA о строении кристаллов L^{Pr/CF₃}.

При взаимодействии эквимольных количеств $Cu(Hfac)_2 c L^{R/CF_3} (R = Me, Et, Pr)$ были получены близкие по строению цепочечно-полимерные координационные соединения $[Cu(Hfac)_2 L^{R/CF_3}]_n$ (I–III). В качестве примера на рис. 4 представлен фрагмент цепочки $[Cu(Hfac)_2 L^{Me/CF_3}]_n$. Парамагнитные лиганды выполняют бидентатно-мостиковую функцию за счет координации атомов O_{NO} нитронилнитроксильного фрагмента соседними фрагментами $Cu(Hfac)_2$. Такой способ координации нехарактерен для моно- и диалкилпиразолил

замещенных нитроксилов L^R и $L^{R/R'}$, но реализовывался в комплексах гексафторацетилацетонатов 3*d*-металлов с алкил-, изоксазолил- и фенилзамещенными нитронилнитроксилами [15–22].

Геометрические характеристики центросимметричных координационных узлов CuO₆ в комплексах I–III близки: плоско-квадратное окружение ионов Cu(II) из четырех атомов O_{Hfac} дополняется до искаженно-октаэдрического атомами O_{NO} двух нитроксилов. Расстояния Cu–O_{NO} велики – 2.344(2)–2.669(6) Å, значения углов \angle CuO_{NO}N лежат в интервале 129.6(2)–152.0(2) (табл. 5).

Экспериментальные зависимости $\mu_{abb}(T)$ для комплексов I-III имеют сходный характер (рис. 5). При 300 К значения $\mu_{
m ob\phi}$ лежат в интервале 2.7-2.8 µ_в и при понижении температуры сначала постепенно, а ниже 100 К резко возрастают, что указывает на наличие ферромагнитных обменных взаимодействий между спинами парамагнитных цен-TDOB. Это соответствует данным РСА об аксиальной координации нитроксильных фрагментов ионами Cu²⁺ с расстояниями 2.3–2.4 Å. В соответствии с данными теоретических исследований [23, 24], подобная геометрия координационных узлов обеспечивает ортогональность магнитных орбиталей в обменных кластерах {>N-•О-Cu-O·-N<}. Анализ экспериментальных зависимостей $\mu_{abb}(T)$ проводили с использованием выражения магнитной восприимчивости для ферромагнитно связанных цепей [25] с учетом межцепочечных взаимодействий *zJ* в приближении молекулярного поля. Оптимальные значения параметров обменного взаимодействия J и zJ' coставляют 6.5 см⁻¹ и -0.28 см⁻¹ для комплекса I, 2.7 см⁻¹ и -0.22 см⁻¹ для II и 2.4 см⁻¹ и -0.17 см⁻¹ для III. Следует отметить, что уменьшение энергии

КООРДИНАЦИОННАЯ ХИМИЯ том 48 № 12 2022

Рис. 2. Кратчайшие контакты и упаковки молекул в модификациях L^{Me/CF_3} : L^{Me/CF_3} -a (a); L^{Me/CF_3} -b (б, в); L^{Me/CF_3} -c (г, д).

межцепочечных обменных взаимодействий коррелирует с увеличением размера алкильного заместителя в L^{R/CF₃}.

В области низких температур зависимости намагниченности от напряженности внешнего магнитного поля для комплексов I–III нелинейны (рис. 6). При 2 К в магнитных полях выше 20 кЭ намагниченность выходит на насыщение ~2 µ_B, что указывает на ферромагнитное упорядочение спинов. Значение намагниченности насыщения хорошо согласуется с теоретической величиной 2.08 μ_B для двух парамагнитных центров на формульную единицу – иона Cu(II) со спином S = 1/2 при g = 2.15 и нитроксила со спином S = 1/2 при g = 2.00. При 5 К намагниченность приближается к насыщению в магнитных полях выше 40 кЭ. Таким образом, для комплексов I–III можно оценить температуру Кюри как $T_C \leq 3$ К.

Для L^{Me/CF₃} помимо цепочечно-полимерного комплекса в результате варьирования соотноше-

Рис. 3. Зависимости $\mu_{3\phi\phi}(T)$ для L^{R/CF3} (R = H, Me, Et, Pr). Точки – экспериментальные значения, сплошные линии – теоретические кривые.

ния реагентов удалось выделить две полиморфные модификации центросимметричного молекулярного комплекса [Cu(Hfac)₂(L^{Me/CF_3})₂]. Синтетические сложности не позволили выделить чистые фазы в необходимых для их полной характеризации количествах. По этой причине магнитные свойства были исследованы только для одного полиморфа – α -[Cu(Hfac)₂(L^{Me/CF_3})₂] (IV). Структуру же удалось решить как для как α -, так и для β -модификции (V).

Молекулы α - и β -модификаций различаются длинами связей Cu $-O_{NO}$, равными 2.469(2) Å в IV и 2.317(2) Å в V, значениями межплоскостных углов \angle CN₂O₂-Pz (рис. 7) и межмолекулярными расстояниями между некоординированными атомами O_{NO} (табл. 6). Рентгеноструктурное исследование в области 300–120 К показало, что для

 α -фазы изменение длин связей Cu–O_{NO} незначительно ($\Delta = 0.041$ Å), но при этом заметно – на 0.148 Å – сокращаются межмолекулярные расстояния O_{NO}...O_{NO}. В структуре β-фазы при охлаждении до 120 К длины связей Cu–O_{NO} укорачиваются на 0.262 Å при соответствующем удлинении одной из осей O_{Hfac}–Cu–O_{Hfac} ($\Delta = 0.250$ Å), т.е. в бипирамиде {CuO₆} происходит смена направления удлиненной ян-теллеровской оси. Такое сокращение расстояний в трехспиновых кластерах {-•O–Cu–O•–} приводит к смене характера обменных взаимодействий со слабого ферромагнитного на сильный антиферромагнитный.

На рис. 8а приведена экспериментальная зависимость $\mu_{\rm эф\phi}(T)$ для α -модификации IV. Значение $\mu_{\rm эф\phi}$ при 300 K, равное 3.12 $\mu_{\rm B}$, согласуется с теоретическим значением 3.0 $\mu_{\rm B}$ для трех невзаимодействующих ПМЦ со спинами S = 1/2 при g = 2. При понижении температуры ниже 100 K значение $\mu_{\rm эф\phi}$ резко уменьшается, достигая при 19 K значения 1.84 $\mu_{\rm B}$, что соответствует одному ПМЦ со спином S = 1/2 при среднем значении g = 2.12и свидетельствует о возникновении антиферромагнитных обменных взаимодействий, характерных для экваториальной координации нитроксилов. Дальнейшее уменьшение $\mu_{\rm эф\phi}$ до 1.57 $\mu_{\rm B}$ при 5 K связано с межмолекулярными обменными взаимодействиями между ПМЦ.

Следовательно, в твердых фазах обоих полиморфов IV и V и реализуются термически индуцируемые фазовые переходы, для α -фазы, по данным магнетохимических измерений, переход происходит в области температур 100–20 К, тогда как для β -фазы основные структурные изменения происходят в температурном интервале 250–120 К. Для сравнения на рис. 86 показаны изменения доли высокотемпературной фазы при понижении температуры для IV и V, рассчитанные по экспериментальным данным. Доля кластеров ω , в которых произошел структурный переход, для α -модификации оценивалась из анализа зависимости

Рис. 4. Фрагмент цепочки в структуре [Cu(Hfac)₂L^{Me/CF₃}]_{*n*} при 295 К. Здесь и далее серым цветом показан углеродный скелет, желто-зеленым – атомы F, голубым – Cu, красным – O, синим – N; атомы H, CF₃-группы Hfac и Me-группы тетраметильного фрагмента не показаны.

КОМПЛЕКСЫ Сu(II)

-	Значение						
Параметры	[Cu(Hfac) ₂ (L^{Me/CF_3}] (I)	[Cu(Hfac) ₂ (L^{Et/CF_3}] (II)	[Cu(Hfac) ₂ (L^{\Pr/CF_3})] (III)	
Cu-O _{NO}	2.496(2)	2.513(2)	2.344(2)	2.649(3)	2.368(6)	2.669(6)	
Cu–O _{Hfac}	1.927(2) 1.931(2)	1.932(2) 1.946(2)	1.926(2)-1.937(2)		1.920(5)-1.951(5)		
∠CuON	152.0(2)	129.6(2)	131.2(2)	145.4(2)	132.7(5)	147.2(6)	
N–O	1.278(3)	1.279(3)	1.290(3)	1.279(3)	1.292(7)	1.266(7)	
$\angle CN_2O_2$ -Pz	37	.4	38	3.1	39	9.6	

Таблица 5. Значения избранных длин связей (Å) и углов (град) в полимерно-цепочечных комплексах I–III

Таблица 6. Избранные значения длин связей (Å) и углов (град) в комплексах IV и V

-	Значение						
Параметр	α -[Cu(Hfac) ₂ ($[L^{Me/CF_3})_2]$ (IV)		β -[Cu(Hfac) ₂	$(L^{Me/CF_3})_2](V)$		
<i>Т</i> , К	296	120	296	240	150	120	
Cu–O _{NO}	2.469(1)	2.428(1)	2.316(2)	2.280(2)	2.175(2)	2.054(2)	
N-O	1.286(2) 1.271(2)	1.287(2) 1.277(2)	1.292(3) 1.273(3)	1.288(2) 1.266(2)	1.300(2) 1.266(2)	1.303(3) 1.263(3)	
Cu–O _{Hfac}	1.934(1) 1.940(1)	1.940(1) 1.940(1)	1.959(2) 1.975(2)	1.968(1) 1.992(1)	1.973(2) 2.073(2)	1.975(2) 2.225(2)	
$\angle CN_2O_2Pz$	39.2	39.6	27.0	25.5	24.7	25.3	
-•00•-	3.706(2)	3.558(2)	4.707(4)	4.765(3)	4.786(3)	4.758(3)	

 $\mu_{a\phi\phi}(T)$ с использованием выражения $\mu_{a\phi\phi}^2 = (1 - \omega)(\mu_{LT})^2 + \omega(\mu_{HT})^2$, где $\mu_{LT} = 1.84 \,\mu_B$, $\mu_{HT} = 3.12 \,\mu_B - 3$ начения $\mu_{a\phi\phi}$ для низкоспиновых и высокоспиновых модификаций соответственно). Для β -мо-

Рис. 5. Зависимости $\mu_{\Rightarrow \oplus \oplus}(T)$ для [Cu(Hfac)₂L^{R/CF₃}]_{*n*}, R = Me (**I**), Et (**O**), Pr (**A**). Точки – экспериментальные значения, сплошные линии – теоретические кривые.

КООРДИНАЦИОННАЯ ХИМИЯ том 48 № 12 2022

дификации уменьшение доли высокоспиновых кластеров оценивалось по относительному изменению расстояний Cu– O_{NO} , в предположении, что расстояние Cu– O_{NO} 2.469(1) Å (как в α -фазе) соответствует 100% содержанию высокоспиновых, а 1.99 Å – 100% низкоспиновых кластеров. Фактически полиморфы IV и V представляют собой новые примеры молекулярных гетероспиновых комплексов, способных претерпевать термически индуцированные магнитно-структурные фазовые переходы без разрушения кристаллов (single-crystal-to-single-crystal transformation).

Таким образом, в результате проведенного исследования синтезированы и охарактеризованы

 CF_3 -замещенные спин-меченые пиразолы L^{R/CF_3} . Установлено, что введение CF_3 -группы в пиразольный цикл снижает донорную способность атома N пиразольного цикла, что приводит к координации только атомов O_{NO} парамагнитного фрагмента нитроксила. При бидентантно-мостиковой координации парамагнитного лиганда происходит образование цепочечно-полимерных комплексов $[Cu(Hfac)_2 L^{R/CF_3}]_n$, для которых обнару-

жено ферромагнитное упорядочение при температуре ниже 5 К. При монодентантной координации нитронилнитроксила образуется моноядерный мо-

Рис. 6. Зависимости M(H) для [Cu(Hfac)₂L^{R/CF₃}]_{*n*} (R = Me (a), Et (б), Pr (в)) при 2 K (■) и 5 K (●). Температурная зависимость намагниченности [Cu(Hfac)₂L^{Pr/CF₃}]_{*n*} в поле $H = 50 \Im$ (г).

Рис. 7. Сравнение строения молекул α - и β -[Cu(Hfac)₂(L^{Me/CF₃})₂] при 296 K (а) и 120 K (б) (синим цветом выделена молекула α -модификации, желтым — β -модификации).

Рис. 8. Зависимость $\mu_{\Rightarrow \varphi \varphi}(T)$ для α -[Cu(Hfac)₂(L^{Me/CF₃})₂] (а) и температурные зависимости доли высокотемпературной фазы для α - (•) и β - (•) модификаций [Cu(Hfac)₂(L^{Me/CF₃})₂] (б).

лекулярный комплекс [Cu(Hfac)₂(L^{Me/CF₃})₂], существующий в виде двух полиморфных модификаций, для каждой из которых зафиксированы термически индуцированные магнитно-структурные фазовые переходы.

Авторы заявляют, что у них нет конфликта интересов.

ФИНАНСИРОВАНИЕ

Работа поддержана Российским научным фондом (грант № 18-13-00380).

СПИСОК ЛИТЕРАТУРЫ

- 1. Ovcharenko V.I., Maryunina K.Y., Fokin S.V. et al. // Russ. Chem. Bull. 2004. V. 53. № 11. P. 2406.
- 2. Ovcharenko V. // Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds / Ed. Hicks R. Chichester (UK): John Wiley & Sons, Ltd., 2010. P. 461.
- Ovcharenko V., Bagryanskaya E. // Spin-Crossover Materials: Properties and Applications / Ed. Halcrow M.A. Oxford, UK: John Wiley & Sons Ltd., 2013. P. 239.
- 4. Ovcharenko V.I., Romanenko G.V., Maryunina K.Y. et al. // Inorg. Chem. 2008. V. 47. № 20. P. 9537.
- 5. Romanenko G.V., Maryunina K.Y., Bogomyakov A.S. et al. // Inorg. Chem. 2011. V. 50. № 14. P. 6597.
- 6. *Romanenko G.V., Fokin S.V., Chubakova E.T. et al.* // J. Struct. Chem. 2022. V. 63. № 1. P. 87.
- Ovcharenko V.I., Fokin S.V., Kostina E.T. et al. // Inorg. Chem. 2012. V. 51. № 22. P. 12188.
- Ovcharenko V., Fokin S., Chubakova E. et al. // Inorg. Chem. 2016. V. 55. № 12. P. 5853.

- 9. *Fokin S.V., Kostina E.T., Tret'yakov E.V. et al.* // Russ. Chem. Bull. 2013. V. 62. № 3. P. 661.
- 10. *Naumov P., Chizhik S., Panda M.K. et al.* // Chem. Rev. 2015. V. 115. № 22. P. 12440.
- 11. Ovcharenko V.I., Fokin S.V., Romanenko G.V. et al. // Russ. Chem. Bull. 1999. V. 48. № 8. P. 1519.
- 12. Gallagher M.G., Jamieson C.C., Lyons A.J. et al. Pat. US 2009/0131455A1 USA. US, 2009. P. 18.
- 13. *Sheldrick G.M.* // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3.
- 14. Tretyakov E.V., Ovcharenko V.I. // Russ. Chem. Rev. 2009. V. 78. № 11. P. 971.
- 15. *Caneschi A., Gatteschi D., Laugier J., Rey P.* // J. Am. Chem. Soc. 1987. V. 109. № 7. P. 2191.
- 16. *Ressouche E., Boucherle J.X., Gillon B. et al.* // J. Am. Chem. Soc. 1993. V. 115. № 9. P. 3610.
- 17. Onguchi T., Fujita W., Yamaguchi A. et al. // Mol. Cryst. Liq. Cryst. 1997. V. 296. № 1. P. 281.
- Caneschi A., Gatteschi D., Sessoli R. et al. // J. Mater. Chem. 1992. V. 2. № 12. P. 1283.
- Caneschi A., Gatteschi D., Renard J.P. et al. // Inorg. Chem. 1989. V. 28. № 17. P. 3314.
- 20. Koreneva O.V., Romanenko G.V., Shvedenkov Y.G. et al. // Polyhedron. 2003. V. 22. № 14–17. P. 2487.
- 21. Fokin S.V., Tolstikov S.E., Tretyakov E.V. et al. // Russ. Chem. Bull. 2011. V. 60. № 12. P. 2470.
- 22. Sherstobitova T., Maryunina K., Tolstikov S. et al. // ACS Omega. V. 4. № 17. P. 17160.
- 23. De Panthou F.L., Luneau D., Musin R. et al. // Inorg. Chem. 1996. V. 35. № 12. P. 3484.
- 24. Musin R.N., Schastnev P.V., Malinovskaya S.A. // Inorg. Chem. 1992. V. 31. № 20. P. 4118.
- 25. Baker G.A., Rushbrooke G.S., Gilbert H.E. // Phys. Rev. A. 1964. V. 135. № 5. P. A1272.