УДК 541.54

КОНКУРЕНЦИЯ ТЕРМОДИНАМИЧЕСКИХ И КИНЕТИЧЕСКИХ ФАКТОРОВ ПРИ ОБРАЗОВАНИИ СТЕРЕОИЗОМЕРОВ бис-ХЕЛАТНЫХ КОМПЛЕКСОВ Ni(II) НА ОСНОВЕ (N,O(S,Se))-БИДЕНТАТНЫХ АЗОМЕТИНОВ. КВАНТОВО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ

© 2022 г. Н. Н. Харабаев^{1, *}, В. И. Минкин¹

¹НИИ физической и органической химии Южного федерального университета, Ростов-на-Дону, Россия

*e-mail: nkharabaev@mail.ru Поступила в редакцию 06.07.2022 г. После доработки 25.08.2022 г. Принята к публикации 26.08.2022 г.

Методом теории функционала плотности рассчитаны молекулярные структуры и относительные энергии *транс-* и *цис-*изомеров низкоспиновых *бис-*хелатных комплексов Ni(II) на основе (N,O(S,Se))-бидентатных азометинов. Механизм реакции образования комплексов NiL₂ изучен в рамках модели их постадийного формирования (Ni⁺⁺ + (L)⁻ \rightarrow (NiL)⁺, (NiL)⁺ + (L)⁻ \rightarrow NiL₂). По-казано, что формирование структуры координационных узлов NiN₂O₂, NiN₂S₂, NiN₂Se₂ комплексов определяется не только энергетической предпочтительностью одной из возможных конфигураций, но также и величинами активационных барьеров изомеризации образующихся на начальной стадии первичных продуктов взаимодействия исходных компонентов.

Ключевые слова: квантово-химическое моделирование, *бис*-хелатные комплексы никеля, стереоизомеризация, азометины

DOI: 10.31857/S0132344X22700049

Молекулярное строение, спектральные, магнитные и другие физико-химические свойства *бис*-хелатных комплексов 3*d*-переходных металлов с азометиновыми лигандами главным образом определяются составом и конфигурацией координационного узла MN_2X_2 (X = O, S, Se) и структурными особенностями лигандов. Наиболее детально эти закономерности экспериментально [1–3] и теоретически [4–6] изучены на примерах *бис*-хелатных комплексов Ni(II) на основе (N,O)-, (N,S)- и (N,Se)-бидентатных азометинов, в которых центральный ион способен принимать *транс*-, *цис*-планарную или псевдотетраэдрическую конфигурации. Установлено, что для азометиновых комплексов NiL₂ с координационным узлом NiN₂O₂ характерно *транс*строение [1, 7–11], в то время как для комплексов с координационными узлами NiN₂S₂ и NiN₂Se₂ характерно *цис*-строение [1, 12–16]. Для теоретической интерпретации данного стереоэффекта в настоящей работе проведено квантово-химическое исследование относительной устойчивости и реакционных путей формирования *транс-* и *цис*-планарных изомеров в зависимости от состава ближайшего окружения центрального иона на примере низкоспиновых *бис*-хелатных азометиновых комплексов никеля **IIa** (NiL₂ (X = O)), **IIb** (NiL₂ (X = S)), **IIc** (NiL₂ (X = Se)).

X H

LH

NiL₂ (*транс*-структура)

Ia (X = O), Ib (X = S), Ic (X = Se) уктура)

IIa $(NiL_2 (X = O))$, IIb $(NiL_2 (X = S))$, IIc $(NiL_2 (X = Se))$

NiL₂ (цис-структура)

Теоретический поиск наиболее предпочтительных транс- или иис-планарных стереоизомеров осушествлен с использованием предложенного ранее подхода [17], основанного на определении с помощью DFT-расчетов энергетически наиболее выгодного стереоизомера и оценке доступности (вероятности образования) этого стереоизомера в ходе реакции комплексообразования с применением постадийной модели механизма реакции образования металлокомплексов ML₂:

$$M^{++} + (L)^{-} \to (ML)^{+}, \ (ML)^{+} + (L)^{-} \to ML_{2}.$$
 (1)

Основной в определении наиболее вероятного в процессе комплексообразования изомера является вторая стадия этой реакции, т.е. стадия связывания катионом (ML)⁺ аниона второго лиганда (L)⁻. Если наиболее кинетически доступный стереоизомер представляет также его энергетически предпочтительную форму, то он может быть предсказан как ожидаемый продукт реакции (1). В противном случае такой изомер рассматривается как исходный для возможных последующих реакций изомеризации, направленных в сторону более устойчивых изомерных структур, что требует дополнительной оценки энергетических барьеров соответствующих реакций стереоизомеризации.

МЕТОДИКА РАСЧЕТОВ

Квантово-химические расчеты проведены методом теории функционала плотности (DFT) [18] по программе Gaussian09 [19]. Учитывая известную зависимость результатов DFT-расчетов от типа использованного функционала [20-22], вычисления проведены с использованием трех вариантов гибридных функционалов: B3LYP [23, 24], PBE0 [25] и TPSSh [26] в сочетании с базисом 6-311++G(d,p). В расчетах транс- и иис-стереоизомеров комплексов Ni(II) учтено их низкоспиновое (синглетное) состояние. Локализация и анализ стационарных точек на поверхности потенциальной энергии (ППЭ) проведены путем полной оптимизации геометрии молекул стереоизомеров комплексов Ni(II) в сопровождении с расчетом колебательных спектров для основных состояний стереоизомеров и структур связывающих их переходных состояний. При изучении спин-запрещенных механизмов реакции цистранс-изомеризации в бис-хелатных комплексах Ni(II) нахождение минимальных по энергии точек пересечения (minimum energy crossing point (МЕСР)) синглетной и триплетной ППЭ проведено по методике Харви [27]. Графические изображения молекулярных структур построены по программе ChemCraft [28].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Квантово-химическое моделирование реакции $(NiL)^{+} + (L)^{-} \rightarrow NiL_{2}$ (при стартовом расстоянии (равном 5 Å) между атомом никеля катиона $(NiL)^+$ и донорными атомами N и X (O, S, Se) аниона второго лиганла (L)⁻ соответственно, с учетом стартового взаимно-ортогонального расположения плоскостей катиона (NiL)⁺, с одной стороны, и "клешни" аниона второго лиганда (L)⁻, с другой) позволило определить кинетически наиболее доступные при комплексообразовании изомеры для каждого из рассмотренных комплексов никеля IIa (X = O), IIb (X = S), IIc (X = Se), представленные на схеме 1.

Модельная реакция $(ML)^+ + (L)^- \rightarrow ML_2$ формирования молекулярной структуры (DFT/B3LYP/6-311++G(d,p)) бис-хелатных комплексов NiL₂ (X = = O, S, Se) представлена на схеме 1. Продуктом этой реакции для комплекса NiL₂ (X = O) определен *транс*-планарный изомер, а для комплексов NiL₂ (X = S) и NiL₂ (X = Se), соответственно, цисизомер в конформации "ступенька" (схема 1).

Схема 1.

Полученный результат интерпретирован на основе пошагового анализа прохождения реакции $(NiL)^+ + (L)^- \rightarrow NiL_2$ для каждого из комплексов никеля IIa (X = O), IIb (X = S) и IIc (X = Se), который показал, что при связывании катионом (NiL)⁺ аниона второго лиганда (L)⁻ происходит образование связи атома никеля Ni сначала с атомом X, а затем с атомом N второго лиганда при последующем уплощении координационного узла NiN_2X_2 (X = O, S, Se), характерном для низкоспиновых комплексов никеля(II). При этом выбор прелпочтительного направления лвижения атома Х второго лиганда в сторону либо атома Х, либо атома N катиона (NiL)⁺, определяющий формирование либо цис-, либо транс-структуры комплекса, происходит в соответствии с соотношением электроотрицательности атомов Х (X = O, S, Se) и атома N. Так, для O-содержащего комплекса Па движение атома О второго лиганда предпочтительнее в сторону атома N, чем в сторону атома О первого лиганда (результат – *транс*-структура), а для S- и Se-содержащих комплексов IIb и IIс, соответственно, движение атома S (Se) второго лиганда предпочтительнее в сторону атома S (Se), чем в сторону атома N первого лиганда (ре-

транс-ступенька

зультат — *цис*-структура). Таким образом, в рамках предлагаемой модели формируются кинетически наиболее доступные при комплексообразовании *транс*-изомер комплекса никеля IIa (X = O) и *цис*-изомеры комплексов никеля IIb (X = S) и IIc (X = Se), что отображено на схеме 1.

Наиболее выгодные (по полной энергии) стереоизомеры для каждого из рассматриваемых комплексов никеля определяются величинами относительной энергии конкурирующих mpanc-и иис-изомеров низкоспиновых комплексов IIa, IIb, IIс (табл. 1). Энергии конкурирующих стереоизомеров определены относительно кинетически наиболее доступного при комплексообразовании изомера, т.е. исходного для возможного последующего превращения. Для комплекса IIa (X = O) энергетически наиболее выгодным является планарный *транс*-изомер (схема 1), для комплекса IIb (X = S) – *транс*-изомер в конформации "зонтик", а для комплекса IIс (X = Se) – *цис*-изомер в конформации "ступенька" (схема 1). Рассчитанные (DFT/B3LYP/6-311++G(d,p)) молекулярные структуры конформеров "транс-ступенька" и "трансзонтик" комплекса NiL₂ (X = S) представлены на схеме 2.

транс-зонтик

На схеме 2 приведены молекулярные структуры *транс*-изомеров S-содержащего комплекса никеля IIb в конформациях "ступенька" и "зонтик", которые являются (судя по полной энергии (табл. 1)) конкурентными по отношению к кинетически наиболее доступному при образовании этого комплекса *цис*-изомеру в конформации "ступенька" (схема 1). Рассчитанные структуры аналогичных изомеров Se-содержащего комплекса IIс визуально почти совпадают со структурами, приведенными на схеме 2. Геометрические параметры координационных узлов NiN₂X₂ (X = O, S, Se) рассчитанных молекулярных структур *транс*- и *цис*-изомеров комплексов никеля IIa, IIb, IIc собраны в табл. 2.

Следует отметить, что для О-содержащего комплекса никеля IIa реализация конкурентной по отношению к планарному *транс*-изомеру (схема 1) *цис*-структура комплекса стерически затруднена из-за межлигандных взаимодействий заместителей при азометиновых атомах азота. В сравнении с О-содержащим комплексом никеля IIa для S-, Se-содержащих комплексов IIb и IIc (схема 1) наряду с *транс*-структурой стерически доступна и *цис*-структура комплекса, что обусловлено значительными перегибами (на угол β) металлоциклов по линии атомов S–N или Se–N

	1			())	())		
Стереоизомеры комплексов NiL_2 (X = O, S, Se)	DFT/B3LYP		DFT/	PBE0	DFT/TPSSh		
	ΔE	$\Delta E_{\rm ZPE}$	ΔE	$\Delta E_{\rm ZPE}$	ΔE	$\Delta E_{\rm ZPE}$	
IIa (X = O), <i>транс</i> -плоскость*	0.0	0.0	0.0	0.0	0.0	0.0	
IIa (X = O), <i>цис</i> -ступенька	13.3	12.6	13.2	12.5	12.8	12.0	
IIb (X = S), <i>транс</i> -зонтик	-1.6	-1.3	-1.7	-1.4	-1.1	-0.9	
IIb (X = S), <i>транс</i> -ступенька	1.4	1.5	1.1	1.2	1.7	1.7	
IIb (X = S), <i>цис</i> -ступенька*	0.0	0.0	0.0	0.0	0.0	0.0	
IIc (X = Se), <i>транс</i> -зонтик	0.3	0.5	0.3	0.6	1.1	1.3	
IIс ($X = Se$), <i>транс</i> -ступенька	2.9	3.2	2.5	2.7	3.3	3.6	
IIc (X = Se), <i>цис</i> -ступенька*	0.0	0.0	0.0	0.0	0.0	0.0	

Таблица 1. Рассчитанные относительные энергии без учета (ΔE , ккал/моль) и с учетом нулевых колебаний (ΔE_{ZPE} , ккал/моль) стереоизомеров низкоспиновых комплексов никеля IIa (X = O), IIb (X = S), IIc (X = Se)

* Кинетически наиболее доступный при комплексообразовании изомер (схема 1).

(табл. 2). Как было отмечено ранее [29], эти перегибы металлоциклов связаны с характерными для атомов серы и селена (в отличие от атомов кислорода) малыми валентными (внутрициклическими) углами α (табл. 2).

В случае О-содержащего комплекса никеля IIа кинетически наиболее доступный при комплексообразовании *транс*-планарный изомер, т.е. продукт модельной реакции (1), представленной на схеме 1, является также и энергетически предпочтительным (табл. 1). При этом эта предпочтительность *транс*-изомера по сравнению с *цис*изомером превышает 12 ккал/моль (табл. 1), что предопределяет высокобарьерность для реакции стереоизомеризации от исходного *транс*-изомера к конкурирующему с ним *цис*-изомеру (согласно проведенному расчету DFT/B3LYP/6-311++G(d,p) величина барьера этой реакции составляет 39.3 ккал/моль).

Вывод о высокобарьерности межконфигурационного перехода в комплексе никеля IIa (X = O) от кинетически наиболее доступного mpanc-изомера к конкурирующему иис-изомеру следует также и при использовании альтернативной модели механизма реакции стереоизомеризации [30], учитывающей возможное в бис-хелатных азометиновых комплексах Ni(II) пересечение синглетной и триплетной ППЭ. В рамках этой модели реакция *транс-цис*-изомеризации комплекса никеля IIa (X = O) может быть представлена в виде двух последовательных спин-запрещенных переходов *"транс*-планарный изомер (синглет) → псевдотетраэдр (триплет)" и "псевдотетраэдр (триплет) → → цис-изомер в конформации ступенька (синглет)". Для оценки величины барьеров этих спинзапрещенных переходов рассчитаны по методике Харви [27] молекулярные структуры комплекса

никеля IIa (X = O) в минимальных по энергии точках пересечения синглетной и триплетной ППЭ. Точки MECP 1 и MECP 2 (табл. 2) характеризуют, соответственно, первый и второй из двух последовательных спин-запрещенных переходов в комплексе никеля IIa (X = O). Согласно расчетам (DFT/B3LYP/6-311++G(d,p)), точка MECP 1 (переход "*mpaнc*-планарный изомер \rightarrow псевдотетраэдр") отстоит по полной энергии от локального минимума комплекса никеля IIa (X = O) в стартовой *mpaнc*-планарной конфигурации на 9.4 ккал/моль, а точка MECP 2 (переход "псевдотетраэдр \rightarrow *цис*-ступенька") отстоит от локального минимума комплекса на триплетной ППЭ (конфигурация "псевдотетраэдр") на 13.8 ккал/моль.

Высокобарьерность реакции *транс-цис-*изомеризации в комплексе никеля IIa (X = O), установленная как в модели механизма этой реакции с учетом одной синглетной ППЭ, так и в альтернативной модели с учетом двух пересекающихся (синглетной и триплетной) ППЭ, позволяет заключить о предпочтительности исходного в этой реакции изомера, т.е. кинетически наиболее доступного при комплексообразовании *транс*-планарного изомера, как продукта модельной реакции (NiL)⁺ + (L)⁻ \rightarrow NiL₂ (X = O, схема 1).

В отличие от О-содержащего комплекса никеля IIa, в случае S-содержащего комплекса никеля IIb кинетически наиболее доступный при комплексообразовании *цис*-изомер в конформации "ступенька" (схема 1) не является наиболее устойчивой формой (табл. 1). Кроме того, важно отметить, что для S-содержащего комплекса IIb конкурирующие между собой *цис*- и *транс*-изомеры отличаются по полной энергии всего лишь на величину порядка 1 ккал/моль (табл. 1). Поэтому, в соответствии с постадийной моделью

Стереоизомеры комплексов	Ni–X,	Ni–N,	∠NNiX,	∠XNiX,	∠NNiN,	α,	β,
$\operatorname{NiL}_2(X = O, S, Se)$	Å	Å	град	град	град	град	град
IIa (X = O), <i>транс</i> -плоскость	1.855	1.943	92.8	179.9	179.9	130.9	0.0
IIa (X = O), <i>цис</i> -ступенька	1.869	1.917	91.7	85.0	94.9	125.7	25.7
ПС (IIa, " <i>транс</i> -плоскость \rightarrow	1.823	1.853	95.9	123.0	111.1	128.5	3.0
\rightarrow <i>цис</i> -ступенька")*	1.981	2.158	86.0			134.8	3.0
MECP 1 (IIa, $X = O$)	1.905	1.966	92.2	150.5	167.3	124.3	24.6
MECP 2 (IIa, $X = O$)	1.898	1.945	92.6	91.6	97.5	127.3	16.3
IIb (X = S), <i>транс</i> -зонтик	2.246	1.930	91.3	163.7	170.4	105.0	39.8
IIb ($X = S$), <i>транс</i> -ступенька	2.254	1.944	88.2	180.0	180.0	102.4	49.8
IIb ($X = S$), <i>цис</i> -ступенька	2.207	1.957	91.9	85.7	93.2	105.5	37.6
ПС (IIb, " <i>цис</i> -ступенька \rightarrow	2.165	1.872	96.7	112.1	124.4	111.3	10.0
<i>→ транс</i> -зонтик")*	2.246	2.158	92.7			114.6	3.0
MECP 1 (IIb, $X = S$)	2.219	1.980	96.1	92.6	97.2	110.2	14.1
MECP 2 (IIb, $X = S$)	2.264	2.000	94.0	143.4	164.0	107.6	31.0
IIс (X = Se), <i>транс</i> -зонтик	2.371	1.926	90.6	162.7	170.8	99.3	44.3
IIс (X = Se), <i>транс</i> -ступенька	2.386	1.937	87.0	180.0	180.0	95.5	55.7
IIc (X = Se), <i>цис</i> -ступенька	2.319	1.966	91.4	86.1	93.4	100.5	41.1
ПС (IIc, <i>"цис</i> -ступенька \rightarrow	2.290	1.875	96.8	110.4	127.2	107.6	7.0
<i>→ транс</i> -зонтик")*	2.357	2.132	94.1			109.3	5.8
MECP 1 (IIc, $X = Se$)	2.333	1.988	96.0	94.0	96.3	106.0	17.5
MECP 2 (IIc, $X = Se$)	2.385	2.008	93.3	142.4	162.5	101.8	36.0

Таблица 2. Рассчитанные (DFT/B3LYP/6-311++G(d,p)) геометрические параметры координационных узлов NiN₂X₂ в *транс*- и *цис*-изомерах комплексов NiL₂ (X = O, S, Se), в переходных состояниях (**ПС**) *цис-транс*-изомеризации и в точках MECP 1, MECP 2

* Двойные значения геометрических параметров металлоциклов в ПС *цис-транс*-изомеризации в комплексах IIb (X = S) и IIc (X = Se) отражают неэквивалентность строения металлоциклов.

механизма образования бис-лигандных комплексов [17], наиболее доступный при комплексообразовании *цис*-изомер комплекса IIb (X = S) в конформации "ступенька" (схема 1) принимается только в качестве исходного для возможной изомеризации в сторону энергетически более выгодного транс-изомера в конформации "зонтик" (табл. 1) с последующей оценкой величины барьера реакции цис-транс-изомеризации. Согласно DFT-расчету переходного состояния реакции изомеризации "*цис*-ступенька \rightarrow *транс*-зонтик" (табл. 2), найденного при моделировании механизма этой реакции в комплексе никеля IIb (X = S) на синглетной ППЭ, включающей стартовый и финишный изомеры, величина барьера цистранс-изомеризации превышает 20 ккал/моль (24.3 (B3LYP), 26.8 (PBE0), 25.1 (TPSSh) ккал/моль).

Вывод о высокобарьерности межконфигурационного перехода в комплексе никеля IIb (X = S) от кинетически наиболее доступного *цис*изомера в конформации "ступенька" (схема 1) к энергетически более выгодному *транс*-изомеру в конформации "зонтик" (табл. 1) следует также и при использовании альтернативной модели механизма реакции стереоизомеризации [30], учитывающей возможное пересечение синглетной и триплетной ППЭ. В рамках этой модели реакция *цис-транс*-изомеризации комплекса никеля IIb (X = S) может быть представлена в виде двух последовательных спин-запрещенных переходов, а именно "*цис*-ступенька (синглет) → псевдотетраэдр (триплет)" и "псевдотетраэдр (триплет) → *транс*зонтик (синглет)". Согласно DFT-расчетам, проведенным для комплекса никеля IIb (X = S), точка МЕСР 1, характеризующая спин-запрещенный переход "uuc-ступенька \rightarrow псевдотетраэдр" (табл. 2, схема 3), отстоит по полной энергии от локального минимума комплекса в стартовой конфигурации "цис-ступенька" на 4.3 (B3LYP), 4.1 (PBE0), 6.2 (TPSSh) ккал/моль, а точка MECP 2, характеризующая второй их двух последовательных спинзапрещенных переходов ("псевдотетраэдр → транс-зонтик" (табл. 2, схема 3)), отстоит от локального минимума комплекса на триплетной ППЭ, соответственно, на 8.2 (B3LYP), 9.5 (PBE0), 6.0 (TPSSh) ккал/моль.

IIb (Ni₂L (X = S)) **Cxema 3.**

Высокобарьерность *цис-транс*-изомеризации в комплексе никеля IIb (X = S), установленная как в модели этой реакции с учетом одной синглетной ППЭ, так и в альтернативной модели с учетом двух пересекающихся (синглетной и триплетной) ППЭ, позволяет заключить о предпочтительности исходного в этой реакции изомера, т.е. кинетически наиболее доступного при комплексообразовании *цис*-изомера в конформации "ступенька", как продукта реакции (NiL)⁺ + (L)⁻ \rightarrow NiL₂ (X = S, схема 1).

В случае Se-содержащего комплекса никеля Ис кинетически наиболее доступный при комплексообразовании иис-изомер в конформации "ступенька" (схема 1) является, кроме того, энергетически наиболее выгодным изомером (табл. 1). Однако, следует учесть, что, как и в случае S-содержащего комплекса IIb, конкурирующие между собой цис-и транс-изомеры отличаются по полной энергии всего лишь на величину ~1 ккал/моль. Поэтому кинетически наиболее доступный при комплексообразовании цис-изомер комплекса никеля IIс (X = Se) в конформации "ступенька" (схема 1) может быть принят в качестве предпочтительного только при условии значительного по величине барьера реакции изомеризации "*цис*-ступенька → → *транс*-зонтик". Локализация переходного состояния для этой реакции при моделировании ее механизма на синглетной ППЭ (табл. 2) позволила оценить энергетический барьер величиной близкой к полученной для S-содержащего комплекса никеля IIb, т.е. величиной более 20 ккал/моль (24.3 (B3LYP), 26.5 (PBE0), 24.8 (TPSSh) ккал/моль).

Вывод о высокобарьерности межконфигурационного перехода в комплексе никеля IIc (X = Se) от кинетически наиболее доступного *цис*-изомера в конформации "ступенька" (схема 1) к конкурентному *транс*-изомеру в конформации "зонтик" (табл. 1) следует также и при использовании альтернативной модели механизма реакции стереоизомеризации [30], учитывающей возможное пересечение синглетной и триплетной ППЭ. В рамках этой модели реакция цис-транс-изомеризации комплекса никеля IIc (X = Se) может быть представлена (как и для комплекса IIb (X = S)) в виде двух последовательных спин-запрещенных переходов "иис-ступенька (синглет) → псевдотетраэдр (триплет)" и "псевдотетраэдр (триплет) \rightarrow → *транс*-зонтик (синглет)". Согласно DFT-расчетам, проведенным для комплекса никеля Пс (X = Se), точка MECP 1, характеризующая спинзапрещенный переход "цис-ступенька → псевдотетраэдр" (табл. 2), отстоит по полной энергии от локального минимума комплекса в стартовой конфигурации "цис-ступенька" на 4.8 (ВЗЦҮР), 4.7 (PBE0), 6.5 (TPSSh) ккал/моль. Точка MECP 2, характеризующая второй их двух последовательных спин-запрещенных переходов ("псевдотетраэдр \rightarrow *транс*-зонтик" (табл. 2)), отстоит, согласно расчетам, от локального минимума комплекса на триплетной ППЭ, соответственно, на 8.7 (B3LYP), 10.3 (PBE0), 6.8 (TPSSh) ккал/моль. Заметим, что рассчитанные молекулярные структуры комплекса никеля IIc (X = Se) в точках МЕСР 1 и МЕСР 2 визуально практически не отличаются от приведенных на схеме 3 соответствующих структур комплекса никеля IIb (X = S).

MEPC 2

Таким образом, в комплексе никеля IIс (X = Se), как и в комплексе IIb (X = S), установлена высокобарьерность реакции *цис-транс*-изомеризации, что позволяет заключить о предпочтительности исходного в этой реакции изомера, т.е. кинетически наиболее доступного при комплексообразовании *цис*изомера в конформации "ступенька", как продукта модельной реакции (NiL)⁺ + (L)⁻ \rightarrow NiL₂ (X = = Se, схема 1).

Сделанные в рамках теоретического анализа заключения о предпочтительности *транс*-планарного изомера для О-содержащего комплекса никеля IIa (X = O) и *цис*-изомера в конформации "ступенька" для S- и Se-содержащих комплексов никеля IIb (X = S) и IIc (X = Se), соответственно, находятся в согласии с результатами экспериментальных исследований [1, 7–16].

Таким образом, как следует из проведенного исследования, для всех рассмотренных О-, S- и Se-содержаших низкоспиновых азометиновых комплексов никеля IIa, IIb и IIс предпочтительный стереоизомер соответствует продукту реакции $(NiL)^+ + (L)^- \rightarrow NiL_2 (X = O, S, Se, cxema 1).$ Moделирование этой реакции для комплексов никеля IIa (X = O), IIb (X = S) и IIc (X = Se) позволило воспроизвести экспериментально документированную для низкоспиновых азометиновых комплексов никеля(II) закономерность реализации *транс*-структуры координационного узла NiN₂O₂ и *цис*-структуры координационных узлов NiN₂S₂ и NiN₂Se₂. Следовательно, формирование структуры координационных узлов NiN₂O₂, NiN₂S₂, NiN₂Se₂ низкоспиновых бис-хелатных азометиновых комплексов никеля(II) определяется не только термодинамическими (энергетической предпочтительностью одной из возможных конформаций) факторами, но также и кинетикой лежащих в основе метода получения реакций (величинами активационных барьеров изомеризации образующихся на начальной стадии первичных продуктов взаимодействия исходных компонентов).

Авторы заявляют об отсутствии конфликта интересов.

ФИНАНСИРОВАНИЕ

Исследование выполнено при финансовой поддержке Министерства науки и высшего образования РФ в рамках государственного задания в сфере научной деятельности (проект № 0852-2020-0031).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Garnovskii A.D., Nivorozhkin A.L., Minkin V.I.* // Coord. Chem. Rev. 1993. V. 126. № 1. P. 1.
- 2. Bourget-Merle L., Lappert M.F., Severn J.R. // Chem. Rev. 2002. V. 102. № 6. P. 3031.
- Garnovskii A.D., Vasilchenko I.S., Garnovskii D.A., Kharisov B.I. // J. Coord. Chem. 2009. V. 62. № 2. P. 151.
- 4. *Kharabaev N.N., Starikov A.G., Minkin V.I. //* Dokl. Chem. 2014. V. 458. P. 181.
- Kharabayev N.N., Starikov A.G., Minkin V.I. // Russ. J. Coord. Chem. 2015. V. 41. № 7. P. 421. https://doi.org/10.1134/S1070328415070039
- 6. *Kharabayev N.N., Starikov A.G., Minkin V.I.* // J. Struct. Chem. 2016. V. 57. № 3. P. 431.

КООРДИНАЦИОННАЯ ХИМИЯ том 48 № 12 2022

- Lacroix P.G., Averseng F., Malfant I., Nakatani K. // Inorg. Cnim. Acta. 2004. V. 357. P. 3825.
- Song X., Wang Z., Zhao J., Hor T.S.A. // Chem. Commun. 2013. V. 49. P. 4992.
- 9. Chen L., Zhong Z., Chen C. et al. // J. Organomet. Chem. 2014. V. 752. P. 100.
- 10. Chandrakala M., Bharath S., Maiyalagan T., Arockiasamy S. // Mater. Chem. Phys. 2017. V. 201. P. 344.
- 11. *Conejo M., Cantero J., Pastor A. et al.* // Inorg. Chim. Acta. 2018. V. 470. P. 113.
- 12. Nivorozhkin A.L., Nivorozhkin L.E., Minkin V.I. et al. // Polyhedron. 1991. V. 10. P. 179.
- 13. *Mistryukov A.E., Vasil'chenko I.S., Sergienko V.S. et al.* // Mendeleev Commun. 1992. V. 2. № 1. P. 30.
- 14. Fierro C.M., Murphy B.P., Smith P.D. et al. // Inorg. Chim. Acta. 2006. V. 359. P. 2321.
- Orysyk S.I., Bon V.V., Pekhnyo V.I. et al. // Polyhedron. 2012. V. 38. P. 15.
- Bredenkamp A., Zenq X., Mohr F. // Polyhedron. 2012. V. 33. P. 107.
- Kharabayev N.N. // Russ. J. Coord. Chem. 2019. V. 45. N
 № 8. P. 673. https://doi.org/10.1134/S1070328419080050
- Parr R., Yang W. Density-Functional Theory of Atoms and Molecules. N.Y.: Oxford University Press, 1989. 333 p.
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09. Revision D.01. Wallingford CT: Gaussian, Inc., 2013.
- 20. Sousa S.F., Fernandes P.A., Ramos M.J. // J. Phys. Chem. A. 2007. V. 111. № 42. P. 10439.
- 21. *Burke K., Wagner L.O.* // Int. J. Quantum Chem. 2013. V. 113. № 2. P. 96.
- 22. Tsipis A.C. // Coord. Chem. Rev. 2014. V. 272. P. 1.
- 23. Becke A.D. // Phys. Rev. A. 1988. V. 38. P. 3098.
- 24. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785.
- 25. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865.
- Tao J., Perdew J.P., Staroverov V.N., Scuseria G.E. // Phys. Rev. Lett. 2003. V. 91. P. 146401.
- 27. Harvey J.N., Aschi M., Schwarz H., Koch W. // Theor. Chem. Acc. 1998. V. 99. № 2. P. 95.
- 28. *Zhurko G.A., Zhurko D.A.* Chemcraft. Version 1.6. URL: http://www.chemcraftprog.com
- 29. *Харабаев Н.Н.* // Коорд. химия. 1991. Т. 17. № 5. С. 579.
- 30. Starikov A.G., Minyaev R.M., Minkin V.I. // Mendeleev Commun. 2009. V. 19. P. 64.