УДК 541.49

ИОДИД-НИТРИД-СУЛЬФИДНЫЕ КЛАСТЕРЫ ЛАНТАНОИДОВ

© 2022 г. А. А. Фагин¹, О. В. Кузнецова^{1, *}, Р. В. Румянцев¹, Е. В. Баранов¹, Г. К. Фукин¹, М. Н. Бочкарев^{1, **}

¹Институт металлоорганической химии им. Г.А. Разуваева РАН, Нижний Новгород, Россия

*e-mail: olga@iomc.ras.ru **e-mail: mboch@iomc.ras.ru Поступила в редакцию 17.06.2021 г. После доработки 20.07.2021 г. Принята к публикации 22.07.2021 г.

Реакция $[(NdI)_3N_2]$ (I) с Cp₃Er в присутствии серы в ТГФ приводит к образованию CpNdI₂(THF), NdI(S₂N₂)(THF) и не идентифицированного соединения эрбия. Аналогичная реакция $[(DyI)_3N_2]$ дает CpDyI₂(THF) и ErI(S₂N₂)(THF). При взаимодействии I с ErCl₃ получены кластеры $[Nd_2ErClI_4(S_2)-(S_2N_2)(THF)_7]$ и $[Nd_2ErCl_2I_3(S_2)(S_2N_2)(THF)_7]$ с выходом 33–34%. Из смеси продуктов реакции $[(DyI)_3N_2]$ с серой и NdI₃ удалось выделить с небольшим выходом и идентифицировать только $[Nd_2DyI_5(S_2)(S_2N_2)(THF)_7]$. Дииодид европия EuI₂ в реакцию с комплексом I и серой в принятых условиях практически не вовлекается. Из реакционной смеси выделены исходный EuI₂ (50%) и ранее охарактеризованный кластер $[Nd_3I_5(S_2)(S_2N_2)(THF)_9]$.

Ключевые слова: кластеры, редкоземельные элементы, реакционная способность, рентгеноструктурный анализ

DOI: 10.31857/S0132344X22020025

Благодаря многообразию молекулярного строения. люминесцентных и магнитных свойств нитрид-халькогенид-галогенидные кластеры лантаноидов привлекают большое внимание физиков и химиков как объекты для изучения структурных особенностей соединений 4f-элементов и как перспективные материалы для оптоэлектроники, биомедицины и как молекулярные магнетики [1-5]. Однако число таких соединений, особенно четырехэлементных, невелико, что связано с трудностями их синтеза. Недавно реакциями иодиднитридов [(LnI)₃N₂]_x с серой мы получили и структурно охарактеризовали трехъядерные кластеры неодима и диспрозия $[Ln_3I_5(N_2S_2)(S_2)-$ (THF)₁₀] (Ln = Nd, Dy) [6, 7]. Аналогичный синтез с участием других лантаноидов осуществить не удается из-за недостаточно высокой активности стартовых дииодидов LnI2. Однако при подробном исследовании процесса образования кластеров было установлено, что реакция имеет обратимый характер. В обратной стадии принимают участие три компонента $- [(LnI)_3N_2]$, сера и образующийся на первой стадии трииодид NdI₃ или DyI₃. Используя в "обратной" реакции иодид-нитрида неодима (I) с серой трииодиды тербия, тулия, иттербия или диспрозия, удалось синтезировать изоструктурные гетерометаллические кластеры $[Nd_{2}LnI_{5}(S_{2})(S_{2}N_{2})(THF)_{9}]$ (Ln = Dy, Tb, Tm, Yb) (схема 1) [8, 9].

Было установлено, что атом Ln из трииодида в образующемся трехъядерном каркасе всегда занимает положение 3, независимо от природы металла. В комплексах, содержащих Dy и Tb, при возбуждении УФ-излучением обнаружена интенсивная люминесценция соответствующего иона Ln^{3+} . В поиске путей расширения линейки иодид—нитрид—сульфидных кластеров и для более глубокого понимания механизма синтеза нами проведены реакции I с серой в присутствии ErCl₃, EuI₂, Cp₃Er и иодид-нитрида диспрозия [(DyI)₃N₂] с NdI₃.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реакции проводили в условиях, исключающих контакт с кислородом и влагой воздуха, с использованием стандартной техники Шленка. ТГФ очищали бензофенон-кетилом натрия, гексан перегоняли над натрием, ацетонитрил сушили P_2O_5 и выдерживали над K_2CO_3 . Элементный анализ на C, H, N, S выполняли на анализаторе Vario El cube (Германия), на лантаноиды – комплексонометрически, на иод – методом аргентометрии. Магнитные измерения проводили при комнатной температуре как описано ранее [10].

Реакция [(NdI)₃N₂(THF)₆] с ErCl₃ и серой. К комплексу [(NdI)₃N₂(THF)₆] (0.234 г, 0.184 ммоль) добавляли ErCl₃ (0.050 г, 0.183 ммоль) и раствор серы (0.023 г, 0.735 ммоль) в 20 мл ТГФ. Смесь перемешивали 6 ч при 55°С. Раствор окрашивался в желто-коричневый цвет. Осадок отделяли декантацией от раствора после центрифугирования смеси. Маточный раствор концентрировали до 10 мл и охлаждали до 0°С. Образовавшиеся через 12 ч мелкие желтые кристаллы [Nd₂ErClI₄- $(S_2)(N_2S_2)$ (THF)₇] отделяли декантацией и высушивали в вакууме при комнатной температуре. Выход продукта 0.080 г (34%). Эффективный магнитный момент (µ_{эфф}) 5.9 µ_в. ИК-спектр: (v, см⁻¹): 1345 v(С-Н), 1010 v(С-О), 960 v(С-О), 860 v(C-O).

Найдено, %: С 20.70; Н 3.34; Сl 2.36; I 30.12; N 1.40; Nd 17.29; Er 9.71; S 7.45. Для С₂₈Н₅₆N₂O₇S₄ClI₄Nd₂Er вычислено, %: С 20.26; Н 3.40; Cl 2.14; I 30.58;

N 1.69; Nd 17.38; Er 10.08; S 7.73.

После отделения кристаллов $[Nd_2ErClI_4(S_2)-(N_2S_2)(THF)_7]$, маточный раствор медленно концентрировали при комнатной температуре. Через 12 ч из раствора выпадали желтые мелкие кристаллы $[Nd_2ErCl_2I_3(S_2)(N_2S_2)(THF)_9]$, которые промыли холодным ТГФ и высушивали при пониженном давлении. Выход кристаллов 0.105 г (32.8%).

Найдено, %: С 24.86; Н 4.03; СІ 4.40; I 22.51; N 1.49; Nd 16.76; Er 10.12; S 7.33. Для С₃₆H₇₂N₂O₉S₄Cl₂I₃Nd₂Er вычислено, %: С 25.25; H 4.24; CI 4.14; I 22.23; N 1.64; Nd 16.84; Er 9.77; S 7.49.

КООРДИНАЦИОННАЯ ХИМИЯ том 48 № 3 2022

Реакция $[(DyI)_3N_2(THF)_6]$ с Ср₃Ег и серой. К комплексу $[(DyI)_3N_2(THF)_6]$ (0.203 г, 0.153 ммоль) добавляли Ср₃Ег (0.056 г, 0.153 ммоль) и раствор серы (0.020 г, 0.620 ммоль) в 15 мл ТГФ. Смесь перемешивали 3 ч при 45°С в ультразвуковой бане. Образовавшийся осадок отделяли декантацией от раствора после центрифугирования смеси. После отделения осадка маточный раствор концентрировали до 7 мл, через 8 ч выделились бесцветные кристаллы CpDyI₂(THF), которые промывали ТГФ и высушивали при пониженном давлении. Выход 0.021 г (24%).

Найдено, %: С 19.5; Н 2.42; I 46.11; Dy 29.24. Для С₉Н₁₃OI₂Dy вычислено, %: С 19.53; Н 2.37; I 45.85; Dy 29.36.

Один из кристаллов был использован для проведения PCA.

Темно-коричневый маточный раствор медленно концентрировали при комнатной температуре, при этом выпадали мелкие розовые кристаллы иодида $[Er(N_2S_2)I(THF)_4]$, которые промывали ТГФ и высушивали при пониженном давлении. Выход 0.031 г (30%). $\mu_{pdd} = 9.5 \ \mu_B \ (для \ Er^{3+} 9.6 \ \mu_B \ [11]).$

Найдено, %: С 27.99; Н 4.46; І 18.66; Ег 29.24; S 9.16. Для С₉Н₁₃OI₂Er

вычислено, %: С 28.48; Н 4.78; I 18.81; Er 25.01; S 9.50.

Реакцию [(NdI)₃N₂(THF)₆] с Cp₃Er и серой проводили аналогично реакции [(DyI)₃N₂(THF)₆] с Cp₃Er и серой. Из [(NdI)₃N₂(THF)₆] (0.124 г, 0.097 ммоль), Cp₃Er (0.035 г, 0.097 ммоль) и раствор серы (0.08 г, 0.222 ммоль) в 13 мл ТГФ получили соединение CpNdI₂(THF) в виде светло-голубых кристаллов. Выход 0.010 r (19.3%).

Найдено, %: C 20.45; H 2.66; I 47.85; Nd 26.58. Для C₉H₁₃OI₂Nd вычислено, %: C 20.20; H 2.45; I 47.42; Nd 26.95.

Один из кристаллов был использован для проведения PCA.

Коричневый маточный раствор медленно концентрировали при комнатной температуре, при этом выпадали мелкие розовые кристаллы [Nd(N₂S₂)I(THF)₄], которые промывали ТГФ и высушивали при пониженном давлении. Выход 0.016 г (25.8%). $\mu_{эф\phi} = 3.8 \,\mu_B$ (для Nd³⁺ 3.68 μ_B [11]).

Найдено, %: C 29.34; H 4.87; I 20.03; Nd 22.12; S 9.52. Для $C_{16}H_{32}N_2O_4S_2INd$

вычислено, %: C 29.49; H 4.95; I 19.47; Nd 22.13; S 9.84.

Оставшийся после выделения комплексов CpNdI₂(THF) и [Nd(N₂S₂)I(THF)₄] маточный раствор медленно концентрировали при 4°C, при этом из раствора выпадает коричневый осадок [(CpErI)₂(N₂S₂)(THF)₂], который промывали TГФ и высушивали при пониженном давлении. Выход 0.0162 г (17.7%). $\mu_{\rm 3obb} = 9.2 \,\mu_{\rm B}$.

Найдено, C 22.50; H 2.42; I 26.90; Er 35.41; N 2.58; S 6.81. %:

Для $C_{18}H_{26}N_2O_2S_2I_2Er_2$

вычис- С 22.64; H 2.74; I 26.58; Er 35.03;N 2.93; S 6.72. лено, %:

Серый осадок, образовавшийся в ходе реакции после отделения коричневого раствора сушили при пониженном давлении. Масса сухого осадка $0.022 \text{ г. } \mu_{\rm 300} = 9.7 \, \mu_{\rm B}.$

Реакция $[(DyI)_3N_2(THF)_6]$ с NdI₃(THF)₃ и серой. К комплексу $[(DyI)_3N_2(THF)_6]$ (0.428 г, 0.322 ммоль) добавляли NdI₃(THF)₃ (0.226 г, 0.304 ммоль) и раствор серы (0.22 г, 0.69 ммоль) в 20 мл ТГФ. Смесь перемешивали 6 ч при 60°С. Образовавшийся осадок отделяли декантацией от раствора после центрифугирования смеси, промывали ТГФ и высушивали при комнатной температуре. Выделенный в виде желтовато-коричневых кристаллов продукт (0.023 г, 8%) по элементному составу и ИК-спектру соответствовал ранее полученному комплексу $[(Nd_2DyI_5(S_2)(N_2S_2)(THF)_9]$ [8]. Выход 0.023 г (8%).

Реакция $[(NdI)_3N_2(THF)_6]$ с EuI₂(THF)₄ и серой. К комплексу $[(NdI)_3N_2(THF)_6]$ (0.420 г, 0.330 ммоль) добавляли EuI₂(THF)₄ (0.069 г, 0.110 ммоль) и раствор серы (0.043 г, 1.340 ммоль) в 20 мл ТГФ. Смесь перемешивали 4 ч при 60°С. Осадок отделяли декантацией от раствора после центрифугирования смеси. После отделения осадка маточный раствор концентрировали до 15 мл и охлаждали до 0°С. Через 12 ч выделились мелкие желтые и бесцветные кристаллы. Смесь кристаллов промывали холодным ТГФ до полного растворения бесцветных кристаллов. Оставшиеся в растворе желтые кристаллы высушивали при пониженном давлении и идентифицировали по элементному анализу и ИК-спектру как $[Nd_3I_5(S_2)(N_2S_2)(THF)_9]$. Выход 0.105 г (51%).

РСА комплексов CpNdI₂(THF) и CpDyI₂(THF) проведен на автоматическом дифрактометре Bruker D8 Quest (графитовый монохроматор, Мо K_{α} -излучение, φ - и ω -сканирование, $\lambda = 0.71073$ Å). Экспериментальные наборы интенсивностей интегрированы с помощью программы SAINT [12]. Программа TWINABS [13] использовалась для введения поправок на поглощение. Структуры расшифрованы методом "dual-space" с использованием программы SHELXT [14]. Все неводородные атомы в комплексах CpNdI₂(THF) и CpDyI₂(THF) уточне-

ны полноматричным МНК по F_{hkl}^2 в анизотропном приближении с помощью программного пакета SHELXTL [15]. Атомы водорода помещены в геометрически рассчитанные положения и уточнены в модели наездника ($U_{\mu_{30}}(H) = 1.2U_{3KB}(C)$). Основные кристаллографические характеристики и параметры рентгеноструктурного эксперимента для CpNdI₂(THF) и CpDyI₂(THF) приведены в табл. 1. Оба кристалла CpNdI₂(THF) и CpDyI₂(THF) представляли собой немероэдрические двойники. Многочисленные попытки выбора монокристалла из массы не принесли успеха в обоих случаях. Финальное уточнение структуры комплексов CpNdI₂(THF) и CpDyI₂(THF) проведено с использованием файла данных формата HKLF5. Соотношение доменов составляет 0.498 : 0.502 и 0.460 : 0.540 для CpNdI₂(THF) и CpDyI₂(THF) соответственно. Инструкции EADP и ISOR использовали при уточнении для ограничения анизотропных параметров некоторых атомов углерода и кислорода.

Структуры депонированы в Кембриджском банке структурных данных (№ 2082930 (CpNdI₂(THF) и 2082931 (CpDyI₂(THF)); http://www.ccdc.cam.ac.uk/ structures/).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Ранее по реакции иодид-нитрида неодима (I) с серой в присутствии DyI_3 был синтезирован кластер с каркасом Nd-Nd-Dy [8]. Ожидалось, что аналогичная реакция [(DyI)₃N₂(THF)₆] с серой в присутствии NdI₃ приведет к образованию соединения с каркасом Dy-Dy-Nd. Однако из реакционной смеси в этом случае неожиданно был

Габлица 1.	Основные к	ристаллогра	рические	данные и па	раметры	уточнения	структу	p C	pNdI ₂	(THF) и C	pDyl	L ₂ (TF	HF)
				1 1		2								

	Значение					
Параметр	CpNdI ₂ (THF)	CpDyI ₂ (THF)				
Брутто-формула	$C_{17}H_{29}O_{3}I_{2}Nd$	C ₁₇ H ₂₉ O ₃ I ₂ Dy				
M	679.44	697.70				
Температура, К	100(2)	100(2)				
Сингония	Моноклинная	Моноклинная				
Пр. гр.	Рс	Pc				
<i>a</i> , Å	8.2184(5)	8.1750(3)				
b, Å	13.5722(8)	13.4699(4)				
<i>c</i> , Å	19.0712(10)	18.9473(6)				
α, град	90	90				
β, град	92.2101(16)	91.8946(11)				
ү, град	90	90				
$V, Å^3$	2125.7(2)	2085.27(12)				
Ζ	4	4				
ρ (выч.), мг/м ³	2.123	2.222				
μ, мм ⁻¹	5.358	6.555				
Размер кристалла, мм	$0.21\times0.09\times0.05$	$0.22\times0.12\times0.05$				
<i>F</i> (000)	1284	1308				
θ, град	2.480-28.360	2.493-30.631				
Число отражений собранных/независимых	5288/5288	6336/6336				
<i>R</i> _{int}	0.0850	0.0962				
$R_1, wR_2 (I \ge 2\sigma(I))$	0.0367, 0.0910	0.0462, 0.1265				
<i>R</i> ₁ , <i>wR</i> ₂ (по всем данным)	0.0407, 0.0930	0.0539, 0.1324				
Абсолютный структурный параметр	0.051(19)	0.065(15)				
S	1.043	1.060				
Остаточная электронная плотность	1.498/-1.282	2.117/-2.121				
(max/min), $e/Å^3$						

выделен уже известный динеодимовый кластер $[(Nd_2DyI_5(S_2N_2)(S_2)(THF)_9]$ [8], состав которого установлен по данным PCA и магнитных измерений. При этом ион Dy³⁺ в гетерометаллическом каркасе тоже занимает положение 3. К сожалению, оставшаяся смесь реакционных продуктов не поддается разделению, что не позволяет предложить адекватную схему процесса.

С целью установления возможности получения хлорсодержащих кластеров, подобных ранее полученным иодидным комплексам $[Ln_3I_5(N_2S_2)-(S_2)(THF)_{10}]$ (Ln = Nd, Dy) [6], была проведена реакция I с серой в присутствии хлорида ErCl₃. Соединение эрбия, имеющего высокое значение $\mu_{эф\phi}$, выбрано с целью облегчения последующей идентификации продуктов с использованием

магнитных измерений. После нагревания смеси в течение 6 ч при 55°С из образовавшегося раствора дробной кристаллизацией были выделены два кристаллических дигалогенидных кластера с выходами 34 и 32%. Качество кристаллов не позволило выполнить РСА продуктов, но на основании данных элементного анализа можно заключить, что один из них содержит хлор и иод в соотношении $1:4 - [Nd_2ErI_4Cl(N_2S_2)(S_2)(THF)_7]$, а другой – в соотношении $2:3 - [Nd_2ErI_3Cl_2(N_2S_2)(S_2)(THF)_9]$. Соотношение металлов в комплексах подтверждается магнитными измерениями: в обоих случаях найден магнитный момент 5.9 μ_B , что соответствует смеси $2Nd^{3+}/Er^{3+}\mu_{эф\phi}$ 5.6 μ_B).

При использовании в синтезе вместо хлорида циклопентадиенильного комплекса Cp₃Er поли-

Рис. 1. Молекулярное строение независимой молекулы A комплекса $CpNdI_2(THF)$ (a), наложение двух независимых молекул A (красная) и B (синяя) комплекса $CpNdI_2(THF)$ (б). Тепловые эллипсоиды приведены с 30%-ной вероятностью. Атомы водорода не показаны для наглядности.

ядерные продукты не образуются. В растворе ТГФ при температуре 45°С реакция заканчивается за несколько часов и дает циклопентадиенильный комплекс неодима CpNdI₂(THF) с выходом 19% и иодид-дитиадинитрид неодима $[Nd(N_2S_2)I(THF)_4]$ с выходом 26%. В аналогичной реакции иоднитрида диспрозия с Cp₃Er и серой образуются циклопентадиенильный комплекс диспрозия СрДуІ₂(ТНF) с выходом 24% и иодид-дитиадинитрид эрбия $[Er(N_2S_2)I(THF)_4]$ с выходом 30%. Рентгеноструктурный анализ показал, что комплексы CpNdI₂(THF) и CpDyI₂(THF) изоструктурны. Интересно отметить, что ранее сообщалось о комплексах тулия [16] и самария [17], имеющих аналогичное молекулярное строение, однако кристаллизующихся в ромбической сингонии (пространственная группа *Pna2*₁). Следует отметить, что угол β в комплексах CpNdI₂(THF) и СрДуІ₂(ТНF) значительно отличается от 90°. Попытка решения структуры в пространственной группе *Pna2*₁ приводит к значительному ухудшению основных параметров уточнения.

В кристаллической структуре обоих исследованных комплексов содержатся две независимые молекулы А и В. Каждый ион лантаноида связан с одним циклопентадиенильным анионом (Ср). двумя атомами иода, а также тремя молекулами ТГФ. Молекулярное строение независимой молекулы А комплекса CpNdI₂(THF) приведено на рис. 1а. За исключением атомов углерода одной координированной молекулы ТГФ строение независимых молекул А и В находится в отличном согласии (рис. 1б). Среднее отклонение неводородных атомов в этих молекулах после применения инверсии для одной из молекул составляет 0.367 Å. Строение молекул A и B комплекса $CpDyI_2(THF)$ находится в отличном согласии с соответствующими молекулами комплекса CpNdI₂(THF) (рис. 2). Все расстояния в координационной сфере атома лантаноида в комплексе $CpDyI_2(THF)$ систематически короче, чем в комплексе $CpNdI_2(THF)$ (табл. 2), в строгом соответствии с изменением ионных радиусов диспрозия и неодима [18].

Низкое качество кристаллов иодид-дитиадиазина эрбия [$Er(N_2S_2)I(THF)_4$] не позволило выполнить PCA, но данные элементного анализа, ИК-спектроскопии и магнитных измерений подтверждают предлагаемую формулу. Взаимодействие Cp₃Er с [(DyI)₃N₂(THF)₆] протекает аналогично и дает CpDyI₂(THF) и [$Er(N_2S_2)I(THF)_4$]. Образование указанных продуктов свидетельствует о сложном механизме реакций с участием Cp₃Er, существенно отличающимся от реакций с трииодидами лантаноидов LnI₃.

Все приведенные выше и ранее выполненные синтезы трехъядерных кластеров проводили с участием соединений трехвалентных лантаноидов. В настоящем исследовании в реакции с I и серой в качестве галогенида лантаноида мы использовали дииодид европия $EuI_2(THF)_4$. Установлено, что реакция протекает в сопоставимых условиях и дает с выходом более 50% неодимовый кластер $[Nd_3I_5(S_2)(S_2N_2)(THF)_9]$. Кроме того, из реакционной смеси были выделены кристаллы исходного дииодид европия, что указывает на протекание процесса по ранее установленной схеме прямого синтеза [6], при этом соль европия в реакцию не вовлекается.

Проведенное расширенное исследование реакций иодид-нитридов лантаноидов $[(LnI)_3N_2]$ (Ln = Nd, Dy) с галогенидами лантаноидов и циклопентадиенидом эрбия в присутствии серы показали их существенное отличие от реакций с участием NdI₃ и DyI₃ (схема 2).

Рис. 2. Наложение независимых молекул A и B комплексов CpNdI₂(THF) (красные) и CpDyI₂(THF) (синие). Атомы водорода не показаны для наглядности.

Расстояния (Å)	CpNdI ₂ (TF	IF); $Ln = Nd$	$CpDyI_2(THF); Ln = Dy$					
Тасстояния (А)	А	В	A	В				
Ln(1)–I(1)	3.1306(11)	3.1419(12)	3.0757(14)	3.0928(14)				
Ln(1)–I(2)	3.1688(11)	3.1670(12)	3.1215(14)	3.1192(14)				
Ln(1)–O(1)	2.493(11)	2.491(10)	2.420(14)	2.413(12)				
Ln(1)-O(2)	2.474(10)	2.433(10)	2.417(13)	2.370(13)				
Ln(1)-O(3)	2.400(10)	2.433(10)	2.350(12)	2.403(13)				
Ln(1)-Ср _{центр}	2.428	2.440	2.360	2.386				
	CpNdI ₂ (TH	IF); $Ln = Nd$	$CpDyI_2(THF); Ln = Dy$					
Углы	А	В	A	В				
	ω, град							
I(1)Ln(1)I(2)	158.06(3)	160.03(4)	157.58(4)	159.81(4)				
O(1)Ln(1)I(1)	81.3(3)	81.2(3)	80.6(3)	80.8(3)				
O(2)Ln(1)I(1)	86.6(2)	85.7(3)	86.5(3)	85.3(3)				
O(3)Ln(1)I(1)	87.5(3)	88.3(3)	87.9(3)	88.4(3)				
O(1)Ln(1)I(2)	76.9(3)	79.5(2)	77.1(3)	79.5(3)				
O(2)Ln(1)I(2)	86.9(2)	85.3(3)	86.6(3)	85.8(3)				
O(3)Ln(1)I(2)	89.7(2)	91.5(3)	89.0(3)	91.0(3)				
O(1)Ln(1)O(2)	70 ((4)	79.5(4)	78.0(5)	77.0(4)				
0(1)211(1)0(2)	/9.6(4)	/8.3(4)	78.0(5)	77.0(4)				
O(1)Ln(1)O(3)	79.6(4) 75.7(4)	74.1(3)	75.9(4)	74.8(4)				

Таблица 2. Основные расстояния (Å) и углы (град) в комплексах CpNdI₂(THF) и CpDyI₂(THF)

$$[(NdI)_{3}N_{2}] + S_{8} \xrightarrow{\text{THF}} Nd_{2}ErI_{5-x}Cl_{x}(S_{8})(N_{2}S_{2})(THF)_{9} \quad (x = 1, 2)$$

$$(NdI)_{3}N_{2}] + S_{8} \xrightarrow{\text{THF}} Nd_{2}I_{5}(S_{8})(N_{2}S_{2})(THF)_{9}$$

$$Cp_{3}Er \xrightarrow{} CpNdI_{2}(THF) + Er(N_{2}S_{2})I(THF)_{4}$$

Схема 2.

Новые трехъядерные гетерометаллические кластеры $[Nd_2ErI_{5-x}Cl_x(S_2)(N_2S_2)(THF)_7]$ (x = 1, 2) были получены только в реакциях с ErCl₃. Соотношение иода и хлора в продуктах носит случайный характер и определяется условиями их выделения. Установлено, что в реакции [(DyI)₃N₂(THF)₆] с эквимольным количеством NdI₃ образуется кластер с каркасом Nd-Nd-Dy, аналогичный кластеру, синтезированному ранее реакцией иодид нитрида I с Dyl₃. Полученный результат можно объяснить более высокой реакционной способностью неодимовых интермедиатов. Использование в реакциях с нитридом I и серой комплекса с органическими лигандами Cp₃Er показало, что в этом случае полиядерных группировок не образуется, но протекает обмен лигандов и формирование дитиадинитрида, координированного на ион эрбия.

Авторы заявляют об отсутствии конфликта интересов.

БЛАГОДАРНОСТИ

В работе использовано оборудование центра коллективного пользования "Аналитический центр ИМХ РАН" при поддержке гранта "Обеспечение развития материально-технической инфраструктуры центров коллективного пользования научным оборудованием" (уникальный идентификатор RF-2296.61321X0017, соглашение № 075-15-2021-670).

ФИНАНСИРОВАНИЕ

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 18-43-520002).

СПИСОК ЛИТЕРАТУРЫ

- Lissner F., Meyer M., Schleid T. // Z. Anorg. Allg. Chem. 1996. V. 622. P. 275.
- Schleid T., Lissner F. // J. Alloys Compd. 2008. V. 451. P. 610.
- Lissner F., Meyer M., Kremer R.K., Schleida T. // Z. Anorg. Allg. Chem. 2006. V. 632. P. 1995.
- 4. Huebner L., Kornienko A., Emge T.J., Brennan J.G. // Inorg. Chem. 2005. V. 44. P. 5118.
- 5. Zhou J. // Coord. Chem. Rev. 2016. V. 315. P. 112.
- 6. *Fagin A.A., Fukin G.K., Cherkasov A.V. et al.* // Dalton. Trans. 2016. V. 45. P. 4558.
- Фагин А.А., Кузяев Д.М., Бурин М.А. и др. // Коорд. химия. 2018. Т. 44. № 1. С. 39 (Fagin А.А., Kuzyaev D.M., Burin M.A. et al. // Russ. J. Coord. Chem. 2018. V. 44. № 2. Р. 127). https://doi.org/10.1134/S1070328418020045
- 8. Fagin A.A., Kuznetsova O.V., Baranov E.V. et al. // J. Clust. Sci. 2019. V. 30. P. 1277.
- Fagin A.A., Kuzyaev D.M., Maleev A.A. et al. // Inorg. Chim. Acta. 2019. V. 490. P. 200.
- 10. Бочкарев М.Н., Протченко А.В. // Приборы и техника эксперимента. 1990. Т. 1. С. 194.
- 11. *Gysling H., Tsutsui M. //* Adv. Organometal. Chem. 1970. V. 9. P. 361.
- 12. SAINT. Data Reduction and Correction Program. Madison (WI, USA): Bruker AXS, 2014.
- 13. *Sheldrick G.M.* // TWINABS. V. 2012/1. Bruker/Siemens Area Detector Absorption Correction Program for Twinned Crystals. Madison (WI, USA): Bruker AXS, 2012.
- 14. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
- 15. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
- 16. *Khoroshen'kov G.V., Fagin A.A., Bochkarev M.N. et al.* // Russ. Chem. Bull. 2003. V. 52. 1715.
- Stellfeldt D., Meyer G., Deacon G.B. // Z. Anorg. Allg. Chem. 1999. V. 625. P. 1252.
- Shannon R.D. // Acta Crystallogr. A. 1976. V. 32. P. 751.