УДК 546.65+547.386

ЧЕТЫРЕХЪЯДЕРНЫЕ ГИДРОКСОКОМПЛЕКСЫ РЗЭ С КУБАНОВЫМ ОСТОВОМ КАК ПРОДУКТ САМОКОНТРОЛИРУЕМОГО ГИДРОЛИЗА

© 2022 г. Д. М. Цымбаренко^{1,} *, Д. И. Гребенюк¹, М. А. Бурлакова¹, А. С. Шуркина¹

¹Московский государственный университет им. М.В. Ломоносова, Москва, Россия

*e-mail: tsymbarenko@inorg.chem.msu.ru Поступила в редакцию 26.04.2021 г. После доработки 16.08.2021 г. Принята к публикации 18.08.2021 г.

В условиях самоконтролируемого гидролиза при взаимодействии трифторацетатов лантана и неодима с раствором диэтилентриамина (Deta) на воздухе впервые получены и охарактеризованы методами PCA, PФA, ИК-спектроскопии и элементного анализа четырехъядерные гидроксокомплексы [La₄(Deta)₄(OH)₄(Tfa)₃(DetadcH)₂](HTfa)(H₂O)₇(Tfa)₃ (I) и [Nd₄(Deta)₄(OH)₄(Tfa)₃(DetadcH)₂]-(H₂O)_n(Tfa)₃ (II) с диэтилентриамин-N,N'-дикарбамат-анионами (DetadcH⁻). Соединения I и II содержат однотипный комплексный катионный фрагмент с кубановым металл-кислородным остовом, стабилизированный за счет четырех хелатных Deta и двух мостиковых лигандов DetadcH⁻. Выполнены DFT расчеты геометрии и колебательного спектра комплексного катиона [La₄(Deta)₄-(OH)₄(Tfa)₃(DetadcH)₂]³⁺.

Ключевые слова: редкоземельные элементы, полиядерные комплексы, карбоксилаты, карбамат, кристаллическая структура **DOI:** 10.31857/S0132344X22030057

Полиядерные комплексы РЗЭ привлекают внимание исследователей в качестве перспективных соединений для создания люминесцентных и магнитных материалов. Близость нескольких ионов РЗЭ в одной молекуле может обеспечить перенос энергии между ними, что важно для создания новых люминесцентных термометров [1], люминесцентных сенсоров [2], ап-конверсионных [3] и магнетокалорических материалов [4, 5]. Близкие структурные свойства элементов в ряду РЗЭ и различные люминесцентные и магнитные свойства, определяемые числом *f*-электронов, обеспечивают возможность тонкой настройки функциональных свойств получаемого материала. В последние годы молекулярные кластеры РЗЭ рассматриваются в литературе в качестве вторичных структурных блоков для новых координационных полимеров, в том числе металлорганических каркасов [6].

Дополнительный интерес к системам карбоксилатов РЗЭ с аминами вызван также тем, что они находят применение в качестве прекурсоров в растворном методе получения неорганических тонкопленочных материалов на основе РЗЭ: оксидов и фторидов [7–10]. Важным преимуществом таких систем является легкий гидролиз под действием аминов с образованием аморфного геля, обеспечивающего однородность и сплошность образующейся при его отжиге пленки неорганического материала. Однако склонность к гелеобразованию в большинстве случаев затрудняет выделение промежуточных комплексов в кристаллическом виде и изучение их структуры методами рентгеновской дифракции.

В кислых водных растворах ионы РЗЭ существуют в виде акватированных ионов $[Ln(H_2O)_n]^{3+}$ (n = 8, 9). При повышении рН происходит их ступенчатый гидролиз, в ходе которого в растворе образуются гидроксокомплексы РЗЭ и в конечном счете соответствующий гидроксид Ln(OH)₃ при значениях рН от 7.5 (La) до 5.7 (Lu) [11]. В то же время присутствие в растворе анионных или нейтральных хелатирующих лигандов может предотвращать предельную конденсацию гидроксокомплексов до Ln(OH)₃ и приводить к образованию молекулярных кластеров РЗЭ.

В литературе описано большое разнообразие полиядерных молекулярных кластеров РЗЭ с различным числом атомов металла [12]. Наиболее изученными среди них являются четрырехъядерные кластеры на основе кубанового фрагмента $\{Ln_4(\mu_3-OH)_2\}$ [13, 14] и плоского фрагмента $\{Ln_4(\mu_3-OH)_2\}$ [15, 16], а также шестиядерные октаэдрические кластеры на основе фрагмента $\{Ln_6(\mu_3-OH)_8\}$ [17–19]. Основным методом получения молекулярных кластеров РЗЭ является реакция контролируемого гидролиза неорганической соли

РЗЭ в присутствии органического лиганда, стабилизирующего кластер и предотвращающего его дальнейшую конденсацию. Такой способ позволяет получать разнообразные полиядерные архитектуры, включающие комплексы с аминокислотами [20], основаниями Шиффа [21], дикетонами [22, 23].

Ранее мы сообщали о двухстадийном синтезе октаэдрических молекулярных кластеров РЗЭ, включающем стадию контролируемого гидролиза в присутствии пивалат-аниона, приводящего к образованию 1D координационных полимеров, содержащих плоское ядро $\{Ln_4(\mu_3-OH)_2\}$ [24] и последующее введение хелатирующего нейтрального лиганда диэтилентриамина, углубляющего гидролиз и стабилизирующего октаэдрическую архитектуру за счет водородных связей с пивалатанионами [17].

В настоящей работе мы сообщаем о синтезе, кристаллическом строении и квантово-химическом моделировании новых четырехъядерных молекулярных кластеров трифторацетатов La и Nd с диэтилентриамином и диэтилентриамин-N,N'-дикарбамат-анионом.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных реагентов использовали: La₂(CO₃)₃ · 6H₂O ("х. ч."), Nd₂(CO₃)₃ · 6H₂O ("х. ч."), трифторуксусную кислоту (**HTfa**, P&M Invest, 98%), диэтилентриамин (**Deta**, Sigma-Aldrich, 99%), изопропиловый спирт ("х. ч."). Все синтезы выполняли на воздухе в стеклянных стаканах.

Синтез тригидратов трифторацетатов лантана и неодима $Ln(Tfa)_3(H_2O)_3$ (Ln = La, Nd) проводили по известной методике из $Ln_2(CO_3)_3 \cdot 6H_2O$ [10]. Чистоту продуктов подтверждали методами РФА и ТГА. Выход ~95%.

Синтез полиядерных гидроксокомплексов

[Ln₄(Deta)₄(OH)₄(Tfa)₃(DetadcH)₂]³⁺(Tfa)₃ \cdot nH₂O \cdot *m*HTfa (Ln = La (I), Nd (II)). Навеску Ln(Tfa)₃(H₂O)₃ (0.7 ммоль) диспергировали в 5 мл изопропилового спирта, добавляли при перемешивании Deta (1.4 ммоль, 0.151 мл) и продолжали перемешивание при 60°С до получения прозрачного раствора. Затем раствор медленно охлаждали и оставляли в открытом стакане для испарения растворителя и медленной кристаллизации. Через 3 сут на стенках и на дне стакана обнаружили мелкие пластинчатые кристаллы. Для Ln = La в объеме гелеобразного продукта гидролиза получили единичные бесцветные кристаллы I. Для

Найдено %:	C 21.9;	H 4.2;	N 11.1.	
Для C ₄₂ H ₉₅ N ₁₈ O ₃₃ F ₂₁ La ₄ (I)				
вычислено %:	C 21.6;	H 4.1;	N 10.8.	
Найдено %:	C 22.3;	H 4.2;	N 11.5.	
Для C ₄₀ H ₈₂ N ₁₈ O ₂₅ F ₁₈ Nd ₄ (II)				
вычислено %:	C 22.5;	Н 3.9;	N 11.8.	

ИК-спектр (v, см⁻¹): 3368 ср, 3309 ср v_{as} (NH₂); 3100 сл v_{as} (CH₂); 2952 сл, 2920 сл, 2876 ср v_{s} (CH₂); 1688 с, 1673 с v_{as} (COO⁻); 1620 пл δ (NH₂); 1596 с δ (NH₂) + v_{as} (-NH–COO); 1490 с v_{s} (-NH–COO); 1454 ср δ (CH₂) + v_{s} (COO–); 1428 ср δ (CH₂) + + v_{as} (-NH–COO); 1396 ср δ_{w} (CH₂^{DetadcH–}); 1339 ср δ_{r} (C–NH–C) + δ_{w} (CH₂); 1199 с, 1178 с, 1127 с v(CF); 959 ср, 923 ср, 829 ср, 799 с, 716 с, 591 ср.

Анализ на С, Н и N выполняли на микроанализаторе Elementar Vario Micro Cube. ИК-спектр порошка II регистрировали в режиме нарушенного полного внутреннего отражения на спектрометре Shimadzu IRAffinity-1S в диапазоне волновых чисел 500–4000 см⁻¹. РФА порошка II выполняли на дифрактометре Rigaku Miniflex 600 (Си K_{α} -излучение, K_{β} -фильтр, детектор D/teX Ultra) в геометрии Брэгга–Брентано.

PCA выполнен на дифрактометре Bruker D8 Quest (Мо K_{α} -излучение, $\lambda = 0.71073$ Å) с детектором Photon III при температуре 100 К. Все кристаллы I и II демонстрировали широкие дифракционные максимумы с быстрым угловым затуханием интенсивности, накопление дифракционных данных проведено с длительностью выдержки 60 с/кадр. Структуры решены прямыми методами с последующими синтезами Фурье и уточнены полноматричным МНК. Все неводородные атомы (за исключением атомов разупорядоченных внешнесферных трифторацетатат-анионов и молекул воды в структуре I) уточнены в анизотропном приближении. Атомы водорода введены в рассчитанные позиции (из геометрических соображений и из соображений образования водородных связей) и уточнены в модели "наездника" с фиксированными изотропными тепловыми параметрами. Все вычисления проведены с использованием комплекса программ SHELXL 2017 [25]. Учет поглощения выполнен в программе SADABS [26]. Основные кристаллографические параметры приведены в табл. 1.

Полный набор кристаллографических параметров для структур I и II депонирован в Кембриджском банке структурных данных (ССDС № 2077216,

170	

	Значение		
Параметр	Ι	II	
Формула	$C_{42}H_{95}N_{18}O_{33}F_{21}La_4$	$C_{40}H_{82}N_{18}O_{25}F_{18}Nd_4$	
M	2334.99	2134.19	
Сингония	Моноклинная	Триклинная	
Пр. гр.	C2/c	$P\overline{1}$	
a, Å	28.147(3)	13.0303(11)	
b, Å	12.9228(15)	13.6954(11)	
<i>c</i> , Å	23.830(3)	22.1635(18)	
α, град	90	94.646(2)	
β, град	96.596(3)	93.226(2)	
ү, град	90	109.179(2)	
<i>V</i> , Å ³	8610.5(18)	3708.9(5)	
Ζ	4	2	
Цвет, форма кристалла	Бесцветный, блок	Сиреневый, блок	
Размер кристалла, мм	$0.079 \times 0.062 \times 0.053$	$0.292 \times 0.149 \times 0.112$	
ρ(выч.), г см ⁻³	1.801	1.911	
μ, мм ⁻¹	2.074	2.880	
Независимых отражений (<i>R</i> _{int})	10242 (0.1132)	15662 (0.0504)	
Отражений с <i>I</i> > 2σ(<i>I</i>)	6133	11626	
Параметров	532	993	
$R_1 (I > 2\sigma(I)), wR_2$	0.0762, 0.2361	0.0973, 0.2630	
Добротность по F^2	1.057	1.161	
T_{\min}, T_{\max}	0.6227, 0.9143	0.4935, 1.0000	
ρ_{min}/ρ_{max} , $e \text{\AA}^{-3}$	-2.084/2.403	-4.891/3.662	

Таблица 1. Результаты уточнения кристаллических структур

2077217 соответственно; deposit@ccdc.cam.ac.uk; http://www.ccdc.cam.ac.uk/data_request/cif).

Квантово-химическое моделирование проведено для изолированного катионного фрагмента $[La_4(Deta)_4(OH)_4(Tfa)_3(DetadcH)_2]^{3+}$ в программном пакете FireFly 8.2 [27] в рамках теории функционала электронной плотности (**DFT**) с использованием функционала PBE0 и базисных наборов 6-31G* для атомов C, F, O, N, H и квази-релятивисткого эффективного остовного потенциала Штутгарт—Кельн с большим остовом (ECP46MWB) и соответствующим базисным наборам для La [28, 29]. Стартовую геометрию катионного фрагмента строили на основании данных PCA, а затем оптимизировали без ограничений по симметрии. Оптимизированную геометрию проверяли на отсутствие мнимых частот в рассчитанном колебательном спектре.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В настоящее время активно развивается подход к синтезуполиядерных соединений РЗЭ, основанный на реакции контролируемого гидролиза в присутствии органических лигандов, стабилизирующих полиядерный гидроксокомплекс. Процесс самоконтролируемого гидролиза может быть осуществлен за счет использования аминов, способных выступать одновременно и как слабые органические основания (реакция 1), и как хелатирующие лиганды (реакция 2). Самоконтролируемость гидролиза обусловлена близостью констант основности Deta $(pK_b = 3.8)$ и кислотности карбоновой кислоты (например, пивалевой кислоты HPiv, $pK_a = 5.0$) и выведением Deta из сферы реакции при образовании хелатных комплексов. Одновременное протекание гидролиза и комплексообразования может приводить к стабилизации полиядерных гидроксокомплексов (реакция 3) [17].

$$\operatorname{Ln}(\mathrm{Tfa})_{3} + x\mathrm{H}_{2}\mathrm{O} + x\mathrm{Deta} \rightleftharpoons 1/m \left[\operatorname{Ln}(\mathrm{Tfa})_{3-x}(\mathrm{OH})_{x}\right]_{m} + x(\mathrm{DetaH})\mathrm{Tfa},$$
(1)

$$\operatorname{Ln}(\operatorname{Tfa})_3 + n\operatorname{Deta} \rightleftharpoons [\operatorname{Ln}(\operatorname{Tfa})_3(\operatorname{Deta})_n], \tag{2}$$

$$1/m[Ln(Tfa)_{3-x}(OH)_x]_m + nDeta \rightleftharpoons 1/m[Ln(Tfa)_{3-x}(OH)_x(Deta)_n]_m,$$
(3)

В данной работе мы исследовали взаимодействие Deta с трифторацетатами РЗЭ – солями сильной трифторуксусной кислоты (р $K_a = 0.5$). В результате медленной кристаллизации реакционной смеси на воздухе также протекает реакция частичного гидролиза, при этом степень гидролиза меньше, чем в случае пивалатов, образуются молекулярные кластеры с одним из наиболее распространенных для гидроксокарбоксилатов РЗЭ кубановым остовом Ln₄(OH)₄. Уникальной особенностью проведенного нами синтеза является выделение в кристаллическом виде соединений с in situ образуюлигандом диэтилентриамин-N,N'шимся дикарбамат-анионом (DetadcH⁻), протонированным по центральному атому азота. Формирование DetadcH⁻ происходит за счет поглощения CO₂ pacтвором Deta из воздуха (реакция 4) в процессе медленной кристаллизации реакционной смеси в открытом стакане. Стоит отметить, что DetadcH⁻ является лишь одним из сложного набора продуктов, соответствующих различной степени протонирования и присоединения CO₂ [30, 31].

В литературе описаны процессы деградации алифатических полиаминов под действием угле-

Рис. 1. Сопоставление данных РФА порошка II и теоретической рентгенограммы, рассчитанной по кристаллической структуре II. При расчете учтены эффекты теплового расширения (a = 12.988(7), b = 13.950(8), c = 22.735(9) Å, $\alpha = 95.78(5)^\circ$, $\beta = 92.75(4)^\circ$, $\gamma = 109.48(6)^\circ$, V = 3849(4) Å³) и наличие (001) текстуры. Вертикальными линиями снизу показаны рассчитанные положения брэгговских пиков.

КООРДИНАЦИОННАЯ ХИМИЯ том 48 № 3 2022

кислого газа и повышенной температуры, приводящие к образованию различных производных мочевины и карбаминовой кислоты [32, 33]. Однако, по нашим данным, ни комплексы металлов с такими дикарбаматными лигандами, ни органические соединения, содержащие подобный фрагмент, до настоящего времени не были описаны. Вероятно, это связано с трудностями получения таких соединений в кристаллическом состоянии. В то же время соответствующие системы с полиаминами представляют большой интерес с точки зрения применения их в технологиях улавливания и хранения углекислого газа [31, 34].

В данной работе нам удалось выделить кристаллы соединений двух металлов — лантана (I) и неодима (II), содержащих, по данным РСА, катионный структурный фрагмент одинакового состава $[Ln_4(Deta)_4(OH)_4(Tfa)_3(DetadcH)_2]^{3+}$, внешнесферные анионы Tfa⁻ и молекулы воды.

Идентичность полученного основного порошкообразного продукта II и исследованных методом РСА монокристаллов подтверждена совпадением экспериментальной и теоретической порошковых рентгенограмм (рис. 1).

По данным РСА, наиболее существенное различие между структурами I и II заключается в том, что соединение I кристаллизуется в моноклинной руппе С2/с, и ось 2 проходит через катионный фрагмент $[Ln_4(Deta)_4(OH)_4(Tfa)_3(DetadcH)_2]^{3+}$ (т.е. симметрически независимая часть содержит половину катионного фрагмента), в то время как соединение II кристаллизуется в триклинной группе $P\overline{1}$, а симметрически независимая часть элементарной ячейки II содержит полный комплексный катион. В структуре $[Ln_4(Deta)_4(OH)_4-(Tfa)_3(DetadcH)_2]^{3+}$ четыре атома Ln расположены в вершинах тетраэдра (Ln…Ln \approx 4 Å), над гранями тетраэдра на высоте 0.83–0.98 Å находятся четыре μ_3 -ОН группы, формирующие кубановое металл-кислородное ядро {Ln₄(µ₃-OH)₄} (рис. 2). Примеры соединений с кубановым ядром широко описаны в литературе для *d*- и *f*-элементов, причем как в изолированных молекулярных кластерах [13, 14], так и в структурных

Рис. 2. Строение кубанового металл-кислородного остова в четырехъядерном комплексном катионе $[Ln_4(Deta)_4(OH)_4(Tfa)_3(DetadcH)_2]^{3+}$ в кристаллических структурах I и II. Для ясности показаны только атомы Ln и группы μ_3 -OH. Штриховыми линиями показаны ребра тетраэдра Ln₄.

блоках более сложных полиядерных комплексов [35, 36] и координационных полимеров [37, 38].

В комплексном катионе $[La_4(Deta)_4(OH)_4(Tfa)_3-$ (DetadcH)2]³⁺ присутствуют два типа атомов Ln, различающиеся координационным окружением (рис. 3). Первый тип представлен парами атомов La(1), La(1)ⁱ в I и Nd(1), Nd(2) в II с однотипным координационным окружением (трехшапочная тригональная призма, КЧ 9), которое целесообразно рассмотреть на примере Nd(1). Атом Nd(1) находится в окружении трех атомов азота N(7)-N(9) бихелатного Deta, атомов кислорода O(1H)-O(3H) трех μ_3 -OH групп, двух атомов кислорода (O(1) и O(3)) одного мостикового DetadcH⁻, а также одного атома кислорода (O(9)) мостикового Tfa⁻ (табл. 2). При этом мостиковый Tfa⁻ вторым атомом кислорода (O(10)) входит в координационное окружение Nd(2).

Второй тип атомов Ln представлен парами La(3), La(3)ⁱ в I и Nd(3), Nd(4) в II также с однотипным координационным окружением (одношапочная квадратная антипризма, KЧ 9), рассмотренным на примере Nd(3). Атом Nd(3) окружен тремя атомами азота N(13)–N(15) бихелатного Deta, атомами кислорода O(2H)–O(4H) трех групп μ_3 -OH, атомами кислорода O(4) и O(8) двух мостиковых DetadcH⁻, а также одним атомом кислорода O(13) терминального Tfa⁻ (табл. 2). Терминальные анионы Tfa⁻ образуют внутримолекулярные водородные связи с группами μ_3 -OH (табл. 3).

Отметим, что оба аниона DetadcH[–] выступают лишь как мостиковые лиганды в отличие от четырех бихелатных Deta, при этом центральный атом азота DetadcH[–] протонирован и вообще не участвует в координации с металлом, вместо этого группа $\mathrm{NH_2^+}$ образует две водородные связи (внутримолекулярную и межмолекулярную).

Несмотря на идентичное строение комплексного катиона, соединения I и II различаются составом внешнесферных лигандов, что объясняет и различия в симметрии кристаллической решетки. В структуре I один из внешнесферных Tfa⁻ и молекула HTfa разупорядочены по двум кристаллографически эквивалентным позициям с равной заселенностью, в структуре II все внешнесферные анионы Tfa⁻ упорядочены. В пустотах упаковки комплексных катионов и анионов расположены внешнесферные молекулы воды, образующие систему водородных связей.

Квантово-химическое моделирование изолированного катионного фрагмента [La₄(Deta)₄-(OH)₄(Tfa)₃(DetadcH)₂]³⁺ показало хорошее согласие оптимизированной геометрии с результатами РСА (рис. 4), длины соответствующих связей различаются в среднем на 0.03Å (табл. 2). Необходимо отметить, что локализация протонов на группах NH₂⁺ и анионах OH⁻ в квантово-химических расчетах также подтверждает выводы РСА. Расчет частот и формы нормальных колебания позволяет корректно провести отнесение полос в экспериментальном спектре (рис. 5). Теоретический и экспериментальный спектры достаточно хорошо согласуются и по положению, и по интенсивности полос. Большие относительные интенсивности полос в области 1200-700 см⁻¹ в экспериментальном спектре связано с наличием внешнесферных лигандов, не включенных в расчет. По данным расчета, полосы поглощения при 1596, 1490 и 1339 см⁻¹ связаны с колебаниями кар-

Рис. 3. Строение комплексного катиона $[Nd_4(Deta)_4(OH)_4(Tfa)_3(DetadcH)_2]^{3+}$ в кристаллической структуре II. Атомы водорода для ясности частично не показаны. Штриховыми линиями показаны водородные связи.

баматных групп, и их наличие в экспериментальном ИК-спектре порошка II дополнительно подтверждает состав соединения (рис. 5).

В заключение отметим следующее. В результате контролируемого гидролиза трифторацетатов La и Nd под действием диэтилентриамина были синтезированы новые молекулярные гидроксокомплексы с четырхъядерным кубановым остовом {Ln₄(μ_3 -OH)₄}. Взаимодействие диэтилентриамина с углекислым газом на воздухе в процессе синтеза привело к *in situ* образованию анионного лиганда диэтилентриамин-N,N'-дикарбамата, вошедшего в состав комплексов. Комплексы с таким лигандом выделены впервые. Структура комплексов установлена по результатам PCA, а количественный и фазовый состав подтвержден совокупностью методов: РФА, ИК-спектроскопией, элементным анализом. Квантово-химические DFT расчеты показывают хорошее согласие геометрии комплекса с результатами рентгеноструктурного анализа, а рассчитанный колебательный спектр соответствует экспериментальному, дополнительно подтверждая состав и структуру комплексов.

Авторы заявляют, что у них нет конфликта интересов.

БЛАГОДАРНОСТИ

Работа выполнена с использованием оборудования, приобретенного за счет средств "Программы развития Московского университета".

ЦЫМБАРЕНКО и др.

Связь Ln–L	Ln = La (I)		Ln = Nd (II)
	PCA	DFT	РСА
Ln(1)–O(1)	2.529(7)	2.611	2.456(10)
Ln(1)–O(3)	2.516(8)	2.562	2.541(12)
Ln(1)–O(1H)	2.538(8)	2.590	2.499(10)
Ln(1)-O(2H)	2.538(7)	2.573	2.474(8)
Ln(1)-O(3H)	2.498(6)	2.495	2.426(11)
Ln(1)-O(9)	2.590(8)	2.588	2.509(12)
Ln(1)-N(7)	2.719(10)	2.730	2.663(16)
Ln(1)–N(8)	2.733(11)	2.722	2.692(12)
Ln(1)-N(9)	2.751(11)	2.742	2.629(13)
Ln(2)–O(6)	2.516(8)	2.543	2.500(10)
Ln(2)-O(7)	2.529(7)	2.621	2.453(10)
Ln(2)-O(1H)	2.538(7)	2.572	2.493(8)
Ln(2)-O(2H)	2.538(8)	2.579	2.478(11)
Ln(2)-O(4H)	2.498(6)	2.497	2.421(11)
Ln(2)-O(10)	2.590(8)	2.599	2.535(12)
Ln(2)-N(10)	2.751(11)	2.732	2.642(17)
Ln(2)-N(11)	2.733(11)	2.726	2.688(13)
Ln(2)-N(12)	2.719(10)	2.743	2.681(15)
Ln(3)–O(4)	2.518(8)	2.561	2.432(11)
Ln(3)–O(8)	2.541(7)	2.613	2.424(9)
Ln(3)-O(2H)	2.533(6)	2.562	2.467(12)
Ln(3)-O(3H)	2.474(7)	2.513	2.459(9)
Ln(3)-O(4H)	2.502(8)	2.505	2.436(11)
Ln(3)–O(11)	2.626(9)	2.623	2.584(13)
Ln(3)-N(13)	2.713(9)	2.733	2.665(15)
Ln(3)-N(14)	2.722(9)	2.756	2.699(17)
Ln(3)-N(15)	2.720(9)	2.708	2.633(16)
Ln(4)-O(2)	2.541(7)	2.604	2.471(10)
Ln(4)-O(5)	2.518(8)	2.544	2.511(12)
Ln(4)-O(1H)	2.533(6)	2.550	2.456(11)
Ln(4)-O(3H)	2.502(8)	2.515	2.423(11)
Ln(4)-O(4H)	2.474(7)	2.520	2.434(9)
Ln(4)-O(13)	2.626(9)	2.634	2.639(17)
Ln(4)-N(16)	2.720(9)	2.709	2.679(16)
Ln(4)-N(17)	2.722(9)	2.759	2.684(17)
Ln(4)–N(18)	2.713(9)	2.726	2.63(2)

Таблица 2. Межатомные расстояния (Å) в комплексных катионах $[Ln_4(Deta)_4(OH)_4(Tfa)_3(DetadcH)_2]^{3+}$ в структурах I и II по данным PCA и DFT-расчета

D–H…A	Расстояние, Å			
	D-H	Н…А	D–A	20ПА, Град
Ln = La (I)				
O(3H)-H(3)O(14)	0.999	1.974	2.936	160.9
O(4H)-H(4)O(12)	0.999	1.974	2.936	160.9
N(5)-HO(7)	0.911	2.214	2.834	124.6
N(2)-HO(1)	0.911	2.214	2.834	124.6
Ln = Nd (II)				
O(3H)-H(3)O(14)	1.000	1.911	2.883	163.3
O(4H)-H(4)O(12)	0.999	1.894	2.863	162.7
N(5)-HO(7)	0.910	2.150	2.757	123.4
N(2)-HO(1)	0.910	2.089	2.788	132.8

Таблица 3. Параметры внутримолекулярных водородных связей O–H…O и N–H…O в комплексных катионах $[Ln_4(Deta)_4(OH)_4(Tfa)_3(DetadcH)_2]^{3+}$

Рис. 4. Оптимизированная геометрия (DFT) комплексного катиона $[La_4(Deta)_4(OH)_4(Tfa)_3(DetadcH)_2]^{3+}$. Часть атомов водорода для ясности не показана.

КООРДИНАЦИОННАЯ ХИМИЯ том 48 № 3 2022

Рис. 5. Сопоставление экспериментального ИК-спектра II и теоретического (DFT) колебательного спектра катиона $[Ln_4(Deta)_4(OH)_4(Tfa)_3(DetadcH)_2]^{3+}$. Частоты нормальных колебаний в теоретическом спектре приведены с учетом масштабирующих коэффициентов (0.93–0.95). Пунктирными линиями показано соответствие полос в спектрах. Для теоретического спектра приведены формы нормальных колебаний с участием карбаматной группы.

ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке Российского научного фонда (грант РНФ № 19-73-00277).

СПИСОК ЛИТЕРАТУРЫ

- 1. *D'Vries R.F., Álvarez-García S., Snejko N. et al.* // J. Mater. Chem. C. 2013. V. 1. P. 6316.
- Kreno L.E., Leong K., Farha O.K. et al. // Chem. Rev. 2012. V. 112. P. 1105.
- Souri N., Tian P., Platas-Iglesias C. et al. // J. Am. Chem. Soc. 2017. V. 139. P. 1456.
- 4. *Wang W.-M., Li X.-Z., Zhang L. et al.* // New J. Chem. 2019. P. 7419.
- Guo F.S., Leng J.D., Liu J.L. et al. // Inorg. Chem. 2012. V. 51. P. 405.
- Feng L., Pang J., She P. et al. // Adv. Mater. 2020. V. 66. P. 1.
- Nikolaeva A., Nygaard R., Martynova I. et al. // Polyhedron. 2020. P. 114373.
- Kendin M., Tsymbarenko D. // J. Anal. Appl. Pyrolysis. 2019. V. 140. P. 367.
- 9. Kuzmina N.P., Ibragimov S.A., Makarevich A.M. et al. // Chem. Mater. 2010. V. 22. P. 5803.
- Grebenyuk D., Ryzhkov N., Tsymbarenko D. // J. Fluor. Chem. 2017. V. 202. P. 82.
- 11. Suzuki Y., Nagayama T., Sekine M. et al. // J. Less-Common Met. 1986. V. 126. P. 351.

- Calvez G., Le Natur F., Daiguebonne C. et al. // Coord. Chem. Rev. 2017. V. 340. P. 134.
- 13. *Wang R., Liu H., Carducci M.D. et al.* // Inorg. Chem. 2001. V. 40. P. 2743.
- Roitershtein D.M., Vinogradov A.A., Lyssenko K.A. et al. // Inorg. Chem. Commun. 2017. V. 84. P. 225.
- Guo P.H., Liu J.L., Zhang Z.M. et al. // Inorg. Chem. 2012. V. 51. P. 1233.
- Abbas G., Lan Y., Kostakis G.E. et al. // Inorg. Chem. 2010. V. 49. P. 8067.
- 17. Grebenyuk D., Martynova I., Tsymbarenko D. // Eur. J. Inorg. Chem. 2019. P. 3103.
- Calvez G., Daiguebonne C., Guillou O. et al. // Eur. J. Inorg. Chem. 2009. P. 3172.
- Calvez G., Guillou O., Daiguebonne C. et al. // Inorg. Chim. Acta. 2008. V. 361. P. 2349.
- Wang R., Zheng Z., Jin T. et al. // Inorg. Chem. 1999.
 V. 38. P. 1813.
- 21. Langley S.K., Chilton N.F., Gass I.A. et al. // Dalton Trans. 2011. V. 40. P. 12656.
- 22. Datta S., Baskar V., Li H. et al. // Eur. J. Inorg. Chem. 2007. P. 4216.
- 23. Andrews P.C., Deacon G.B., Frank R. et al. // Eur. J. Inorg. Chem. 2009. P. 744.
- Grebenyuk D., Zobel M., Polentarutti M. et al. // Inorg. Chem. 2021. V. 60. P. 8049.
- 25. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
- 26. Krause L., Herbst-Irmer R., Sheldrick G.M. et al. // J. Appl. Cryst. 2015. V. 48. P. 3.

КООРДИНАЦИОННАЯ ХИМИЯ том 48 № 3 2022

- 27. *Granovsky A.A.* Firefly Computational Program Chemistry. Version 8. http://classic.chem.msu.su/gran/firefly/index.html
- Dolg M., Stoll H., Savin A. et al. // Theor. Chim. Acta. 1989. V. 75. P. 173.
- Dolg M., Stoll H., Preuss H. // Theor. Chim. Acta. 1993. V. 85. P. 441.
- Wong M.K., Shariff A.M., Bustam M.A. // RSC Adv. 2016. V. 6. P. 10816.
- Septavaux J., Tosi C., Jame P. et al. // Nat. Chem. 2020.
 V. 12. P. 202.
- 32. *Thompson J., Richburg H., Liu K.* // Energy Procedia. 2017. V. 114. P. 2030.

- Wang P., Fei Y., Li Q. et al. // Green Chem. 2016. V. 18. P. 6681.
- 34. *Poisson G., Germain G., Septavaux J. et al.* // Green Chem. 2016. V. 18. P. 6436.
- Zhou Y., Zheng X.Y., Cai J. et al. // Inorg. Chem. 2017. V. 56. P. 2037.
- 36. *Ma X.-F., Wang H.-L., Zhu Z.-H. et al.* // Dalton Trans. 2019. V. 48. P. 11338.
- 37. *Zhou J., Yan S., Yuan D. et al.* // CrystEngComm. 2009. V. 11. P. 2640.
- 38. Cheng J.W., Zheng S.T., Liu W. et al. // CrystEng-Comm. 2008. V. 10. P. 1047.