УДК 546.593+547.491+546.162.14+546.185+547.53.024+548.312.2

СИНТЕЗ И СТРОЕНИЕ ДИКАРБОКСИЛАТОВ (3-ФТОРФЕНИЛ)СУРЬМЫ $[(3-FC_6H_4)_3Sb][OC(O)R]_2$ (R = CH₂C₆H₄F-3, C₆H₃F₂-2,3, C₆F₅)

© 2022 г. В. В. Шарутин^{1,} *, О. К. Шарутина¹, Д. А. Жеребцов¹, О. С. Ельцов²

¹Национальный исследовательский Южно-Уральский государственный университет, Челябинск, Россия ²Уральский федеральный университет, Екатеринбург, Россия

> *e-mail: sharutin50@mail.ru Поступила в редакцию 24.05.2021 г. После доработки 30.06.2021 г. Принята к публикации 05.07.2021 г.

Дикарбоксилаты (3-фторфенил)сурьмы [(3-FC₆H₄)₃Sb][OC(O)R]₂ (R = CH₂C₆H₄F-3 (I), C₆H₃F₂-2,3 (II), C₆F₅ (III)) синтезированы из *трис*(3-фторфенил)сурьмы, карбоновой кислоты и *трет*-бутилгидропероксида в растворе диэтилового эфира по реакции окислительного присоединения. Структура соединений охарактеризована методами ИК, ¹H, ¹³C{¹H} и ¹⁹F{¹H} ЯМР-спектроскопии, элементного анализа и монокристальной рентгеновской дифракции (CIF files CCDC № 2055807 (I), 2055816 (II), 2055817 (III)). Кристаллы комплексов I–III содержат тригонально-бипирамидные молекулы с аксиально расположенными карбоксилатными лигандами.

Ключевые слова: дикарбоксилаты (3-фторфенил)сурьмы, синтез, строение **DOI:** 10.31857/S0132344X2204003X

В настоящее время получен и исследован достаточно широкий ряд дикарбоксилатов триарилсурьмы [1]. Интерес к такому типу соединений связан с большими возможностями их применения. Некоторые из указанных производных проявляют противоопухолевую активность [2-4] и используются для лечения лейшманиоза [5-8]. Активно развивается химия полимеров, содержащих сурьму. В литературе имеются данные о введении в полиметилметакрилат, полиакриловую кислоту, поливинилацетат металлической сурьмы в коллоидном состоянии [9, 10]. Сурьмаорганические производные могут встраиваться как в основную цепь макромолекул [11, 12], так и в качестве заместителей в боковой цепи. Акрилаты. метакрилаты, винилбензоаты и другие производные сурьмы, способные к полимеризации, уже использованы для синтеза металлосодержащих полимеров на основе метилметакрилата, стирола, винилацетата, акриловой кислоты, проявляющих фунгицидную и биоцидную активность [13, 14]. Добавки таких соединений в полимерные материалы улучшают их термическую стойкость [15], а также поглощение рентгеновского излучения [16]. Отметим, что свойства дикарбоксилатов триарилсурьмы зависят от природы и типа лигандов при атоме металла [1], поэтому синтез дикарбоксилатов с гетероатомами в арильных заместителях является актуальной задачей. В литературе известны дикарбоксилаты триарилсурьмы с атомами галогена в арильных лигандах [1, 17–20], среди которых выделим немногочисленные дикарбоксилаты *mpuc*(3-фторфенил)сурьмы [19, 20].

В продолжение исследований соединений пятивалентной сурьмы синтезированы дикарбоксилаты $mpuc(3-\phi \text{тор}\phi \text{енил})$ сурьмы $[(3-FC_6H_4)_3Sb][OC(O)R]_2$ (R = CH₂C₆H₄F-3 (I), C₆H₃F₂-2,3 (II), C₆F₅ (III)) и изучено их строение.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза использовали коммерческие реактивы (Alfa Aesar).

Синтез бис(3-фторфенилацетато)*трис*(3-фторфенил)сурьмы (I). Смесь *трис*(3-фторфенил)сурьмы (203 мг, 0.5 ммоль), 3-фторфенилуксусной кислоты (154 мг, 1.0 ммоль) и 64 мг 70%-ного раствора *трет*-бутилгидропероксида в 20 мл эфира перемешивали 1 ч. Через 18 ч образовавшиеся кристаллы отфильтровывали и высушивали на воздухе. Выход 290 мг (81%). $T_{\text{пл}} = 99^{\circ}$ С.

Найдено, %:	C 57.18;	H 3.51.
Для C ₃₄ H ₂₄ F ₅ O ₄ Sb		
вычислено, %:	C 57.22;	H 3.37.

ИК-спектр (v, см⁻¹): 3088, 3065, 1659, 1616, 1585, 1522, 1489, 1472, 1450, 1425, 1310, 1287, 1265, 1217, 1163, 1140, 1088, 1053, 997, 962, 924, 893, 870,

853, 783, 766, 721, 679, 658, 633, 584, 555, 538, 523, 486, 440. SMP ¹H (CDCl₃; δ , m.g.) 7.58–7.49 (m., 6H), 7.39 (t.g., J = 8.0, 5.4 Fu, 3H), 7.25–7.14 (m., 5H), 6.90 (t.g., J = 8.5, 2.6 Fu, 2H), 6.80 (g., J == 7.6 Fu, 2H), 6.69 (g.g., J = 9.8, 2.0 Fu, 2H), 3.43 (c., 2H). SMP ¹³C{¹H} (CDCl₃; δ , m.g.): 175.33, 162.77 (g., J = 245.8 Fu), 162.71 (g., J = 251.4 Fu), 139.15 (g., J = 5.5 Fu), 137.10 (g., J = 8.3 Fu), 130.80 (g., J = 7.4 Fu), 129.92 (g., J = 7.9 Fu), 129.31 (g., J == 3.3 Fu), 124.88 (g., J = 2.2 Fu), 120.95 (g., J = 22.8 Fu), 118.79 (g., J = 20.8 Fu), 116.06 (g., J = 21.7 Fu), 113.77 (g., J = 20.8 Fu), 42.39. SMP ¹⁹F (CDCl₃; δ , m.g.): -109.36 m., -113.40 m.

Соединения II и III получали аналогично.

Бис(2,3-дифторбензоато)*трис*(3-фторфенил)сурьма (II). Выход 83%, $T_{пл} = 183^{\circ}$ С.

Найдено, %:	C 53.20;	H 2.58.
Для $C_{32}H_{18}F_7O_4Sb$		
вычислено, %:	C 53.24;	H 2.50.

ИК-спектр (v. см⁻¹): 3102, 3073, 1634, 1587, 1487, 1474, 1425, 1348, 1273, 1215, 1184, 1163, 1151, 1088, 1067, 999, 959, 899, 878, 853, 835, 789, 773, 762, 675, 660, 635, 544, 511, 492, 459, 440. ЯМР ¹Н (600 МГц; хлороформ-*d*; δ, м.д.) 7.85-7.81 (м., 3H), 7.80 (д., *J* = 7.8 Гц, 3H), 7.48–7.37 (м., 5H), 7.21–7.10 (м., 5Н), 6.95 (т.д.д., J = 8.0, 4.6, 1.4 Гц, 2H). ЯМР ¹³С{¹H} (151 МГц, хлороформ-*d*; δ, м.д.) 167.43 (т., J = 3.6 Гц), 162.94 (д., J = 251.8 Гц), 151.16 (д.д., J = 248.1, 13.5 Гц), 150.49 (д.д., J = = 260.2, 14.0 Гц), 138.84 (д., J = 5.4 Гц), 131.20 (д., $J = 7.5 \Gamma_{\text{II}}$, 129.58 (д., $J = 3.3 \Gamma_{\text{II}}$), 127.27 (д., $J = 3.3 \Gamma_{\text{II}}$), 124.49–123.36 (м.), 122.61 (д., J = 6.6 Гц), 121.28 (д., J = 23.0 Гц), 120.99 (д., J = 17.5 Гц), 119.16 (д., J = = 20.7 Гц). ЯМР ¹⁹F (565 МГц, хлороформ-*d*; δ, м.д.) -108.93...-109.03 м., -135.74 (д.т., J = 20.6, 6.3 Гц), -137.21 (д.д.д., J = 21.2, 9.7, 4.1 Гц).

Бис(пентафторбензоато)*трис*(3-фторфенил)сурьма (III). Выход 79%, $T_{\rm пл} = 131^{\circ}$ С.

Найдено, %:	C 46.24;	H 1.48.
Для C ₃₂ H ₁₂ O ₄ F ₁₃ Sb		
вычислено, %:	C 46.32;	H 1.45.

ИК-спектр (v, см⁻¹): 3102, 3074, 1699, 1682, 1653, 1591, 1522, 1499, 1476, 1427, 1333, 1252, 1217, 1167, 1105, 1090, 1059, 995, 926, 870, 856, 822, 787, 748, 698, 677, 660, 623, 582, 523, 492, 440. ЯМР ¹Н (хлороформ-*d*; δ , м.д.): 7.79–7.70 (м., 6H), 7.49 (т.д., J = 8.0, 5.4 Гц, 3H), 7.21 (д.д.д., J = 8.3, 2.5, 1.0 Гц, 3H). ЯМР ¹³С{¹H} (151 МГц, хлороформ-*d*; δ , м.д.): 163.07 (д., J = 252.9 Гц), 162.18, 145.16 (д.т.д., J = 255.2, 7.6, 3.9 Гц), 142.57 (д.м., J = 259.7 Гц), 137.72 (д.д.д.д., J = 253.0, 17.4, 12.8, 5.5 Гц), 136.56 (д., J = 5.9 Гц), 131.63 (д., J = 7.2 Гц), 129.52 (д., J = 5.9 Гц), 131.63 (д., J = 7.2 Гц), 129.52 (д., J = 5.9 Гц), 131.63 (д., J = 7.2 Гц), 129.52 (д., J = 5.9 Гц), 131.63 (д., J = 7.2 Гц), 129.52 (д., J = 5.9 Гц), 131.63 (д., J = 7.2 Гц), 129.52 (д., J = 5.9 Гц), 131.63 (д., J = 7.2 Гц), 129.52 (д., J = 5.9 Гц), 131.63 (д., J = 7.2 Гц), 129.52 (д., J = 5.9 Гц), 131.63 (д., J = 7.2 Гц), 129.52 (д., J = 5.9 Гц), 131.63 (д., J = 7.2 Гц), 129.52 (д., J = 5.9 Гц), 131.63 (д., J = 7.2 Гц), 129.52 (д., J = 5.9 Гц), 131.63 (д., J = 7.2 Гц), 129.52 (д., J = 5.9 Гц), 131.63 (д., J = 7.2 Гц), 129.52 (д., J = 5.9 Гц), 131.63 (д., J = 7.2 Гц), 129.52 (д., J = 5.9 Гц), 131.63 (д., J = 7.2 Гц), 129.52 (д., J = 5.9 Гц), 131.63 (д., J = 7.2 Гц), 129.52 (д., J = 5.9 Гц), 129.52 (д., J = 5.9

= 3.9 Γμ), 128.47, 121.13 (д., J = 23.7 Γμ), 119.86 (д., J = 20.8 Γμ), 110.18 т.д., J = 17.0, 3.9 Γμ). ЯМР ¹⁹F{¹H} (CDCl₃; δ, м.д.): -104.82...-114.20 м., -139.75...139.81 м., -150.43 (т., J = 20.6 Γμ), -160.72 (т.д., J = 20.2, 6.1 Γμ).

ИК-спектры записывали на ИК-Фурье-спектрометре Shimadzu IR Affinity-1S в таблетках KBr в диапазоне 4000–400 см⁻¹. Спектры ЯМР ¹H (600 МГц), ¹³C (151 МГц), ¹⁹F (565 МГц) регистрировали для растворов соединений в CDCl₃ на ЯМР-спектрометре Bruker AVANCE NEO 600 МГц, оборудованном Prodigy Cryoprobe. Сигналы растворителя использовали в качестве внутреннего стандарта для спектров ЯМР ¹H (7.26 м.д.) и ¹³C (77.16 м.д.), а CFCl₃ в качестве внешнего стандарта для спектров ЯМР ¹⁹F.

Элементный анализ на С и Н выполняли на элементном анализаторе Carlo Erba CHNS-O EA 1108. Температуры плавления измеряли на синхронном термоанализаторе Netzsch 449C Jupiter.

РСА. Исследование структуры монокристаллов соединений I–III проведено на дифрактометре Вruker D8 QUEST (Мо K_{α} -излучение, $\lambda = 0.71073$ Å, графитовый монохроматор). Сбор, редактирование данных и уточнение параметров элементарной ячейки, а также учет поглощения проведено с помощью программ SMART и SAINT-Plus [21]. Все расчеты проведены с использованием программ SHELXTL/PC [22], OLEX2 [23]. Структуры расшифрованы прямым методом и уточнены методом наименьших квадратов в анизотропном приближении для неводородных атомов. Параметры кристаллов, сбор данных и детали уточнения соединений I–III представлены в табл. 1.

Полные таблицы координат атомов, длин связей и валентных углов депонированы в Кембриджском банке структурных данных (ССDС № 2055807 (I), 2055816 (II), 2055817 (III); deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Известно, что окисление триарилсурьмы *трет*-бутилгидропероксидом в присутствии карбоновых кислот приводит к синтезу дикарбоксилатов триарилсурьмы общей формулы $Ar_3Sb[OC(O)R)]_2$ [24–27]. Мы установили, что реакции *трис*(3-фторфенил)сурьмы с такими карбоновыми кислотами, как 3-фторфенилуксусная, 2,3-дифторбензойная и пентафторбензойная кислоты в присутствии *трет*-бутилгидропероксида (мольное соотношение 1 : 2 : 1) протекают в эфире с образованием дикарбоксилатов *трис*(3-фторфенил)сурьмы, выделяемых с выходом до 83%:

Пополот	Значение			
параметр	Ι	II	III	
Μ	713.28	721.21	829.17	
Сингония	Моноклинная	Триклинная	Моноклинная	
Пр. гр.	C2/c	$P\overline{1}$	C2/c	
<i>a</i> , Å	18.813(12)	8.751(7)	26.308(15)	
b, Å	9.851(6)	11.126(8)	13.078(10)	
<i>c</i> , Å	16.259(11)	15.367(16)	19.015(11)	
α, град	90	99.40(3)	90	
β, град	97.05(3)	95.22(3)	111.121(14)	
ү, град	90	93.21(2)	90	
<i>V</i> , Å ³	2990(3)	1466(2)	6103(7)	
Ζ	4	2	8	
ρ(выч.), г/см ³	1.584	1.634	1.805	
μ, мм ⁻¹	0.992	1.022	1.022	
F(000)	1424.0	712.0	3232.0	
Размер кристалла, мм	$0.48 \times 0.24 \times 0.2$	$0.65 \times 0.46 \times 0.45$	$0.48 \times 0.36 \times 0.17$	
20, град	6.256-56.994	5.77-57	5.88-59.26	
Интервалы индексов отражений	$-25 \le h \le 25,$	$-11 \le h \le 11,$	$-36 \le h \le 33,$	
	$-13 \le k \le 13,$	$-14 \le k \le 14,$	$-18 \le k \le 18,$	
D	$-21 \le l \le 21$	$-20 \le l \le 20$	$-26 \le l \le 26$	
Всего отражений	37362	60514	138680	
Независимых отражений (R_{int})	3783 (0.0275)	7436 (0.0327)	8583 (0.0381)	
Число уточняемых параметров	210	401	451	
GOOF	1.099	1.157	1.050	
<i>R</i> -факторы	$R_1 = 0.0293,$	$R_1 = 0.0367,$	$R_1 = 0.0307,$	
по $F^2 > 2\sigma(F^2)$	$wR_2 = 0.0882$	$wR_2 = 0.0872$	$wR_2 = 0.0737$	
<i>R</i> -факторы по всем отражениям	$R_1 = 0.0306,$	$R_1 = 0.0416,$	$R_1 = 0.0458,$	
	$wR_2 = 0.0903$	$wR_2 = 0.0902$	$wR_2 = 0.0838$	
Остаточная электронная плотность (max/min). e/Å ⁻³	1.71/-0.63	1.77/-0.99	0.74/-0.69	

Таблица 1. Кристаллографические данные, параметры эксперимента и уточнения структур I-III

 $(3-FC_6H_4)_3Sb + 2HOC(O)R + t-BuOOH \rightarrow$ $\rightarrow (3-FC_6H_4)_3Sb[OC(O)R)]_2 + t-BuOH + H_2O,$ $R = CH_2C_6H_4F-3$ (I), $C_6H_3F_2-2,3$ (II), C_6F_5 (III).

По данным PCA, в соединениях I–III атомы Sb имеют искаженную тригонально-бипирамидальную координацию с атомами кислорода карбоксилатных лигандов в аксиальных положениях и арильными заместителями — в экваториальной плоскости (рис. 1–3).

Аксиальные углы OSbO в I, II, III составляют 175.96(9)°, 174.63(8)°, 171.32(7)° соответственно. Длины связей Sb-C в I-III изменяются в интервале 2.094(2)-2.123(3) Å, расстояния Sb-O (2.099(2)-2.128(2) Å) несколько меньше суммы

КООРДИНАЦИОННАЯ ХИМИЯ том 48 № 4 2022

ковалентных радиусов атомов сурьмы и кислорода (2.14 Å [28]). Суммы углов CSbC в экваториальной плоскости молекул I-III составляют 360°. Плоские арильные кольца в структурах развернуты вокруг связей Sb-C таким образом, чтобы свести к минимуму внутри- и межмолекулярные контакты. В молекулах I-III наблюдаются внутримолекулярные контакты Sb…O(=C), которые изменяются в интервале 2.862(9)-3.381(3) Å. Двугранные углы между плоскостями карбоксильных групп в I и II составляют 13.93° и 2.62°, а карбоксилатные лиганды имеют относительно фрагмента SbC₃ цис-ориентацию, что характерно для большинства дикарбоксилатов триорганилсурьмы [29]. Двугранные углы расположены таким образом, что внутримолекулярные контакты

Рис. 1. Строение соединения І.

Рис. 2. Строение соединения II.

Sb···O(=C) формируются внутри одного экваториального угла, значение которого возрастает до 138.30(14)°, 144.20(12)° соответственно при понижении значений двух других экваториальных углов. В молекулах III двугранный угол между плоскостями карбоксильных групп имеет необычно большое значение (76.27°), в результате чего карбонильные атомы кислорода находятся напротив разных экваториальных углов и углы CSbC (111.99(9)°, 117.56(10)°, 130.37(9)°) изменяются в обычном для соединений общей формулы Ar_3SbX_2 интервале (120° ± 10° [30]).

Из сравнительного анализа данных рентгеноструктурных исследований дикарбоксилатов *mpuc*(3-фторфенил)сурьмы (табл. 2) можно заключить, что упрочение внутримолекулярных контактов в молекулах $(3-FC_6H_4)_3Sb[OC(O)R]_2$ приводит к увеличению одного из экваториаль-

Рис. 3. Строение соединения III.

ных углов (со стороны внутримолекулярных контактов) и, наоборот, при наименьших внутримолекулярных взаимодействиях различия в экваториальных углах менее заметны.

В ИК-спектрах соединений I-III наблюдается интенсивная полоса поглошения валентных колебаний фрагмента SbC₃ при ~440 см⁻¹. Наличие интенсивных полос при 1659 (I), 1634 (II) и 1682 см⁻¹ (III) определяет валентные колебания карбонильных групп С=О. Полосы поглощения при 1585, 1471, 1425 см⁻¹ (I); 1587, 1473, 1425 см⁻¹ (II); 1591, 1476, 1427 см⁻¹ (III) характеризуют валентные колебания углеродного скелета арильных колец. Валентным колебаниям связей С_{Аг}-Н отвечают полосы поглощения средней интенсивности при 3088 (I), 3102 (II), 3102 (III) см⁻¹, а внеплоскостным деформационным колебаниям этих же связей – интенсивные полосы при 766, 762, 748 см⁻¹. В ИК-спектрах I. II. III присутствуют полосы поглощения валентных колебаний С-F при 1217,

1215, 1252 см⁻¹. По причине симметричности молекул комплексов во всех спектрах ЯМР ¹H, ¹³C и ¹⁹F наблюдается изохронность сигналов. Наличие атомов фтора обусловливает дополнительное расщепление сигналов в спектрах ЯМР ¹H и характерное расщепление ряда сигналов в спектрах ЯМР ¹³C с появлением типичных C–F констант спин-спинового взаимодействия.

Таким образом, наличие различного количества электроотрицательных атомов фтора в органическом радикале карбоновой кислоты не оказывает влияния на схему протекания реакции окислительного присоединения с участием *mpuc*(3фторфенил)сурьмы. Геометрические характеристики полученных дикарбоксилатов *mpuc*(3-фторфенил)сурьмы (длины связей Sb–C, Sb–O, внутримолекулярные контакты Sb…O и величины валентных углов) близки между собой при одинаковом координационном полиэдре атома сурьмы и его координационном числе.

R	Связь, А		Угол, град		
K	Sb…O=C (средн.)	Sb-O (средн.)	Sb-С (средн.)	OSbO	CSbC (макс.)
CH=CHPh	2.601	2.142	2.116	175.81	152.12 [19]
CH ₂ Br	2.872	2.119	2.105	175.92	143.09 [19]
C_6F_4H-2	2.878	2.131	2.114	175.72	142.47 [20]
C ₆ H ₃ F ₂ -2,3 (II)	2.906	2.120	2.122	174.63	144.20
C ₆ H ₃ (NO ₂) ₂ -3,5	2.931	2.127	2.111	174.70	141.08 [19]
CH ₂ C ₆ H ₄ F-3 (I)	3.122	2.099	2.117	175.96	138.30
C_6F_5 (III)	3.246	2.115	2.098	171.32	130.37

Таблица 2. Основные геометрические параметры молекул (3-FC₆H₄)₃Sb[OC(O)R]₂

КООРДИНАЦИОННАЯ ХИМИЯ том 48 № 4 2022

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Шарутин В.В., Поддельский А.И., Шарутина О.К. // Коорд. химия. 2020. Т. 46. № 10. С. 579 (Sharutin V.V., Poddel'sky A.I., Sharutina O.K. // Russ. J. Coord. Chem. 2020. V. 46. № 10. Р. 663). https://doi.org/10.1134/S1070328420100012
- Silvestru C., Haiduc I., Tiekink R.T. et al. // Appl. Organomet. Chem. 1995. V. 9. P. 597. https://doi.org/10.1002/aoc.590090715
- Liu R.C., Ma Y.Q., Yu L. et al. // Appl. Organomet. Chem. 2003. V. 17. P. 662. https://doi.org/10.1002/aoc.491
- Wang G.C., Xiao J., Yu L. et al. // J. Organomet. Chem. 2004. V. 689. P. 1631. https://doi.org/10.1016/j.jorganchem.2004.02.015
- Mishra J., Saxena A., Singh S. // Curr. Med. Chem. 2007. V. 14. P. 1153. https://doi.org/10.2174/092986707780362862
- 6. Islam A., Da Silva J.G., Berbet F.M. // Molecules. 2014.
 V. 19. P. 6009. https://doi.org/10.3390/molecules19056009
- Ali M.I., Rauf M.K., Badshah A. et al. // Dalton Trans. 2013. V. 42. P. 16733. https://doi.org/10.1039/c3dt51382c
- Duffin R.N., Blair V.L., Kedzierski L., Andrews P.C. // Dalton Trans. 2018. V. 47. P. 971. https://doi.org/10.1039/c7dt04171c
- Cardenas-Trivino G., Retamal C., Klabunde K.J. // Polym. Bull. 1991. V. 25. P. 315. https://doi.org/10.1007/BF00316900
- Cardenas-Trivino G., Retamal C., Tagle L.H. // Thermochim. Acta. 1991. V. 176. P. 233. https://doi.org/10.1016/0040-6031(91)80278-Q
- Naka K., Nakahashi A., Chujo Y. // Macromolecules. 2006. V. 39. P. 8257. https://doi.org/10.1021/ma0612201
- Naka K., Nakahashi A., Chujo Y. // Macromolecules. 2007. V. 40. P. 1372. https://doi.org/10.1021/ma0622332
- 13. *Котон М.М.* Металлоорганические соединения и радикалы. М.: Наука, 1985. С. 13.
- 14. *Карраер Ч., Шитс Дж., Питтмен Ч.* Металлоорганические полимеры. М.: Мир, 1981. 352 с.
- Додонов В.А., Гущин А.В., Кузнецова Ю.Л., Моругова В.А. // Вестник ННГУ. Сер. Химия. 2004. Т. 14. Р. 86.

- Kensuke N., Akiko N., Yoshiki C. // Macromolecules. 2006. V. 39. P. 8257. https://doi.org/10.1021/ma0612201
- Лобанова Е.В. // Вестник ЮУрГУ. Сер. Химия. 2020. Т. 12. № 2. С. 23. https://doi.org/10.14529/chem200203
- Хайбуллина О.А. // Вестник ЮУрГУ. Сер. Химия. 2021. Т. 13. № 1. С. 39. https://doi.org/10.14529/chem210104
- Шарутин В.В., Шарутина О.К., Ефремов А.Н., Андреев П.В. // Коорд. химия. 2018. Т. 44. С. 333 (Sharutin V.V., Sharutina O.K., Efremov A.N., Andreev P.V. // Russ. J. Coord. Chem. 2018. V. 44. № 10. Р. 635). https://doi.org/10.1134/S107032841810010X
- Шарутин В.В., Шарутина О.К., Ефремов А.Н., Слепухин П.А. // Журн. неорган. химии. 2020. Т. 65. № 7. С. 907 (Sharutin V.V., Sharutina O.K., Efremov A.N., Slepukhin P.A. // Russ. J. Inorg. Chem. 2020. V. 65. № 7. Р. 992). https://doi.org/10.1134/S0036023620070190
- SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Madison (WI, USA): Bruker AXS Inc., 1998.
- SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Madison (WI, USA): Bruker AXS Inc., 1998.
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- 24. Додонов В.А., Гущин А.В., Брилкина Т.Г. // Журн. общ. химии. 1985. Т. 55. С. 73.
- 25. Сенчурин В.С., Орленко Е.Д. // Вестник ЮУрГУ. Сер. Химия. 2019. Т. 11. № 2. С. 66. https://doi.org/10.14529/chem190207
- 26. *Малеева А.И., Гущин А.В., Калистратова О.С. и др. //* Вестник ЮУрГУ. Сер. Химия. 2019. Т. 11. № 3. С. 66. https://doi.org/10.14529/chem190308
- Гущин А.В., Малеева А.И., Калистратова О.С., Хамалетдинова Н.М. // Вестник ЮУрГУ. Сер. Химия. 2021. Т. 13. № 1. С. 5. https://doi.org/10.14529/chem210101
- 28. *Бацанов С.С.* // Журн. неорган. химии. 1991. Т. 36. № 12. С. 3015.
- 29. Cambridge Crystallographic Data Center. 2020. http://www.ccdc.cam.ac.uk.
- Шарутина О.К., Шарутин В.В. Молекулярные структуры органических соединений сурьмы(V). Челябинск: Издательский центр ЮУрГУ, 2012. 395 с.

КООРДИНАЦИОННАЯ ХИМИЯ том 48 № 4 2022