УДК 547-386+541.49

СИНТЕЗ И СТРУКТУРНОЕ РАЗНООБРАЗИЕ 1-(*о*-МЕТОКСИФЕНИЛ)-3,4-ДИФЕНИЛЦИКЛОПЕНТАДИЕНИЛЬНЫХ КОМПЛЕКСОВ ГАДОЛИНИЯ

© 2022 г. Д. А. Бардонов^{1, 2}, К. А. Лысенко³, И. Э. Нифантьев^{1, 2, 3}, Д. М. Ройтерштейн^{1, 2, 4, *}

¹Институт нефтехимического синтеза им. А.В. Топчиева РАН, Москва, Россия

²Национальный исследовательский университет "Высшая школа экономики", Москва, Россия

³Московский государственный университет им. М.В. Ломоносова, Москва, Россия

⁴Институт органической химии им. Н.Д. Зелинского РАН, Москва, Россия

*e-mail: roiter@yandex.ru Поступила в редакцию 27.10.2021 г. После доработки 23.11.2021 г. Принята к публикации 23.11.2021 г.

Взаимодействие 1-(*o*-метоксифенил)-3,4-дифенилциклопентадиенилкалия с тетрагидрофуранатом хлорида гадолиния в зависимости от стехиометрии приводит к образованию тетраядерного аткомплекса [{ $[\eta^5-(Ph_2(o-CH_3OC_6H_4)C_5H_2)Gd(Thf)]_2(\mu_2-Cl)_2(\mu_3-Cl)_3K(Thf)}_2]$ (I) и моноядерного [($Ph_2(o-CH_3OC_6H_4)C_5H_2$)_2GdCl] (II) (CIF files CCDC \mathbb{N} 2116742 (I), 2116741 (II)). В комплексе I отсутствует координация атомом кислорода метоксигруппы катиона гадолиния, тогда как в случае комплекса II катион Gd³⁺ координирован атомами кислорода обеих метоксигрупп. Комплекс II кристаллизуется в хиральной пространственной группе $P4_12_12$.

Ключевые слова: редкоземельные элементы, арилциклопентадиенильные лиганды, рентгеноструктурный анализ

DOI: 10.31857/S0132344X22050012

Циклопентадиенильные комплексы лантанидов играют важнейшую роль в металлоорганической химии 4f-элементов и являются первыми известными органическими производными лантанидов [1-4]. Востребованность циклопентадиенильных комплексов в химии РЗЭ обусловлена легкостью модификации циклопентадиенильного лиганда путем замещения атомов водорода пятичленного кольца на различные органические фрагменты. Наиболее изучены к настоящему времени комплексы лантанидов с незамещенными, алкил-и силилзамещенными циклопентадиенильными лигандами, арилциклопентадиенильные лиганды пока играют весьма скромную роль в химии РЗЭ, несмотря на очевидные перспективы таких лигандов, обусловленные многобразием возможностей их модификации путем введения заместителей в арильный фрагмент [5, 6]. Ранее мы показали, что использование ди-, три- и тетрафенилциклопентадиенильных лигандов позволяет получать разнообразные структурные типы моно-, бис-, и трис-циклопентадиенильных комплексов гадолиния, неодима и тербия [7-9]. Благодаря наличию совокупности невалентных взаимодействий с участием фенильных заместителей в циклопентадиенильных лигандах, реализовались различные структурные типы таких комплексов: от моноядерных и биядерных, до координационных полимеров [9].

Цель настоящей работы — выяснение координационных возможностей полиарилзамещенных циклопентадиенильных лигандов, содержащих метоксифенильные заместители в циклопентадиенильном лиганде. Ожидалось, что метоксигруппы, способные к координации с ионом РЗЭ, приведут к формированию принципиально новых комплексов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Все синтетические манипуляции проводили ватмосфере предварительно очищенного аргонавсреде безводных растворителей с использованием перчаточного бокса СПЕКС-ГБ2. Тетрагидрофуран предварительно высушивали над NaOH и перегоняли над калием/бензофеноном. Гексан перегоняли над калий-натриевой эвтектикой/бензофеноном. Толуол перегоняли над натрием/бензофеноном. GdCl₃(THF)_{2.1} получали в соответствии с известной методикой [10]. Бензилкалий получали по модифицированной литературной методике [11]. 1-(*о*-Метоксифенил)-3,4-дифенилциклопентадиенполучали по известной методике [12] и возгоняли в высоком вакууме. Элементный анализ выполняли на

	Значение		
Параметр	Ι	II	
Брутто формула	$C_{120}H_{124}Cl_{10}O_{10}K_2Gd_4, 3(C_4H_8O)$	C48H38ClO2Gd	
М	3004.20	839.48	
Т, К	120	100	
Сингония	Триклинная	Тетрагональная	
Пр. группа	$P\overline{1}$	P41212	
Z(Z')	1(0.5)	4(0.5)	
a, Å	12.0214(6)	9.8421(2)	
b, Å	14.0206(7)	9.8421(2)	
<i>c</i> , Å	19.7574(10)	39.0260(12)	
α, град	74.5980(10)	90	
β, град	80.9890(10)	90	
ү, град	83.9800(10)	90	
V, Å ³	3163.8(3)	3780.33(19)	
ρ(выч.), г см ⁻³	1.577	1.475	
μ, см ⁻¹	24.06	18.64	
F(000)	1508	1692	
20 _{max} , град (полнота)	58	60	
	(0.999)	(0.998)	
Число измеренных отражений	52431	40619	
Число независимых отражений	16804	5510	
Число отражений с <i>I</i> > 2σ(<i>I</i>)	14553	5152	
Количество уточняемых параметров	732	237	
R_1	0.0275	0.0307	
wR_2	0.0731	0.0630	
GOOF	1.008	1.022	
Остаточная электронная плотность (max/min), $e Å^{-3}$	2.350/-1.201	0.636/-0.393	

Таблица 1. Основные кристаллографические данные и параметры уточнения для соединений I, II

приборе Thermo Scientific FLASH 2000 CHNS/O Analyzer.

Синтез [{[η^5 -(Ph₂(*o*-CH₃OC₆H₄)C₅H₂)Gd(Thf)]₂-(μ_2 -Cl)₂(μ_3 -Cl)₃K(Thf)₂](Thf)₃ (I). Раствор бензилкалия (0.265 г, 2.04 ммоль) в 10 мл ТГФ медленно при перемешивании добавляли к раствору 1-(*o*-метоксифенил)-3,4-дифенилциклопентадиена (0.648 г, 2 ммоль) в 10 мл ТГФ. Реакционную смесь перемешивали в течение 15 мин, полученный раствор 1-(*o*-метоксифенил)-3,4-дифенилциклопентадиенилкалия медленно прибавляли к перемешиваемой суспензии GdCl₃(Thf)_{2.1} (0.830 г, 2 ммоль) в 10 мл ТГФ. Реакционную смесь перемешивали 12 ч, затем центрифугировали. Раствор концентрировали до объема 10 мл и аккуратно добавляли 20 мл гексана, избегая смешения слоев. Через 5 сут наблюдали образование кристаллического осадка I, который высушивали в динамическом вакууме. Выход I 1.200 г (92%).

Найдено, %:	C 52.69;	H 4.63.
Для C ₆₄ H ₇₀ O ₆ Cl ₅ Gd ₂		
вычислено, %:	C 52.77;	H 4.97.

Пригодные для РСА кристаллы получали в результате медленной диффузии гексана в раствор I в тетрагидрофуране.

Синтез [($Ph_2(o-CH_3OC_6H_4)C_5H_2$)₂GdCl] (II). Раствор бензилкалия (0.265 г, 2.04 ммоль) в 10 мл ТГФ медленно при перемешивании добавляли к раствору 1-(*o*-метоксифенил)-3,4-дифенилциклопентадиена (0.648 г, 2 ммоль) в 10 мл ТГФ. Реакционную смесь перемешивали в течение 15 мин, полученный раствор 1-(*o*-метоксифенил)-3,4-дифенилциклопентадиенилкалия медленно прибавляли к перемешиваемой суспензии GdCl₃(Thf)_{2.1} (0.415 г, 1 ммоль) в 10 мл ТГФ. Реакционную смесь перемешивали 12 ч, затем центрифугировали. Раствор упаривали досуха, полученное вязкое масло растирали с гексаном. Осадок отделяли от раствора центрифугированием. К осадку добавляли 7 мл толуола, осадок хлорида калия отделяли центрифугированием. К раствору аккуратно добавляли 30 мл гексана, избегая смешения слоев. Через 7 сут наблюдали образование кристаллического осадка II, который высушивали в динамическом вакууме. Выход II 0.582 г (69%).

Найдено, %:	C 68.32;	H 4.38.
Для C ₄₈ H ₃₈ ClO ₂ Gd		
вычислено, %:	C 68.69;	H 4.53.

Пригодные для PCA кристаллы получали в результате медленной диффузии гексана в раствор II в толуоле.

РСА комплексов I, II был проведен на дифрактометре Bruker Quest D8 (Мо K_{α} -излучение, графитовый монохроматор, ω -сканирование). Структуры расшифрованы прямым методом и уточнены МНК в анизотропном полноматричном приближении

по F_{hkl}^2 . Учет поглощения проведен полуэмпирически по эквивалентным отражениям. При уточнении разупорядоченных фрагментов использованы ограничения для параметров атомных смещений и позиционных параметров (DFIX и EADP). Атомы водорода во всех структурах рассчитаны и уточнены по модели наездника. Все расчеты проведены по комплексу программ SHELXL-2014/2017. Основные кристаллографические данные и параметры уточнения для соединений I, II приведены в табл. 1.

Координаты атомов и другие параметры структур депонированы в Кембриджском банке структурных данных (ССDС № 2116742 (I), 2116741 (II), deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk/data_request/cif).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Взаимодействие раствора калиевой соли 1-(*о*метоксифенил)-3,4-дифенилциклопентадиена в тетрагидрофуране с суспензией тетрагидрофураната трихлорида гадолиния в зависимости от соотношения реагентов приводит к образованию моно-циклопентадиенильного ат-комплекса [{[η^5 -(Ph₂(*o*-C₆H₄OCH₃)C₅H₂)Gd(Thf)]₂(μ_2 -Cl)₂(μ_3 -Cl)₃K(Thf)]₂] (I) или *бис*-циклопентадиенильного комплекса [(Ph₂(*o*-C₆H₄OCH₃)C₅H₂)₂GdCl] (II) (схема 1).

Рис. 1. Общий вид комплекса I в представлении атомов эллипсоидами тепловых колебаний (p = 50%). Атомы углерода координированных молекул ТГФ и атомы водорода не показаны для упрощения рисунка.

Строение полученных соединений установлено методом PCA. Тетраядерный комплекс I (рис. 1, табл. 2) состоит из двух фрагментов {[η⁵-(Ph₂(o- $C_{6}H_{4}OCH_{3}C_{5}H_{2}Gd(Thf)]_{2}(\mu_{2}-Cl)_{2}(\mu_{3}-Cl)_{3}K(Thf)\},$ которые соединены через две связи K-Cl планарного фрагмента K_2Cl_2 . Катион Gd³⁺ (KЧ 8) η^5 -координирован циклопентадиенильным лигандом, молекулой ТГФ и четырьмя хлоридными лигандами, при этом один из катионов гадолиния в каждом из фрагментов окружен тремя µ₂-хлоридными лигандами и одним µ₃-хлоридным лигандом, тогда как второй катион окружен двумя µ₂хлоридными лигандами и двумя µ₃-хлоридными лигандами. Два атома углерода фенильного кольца одного из двух арилциклопентадиенильных лигандов в каждом из фрагментов имеют короткие контакты (С...К 3.260(4)-3.396(3) Å) с катионом калия. В комплексе I метоксигруппа фенильного заместителя не принимает участия в координации с катионом гадолиния ни внутри-, ни межмолекулярно, что удивительно, принимая во внимание известную оксофильность лантанидов [13]. Вследствие этого строение І оказывается аналогичным строению комплекса с обычным

трифенилциклопентадиенильным лигандом [{[η^{5} -(Ph₃C₅H₂)Gd(Thf)]₂(μ_{2} -Cl)₂(μ_{3} -Cl)₃K(Thf)}₂] (III) [9], не имеющим электронодонорных заместителей. При этом метоксифенильный фрагмент циклопентадиенильного лиганда расположен в пространстве аналогично фенильному заместителю в том же положении циклопентадиенильного кольца в комплексе III.

Интересно, что если углы разворота фенильных заместителей в I и II близки (30.1°-37.8° и 28.4°-39.3°), то угол разворота для метоксифенила существенно превышает (30.6°-32.8°) таковой $(18.1^{\circ}-20.4^{\circ})$ для фенила в положении 1 комплекса III. Столь значительный разворот метоксифенильного заместителя несколько удивителен, учитывая, что планарное расположение не только выгодно с точки зрения сопряжения с циклопентадиенильным кольцом, но и с точки зрения возможного внутримолекулярного С-Н....О контакта с водородом циклопентадиенильного лиганда (Ср). Анализ внутримолекулярных контактов позволяет предположить, что атом кислорода вовлечен во внутримолекулярный контакт с мостиковым хлоридным лигандом с расстояниями

Параметр	Ι	II
Gd-C _{Cp}	2.700(3)-2.781(3)	2.662(4)-2.753(3)
Gd-Cl	2.6392(6)-2.8750(6)	2.600(1)
Gd-O _{THF}	2.399(2)-2.402(2)	
Gd-O _{OMe}		2.617(3)
KC _{Ph}	3.260(4)-3.396(3)	

Таблица 2. Основные структурные параметры комплексов I, II

Cl(1m)...O(1) и Cl(1m)...O(1A) 3.170(2) и 3.220(2) Å соответственно (рис. 2). В пользу наличия подобного взаимодействия также может указывать величина углов OClGd (161°–162°), что согласуется с возможным переносом заряда с атома кислорода на разрыхляющую орбиталь связи Gd–Cl.

Комплекс II (рис. 3), относящийся к типу бисциклопентадиенильных производных, построен принципиально иначе. Катион гадолиния в II η⁵-координирован двумя циклопентадиенильными лигандами, хлорид-анионом и атомами кислорода обеих метоксигрупп. В комплексе II КЧ(Gd) равно 9. Молекула II кристаллизуется в хиральной пространственной группе P4₁2₁2 и занимает частное положение – ось 2. прохоляшую по связи Gd-Cl. Кристаллизация в хиральной пространственной группе, в свою очередь, означает образование конгломерата – механической смеси энантиомеров, в которых хиральная конформация стабилизирована за счет связей Gd...O. Как и в случае комплекса I, углы разворота незамещенных фенильных циклов (25.2(2)° и 31.8(2)°)

фактически не отличаются от таковых в I и III (см. выше). Угол разворота для метоксифенильного заместителя ожидаемо оказывается существенно больше (71.4(2)°) в результате взаимодействия Gd...O. Хотя расстояние Gd...O в II (2.617(2) Å) попадает в диапазон максимальных значений для связей Gd...O(Me)—Ph (среднее значение Gd...O ~2.55 Å), однако длина связи O—C в II (1.391(5) Å) существенно превышает таковую в I (1.362(3) Å).

Таким образом, на примере строения комплексов I и II обнаружено, что 1-(*о*-метоксифенил)-3,4-дифенилциклопентадиенильный лиганд демонстрирует принципиально разные способы координации с центральным ионом металла в зависимости от типа формирующегося комплекса (моно- или *бис*-циклопентадиенильного), причем в *бис*-циклопентадиенильном комплексе II обе метоксигруппы принимают участие в координации, что приводит к увеличению КЧ гадолиния до 9 и закономерному удлинению расстояний Gd-C_{Cp}.

Авторы сообщают, что у них нет конфликта интересов.

Рис. 2. Фрагмент комплекса І, иллюстрирующий внутримолекулярные взаимодействия СІ...О.

Рис. 3. Общий вид соединения II в представлении атомов эллипсоидами тепловых колебаний (p = 50%).

ФИНАНСИРОВАНИЕ

Работа выполнена при поддержке Российского научного фонда (грант № 17-13-01357).

СПИСОК ЛИТЕРАТУРЫ

- Wilkinson G., Birmingham J. M. // J. Am. Chem. Soc. 1954. V. 76. P. 6210.
- Birmingham J.M., Wilkinson G. // J. Am. Chem. Soc. 1956. V. 78. P. 42.
- 3. Maginn R.E., Manastyrskyj S., Dubeck M. // J. Am. Chem. Soc. 1963. V. 85. P. 672.
- Manastyrskyj S., Maginn R.E., Dubeck M. // Inorg. Chem. 1963. V. 2. P. 904.
- Yang L., Ye J., Xu L. et al. // RSC Adv. 2012. V. 2. P. 11529.

- *Zhang X., Ye J., Xu L. et al.* // J. Lumin. 2013. V. 139. P. 28.
- Minyaev M.E., Vinogradov A.A., Roitershtein D.M. et al. // J. Organomet. Chem. 2016. V. 818. P. 128.
- Roitershtein D.M., Minyaev M.E., Mikhaylyuk A.A. et al. // Russ. Chem. Bull. 2012. V. 61. P. 1726.
- 9. Roitershtein D.M., Puntus L.N., Vinogradov A.A. et al. // Inorg. Chem. 2018. V. 57. P. 10199.
- Edelmann F.T., Poremba P. // Synthetic Methods of Organometallic and Inorganic Chemistry / Eds Edelmann F.T., Herrmann W.A. Stuttgart (Germany): Verlag, 1997. V. 6. P. 34.
- 11. Lochmann L., Trekoval J. // J. Organomet. Chem. 1987. V. 326. P. 1.
- Hirsch S.S., Bailey W.J.J. // Org. Chem. 1978. V. 43. P. 4090.
- 13. Bünzli J.-C.G. // Acc. Chem. Res. 2006. V. 39. P. 53.